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Executive Summary

Different electrification infrastructure concepts for electric vehicles can be difficult to compare economically be-
cause they use batteries in different ways. Often, there are options with frequent high-power short-time charging or
slower charging with deeper charging cycles. This paper presents a method for comparing the battery-related costs
associated with these options and applies it to long-haul trucks using different types of charging infrastructure. The
battery related costs can then be compared to the cost differences between different infrastructure options to iden-
tify the best overall solution. Many existing battery aging models do not fit this type of investigation well, either
requiring too much information and computation time, or do not cover e.g. the approximate dynamic behavior of
the battery. To address this, we introduce a novel model designed to approximate how different use cases influence
battery-related costs for a generic battery type, rather than modeling the behavior of any specific battery pack.

Keywords: Batteries, Modeling & Simulation, Electric Vehicles, Heavy Duty electric Vehicles & Buses, Fast and
Megawatt charging infrastructure

1 Introduction
This work stems from difficulties in several system studies, e.g. [1, 2] in consistently and realistically modeling
and comparing battery-related costs between charging system options. These options result in different battery
usage, particularly in relation to cycle depth distribution, charging power, and charging patterns. Commonly used
battery models are either too detailed or make unwarranted simplifications. Detailed models often require unknown
parameter values and are computationally intensive. Common problems with simplified models are that they e.g.
estimate the damage from fast charging based on the average or RMS-current over the charging phase. It is easy
to construct counterexamples that show that these models are not realistic in some cases. The presented model
can estimate the costs associated with specific battery usage patterns and charging solutions, even before selecting
vehicle models or battery solutions. This capability is crucial for developing long-term infrastructure strategies
and policies.
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2 Battery degradation model for cost estimation
The battery model suggested in this paper is illustrated in Figure 1. The model is intended to be as simplified as
possible while still capturing the important behavior for a rough techno-economic optimization of a system.
The model’s input consists of the battery’s charging and discharging power as a function of time for representative
time intervals, typically one or a few days. The power is then filtered through an equivalent circuit battery model,
designed to capture properties of the battery usage which relates to different aging mechanisms. The results are
used to calculate battery degradation through two mechanisms:

• A degradation term per unit of time based on an internal voltage and current in the battery.

• A degradation term per discrete charging cycle that depends on the minimum and maximum equivalent state
of charge (SOC) in the cycle.

Combined with a model of acceptable battery degradation at the end of its economic life and an economic model
considering interest rates and other factors, the overall cost of the battery use case can be estimated.
This model does not include any thermal dynamics; it is assumed that the battery heating/cooling system is de-
signed so that the battery can be kept close to an ideal average operating temperature at all times during operation.
The assumption that the battery almost always operates in a reasonable temperature range is a reasonable assump-
tion for commercial vehicles that have large batteries with slow temperature dynamics and that operate for long
predictable periods at a time.
The lack of a thermal model makes it harder to compare the results with laboratory tests that are typically performed
at well-defined temperatures. It also limits the accuracy of the results, but makes it much easier to apply the model
to system design problem at the concept development stage, before the vehicle models have been designed or
selected. To properly include the thermal dynamics would include modeling the cost associated with thermal
systems of different performance levels and the optimal control of these.
Since the model is intended for use in an optimization loop, it should have a few properties:

• It should not fail if the battery is misused; instead, it should give a very sharp increase in battery degradation
when the battery is used outside normal operating conditions, as this will guide the optimization algorithm
to acceptable operating regions. The model accuracy is not important outside normal operating conditions
since they will not be selected, i.e. it does not matter if the battery would last e.g. 10 minutes or 10 seconds in
a unrealistic extreme operating point, as long as the aging is so fast that the optimization will never converge
in that operating point.

• It should be reasonably fast to compute, since it will be calculated many times.

The selected parameters in this model are intended to roughly approximate NMC batteries, but the model has not
yet been systematically fitted to any data on battery degradation. The goal is to keep the model as generic as
possible.

2.1 Circuit model to model battery dynamics
The electrochemical dynamics of a battery is complicated and in the general case is modeled as a set of PDE:s.
In order to make a model that is understandable and computationally fast, it is preferable to express it as a circuit
model. The circuit model used is intended mainly to help model battery aging in a simple way, by filtering the
current to useful signals for degradation calculation. In addition, it is also used to estimate losses. If accurate loss
estimation is important, a separate circuit model can be used only for loss calculation, or the model may need to
be more complex. A real battery has different dynamics in the anode, cathode, and electrolyte. The dynamics
is partially caused by diffusion and, therefore, requires Warburg diffusion elements to describe. These cannot be
described exactly by a conventional finite lumped circuit model.
For our purposes, the circuit model needs to do three things:

• Filter out high-frequency shallow charging/discharging cycles in the range above about 0.1 Hz to 0.01 Hz.
It is well-known that the ripple current and fast current variations have a very small impact on battery aging.
This filtering is done with C1 in the model. To some extent, C1 can be considered to represent the double
layer capacitance in the battery cells. Therefore, it is modeled as a linear capacitor according to Equation 1.
Making C1 linear also helps to reduce the computation time.

• Capture the increased degradation as a result of, e.g. sustained fast charging. In frequency ranges between,
e.g. 0.01 Hz and 0.0001 Hz the cycles are long enough to cause significant ion transport, but not so slow
that the battery is close to equilibrium. This puts extra stress on the battery that needs to be modeled, this is
done with C2.

• Model the overall bulk state of charge; this is modeled by the sum of the charge in C1 +C2 +C3 where C3

has the majority of the capacity and represents the capacity of the bulk of the electrode material.
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Figure 1: The battery model for cost estimation. The red lines/points which are shown in the diagrams are for the “Fast ch. 5
min every 75 km” case.

Figure 2: The relation between voltage and charge used for the different parts of the model
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Table 1: Parameters.
1C current is defined as the current that fully charge the battery in one hour.

Parameter Symbol Value Unit
Circuit model

Max Voltage Vmax 1.1 p.u.
Min Voltage Vmin 0.9 p.u.
Resistance at terminals R1 0.025 Fraction loss at 1C current
Resistance to C2 R2 0.025 Fraction loss at 1C current
Resistance to C3 R4 0.042 Fraction loss at 1C current
Fraction of the total charge storage in the capacitor
over the voltage range

C1 5% Fraction of the total
charge.

Charge storage in the first OCV over the voltage range C2 20% Fraction of the total
charge.

Charge storage in the second OCV over the voltage
range

C3 75% Fraction of the total
charge.

OCV center p1 0.5 -
OCV sharpness p2 10 -
OCV voltage scaling p3 800 -
OCV voltage offset p3 1 -

Battery life calculation
Nominal capacity loss at EOL p

EOL
0.2 -

Degradation knee exponent p
EOL exp

2 -

Economic calculation
Battery capacity Ecap - kWh
Mass per kWh m 7.28 kg/kWh
Battery cost per kWh cbatt 208 EUR/kWh
Energy cost cenergy 0.2 EUR/kWh
Cost of battery mass in application case cmass 5 EUR/kg
Discount rate rdiscount 15 %/year

Cost of failure to deliver or absorb energy cfail 10 EUR/kWh
Time integral based degradation

Extreme voltage degradation exponent multiplier pd1 120 -

Extreme voltage degradation scaling pd2 8 ∗ 10−8 p.u./year
Voltage with minimum degradation Vmin d 0.98 p.u.
Voltage scaling for degradation pd3 10 p.u.
Current scaling for degradation pd4 0.33 p.u.
Scaling for degradation by voltage and current pd5 0.9 p.u./year
Minimum calendar degradation rate dmin 0.024 1/year

Cycle based degradation
Cycle degradation scaling pc1 5 ∗ 10−6
High SOC cycle degradation offset pc2 0.815
High SOC cycle degradation exponent multiplier pc3 20
Low SOC cycle degradation offset pc4 0.077
Low SOC cycle degradation exponent multiplier pc5 30
Extreme SOC cycle degradation offset pc6 0.0347
Extreme SOC cycle degradation exponent multiplier pc7 300
SOC range degradation exponent multiplier pc8 2
Degradation proportional to cycled energy pc9 0.03
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Other degradation models often try to include the effects of e.g. fast charging by making the degradation a function
of e.g. the average or RMS charging current over a charging cycle, it is, however, trivial to generate charging cycles
with identical RMS-Current that have very different degradation in reality. For this reason, it seems necessary to
use a dynamic model to capture the dynamic behavior.
For example, compare charging a battery at 1 C for 600 seconds followed by 30 C for 60 seconds with alternating
10 seconds at 1 C followed by 1 second at 30 C and so on for 660 seconds. The latter case is obviously much
better, but has exactly the same RMS-current.
Especially for optimization of electric road layouts, it is important to get the degradation caused by dynamic
behavior right, since electric roads give rise to very complex charging patterns, and an optimization algorithm can
easily exploit flaws in the degradation model that give unrealistically low degradation in corner cases.
The open circuit voltage (OCV) curve for C1 is linear.

V1 = SOC1 ∗ (Vmax − Vmin) + Vmin (1)

Since C2 and C3 are intended to model the charging and discharging of different parts of the battery electrodes,
they are modeled with a non-linear open circuit voltage (OCV) curve

Vi = sinh((SOCi − p1) ∗ p2)/p3 − p4, i ∈ 2, 3 (2)

as shown in Figure 2.
The circuit is simulated with forward Euler integration and one second time step. This gives acceptable com-
putation times for testing but can be improved significantly, for example, by using longer time steps for C2 and
C3.

2.2 Time integral based degradation
It is generally known that the calendar aging of batteries is strongly dependent on the state of charge. The cell is
optimized to work around the nominal voltage and high or low SOC gives a voltage that deviates from the nominal
voltage. The resulting electrochemical potentials within the battery cell cause unwanted side reactions that result
in degradation.

The model for time integral based degradation describes an aging rate, which varies during the battery usage cycle
and is integrated to give the damage over the cycle, dV I .

dV I = pd5

(∫ T

0

pd2e
(pd1 |(V1(t)−1)|)2dt+

∫ T

0

(e(pd3(V1(t)−Vmin d))
2+(pd4∗(i2(t)+i3(t)))

2

− 1)dt+ T dmin

)
(3)

This proposed equation was found by iterative adjustment to obtain results that meet expected battery degradation.
The resulting degradation rate can be illustrated as a 3D map, which can be seen in the lower left corner of Figure 1.

The degradation processes are chemical processes whose reaction rates are governed by the Arrhenius equation,
which has an exponential relation between the electrochemical potential and reaction rate. This makes it reasonable
to assume an exponential function. The current also contributes to the degradation by, among other mechanisms,
causing voltage drops that make the electrochemical potential inhomogeneous.

The first integral in Equation 3, gives very fast degradation at extreme voltages outside the normal range. It has
little impact in normal operation, but gives a very short expected battery life at extreme voltages. When the model
is used in an optimization loop where battery life is included in the cost function, this acts as soft voltage limits.
By using soft voltage limits, with a gradient towards normal operation, instead of hard limits, it is much easier for
an outer optimization loop to find parameters that give operation in the normal voltage range.
The second integral gives zero degradation at zero current and a voltage of Vmin d and is increasing exponentially
further from this point. The last term, T · dmin, sets the minimum calendar aging when the battery is stored at
Vmin d.

2.3 Cycle based degradation
Battery degradation is often described in terms of the number of charging/discharging cycles the battery can with-
stand between different SoC levels. This is convenient in many applications, fits well with typical testing proce-
dures, and captures battery degradation due to mechanical stress and cracking in the electrodes. Observe that in
this model the degradation due to battery cycling is split between ”Time integral based degradation” and ”Cycle
based degradation”.
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Mechanical stress is mainly introduced because the inflow and outflow of ions cause the electrodes to swell and
shrink. Cracks in the electrodes cause different degradation mechanisms, such as disconnecting electrode material,
exposing more surface area to formation of solid electrolyte interface which binds up cyclable lithium, and so on.
In a real cell, there are different modes of mechanical stress that contribute to mechanical degradation such as:

• Variation in the volume of the bulk electrode.

• Difference in swelling in different parts of the macroscopic electrode material.

• Difference in swelling on the surface and center of the individual microscopic electrode grain.

The two last modes are exacerbated by fast charging and discharging, since the ion concentrations in the electrodes
do not have time to equalize.

In this model, we want to capture all these different modes of cycle-based degradation with one single cycling
model. The cycle-based degradation model is based on the SOC variations of C2 in the circuit model that represents
the state of charge of the electrode surface. This makes cycles with high C-rate look deeper than they are, and
therefore capture the increased damage from cycling with high C-rate.

Since the model is intended to be used in complex scenarios where small cycles can be overlaid on larger cycles,
we need a way to go from a messy time series of SOC values to a list of cycles with the lowest and highest SOC
values for each. For this we use the classical rain-flow counting method. [3]

The degradation map used for cycle-based degradation can be seen in the lower middle part of Figure 1. This
map shows the rate of degradation given by Equation 4a. This degradation rate is based on the integration of
exponential functions over the SOC range of the cycle, and then we sum the degradation of all N cycles during
the test sequence. The first two integrals set up increasing degradation towards the upper and lower parts of the
SOC-range. The parameters are selected to give more degradation in the upper part of the SOC range than in the
lower part, since this is often observed in real batteries. The next two integrals are basically the same but with
parameters set to give a really low battery life if operated outside the specified SOC range of 0 to 100%. The fifth
integral increases the degradation for cycles with a large SOC range regardless of the mean SOC level. The last
integral represents a fixed degradation per cycled amount of energy. With the current parameters, the last integral
gives only a small contribution to the overall degradation and could possibly be removed.

The integrals in Equation 4a can be solved analytically, resulting in Equation 4b, this is what is actually imple-
mented in the simulation code.

dC = pc1

N∑
n=0

(∫ SOC2max(n)

SOC2min(n)

pc3 ∗ epc3(x−pc2)dx+

∫ SOC2min(n)

SOC2max(n)

pc5 ∗ epc5(−x−pc4)dx+

+

∫ SOC2max(n)

SOC2min(n)

pc7 ∗ epc7(x−1−pc6)dx+

∫ SOC2min(n)

SOC2max(n)

pc7 ∗ epc7(−x−pc6)dx+

+

∫ SOC2max(n)−SOC2min(n)

0

pc8e
pc8xdx+

∫ SOC2max(n)−SOC2min(n)

0

pc9dx

)
(4a)

dC = pc1

N∑
n=0

(
epc3(SOC2max(n)−pc2) − epc3(SOC2min(n)−pc2)+

+epc5(−SOC2min(n)−pc4) − epc5(−SOC2max(n)−pc4)+

+epc7(SOC2max(n)−1−pc6) − epc7(SOC2min(n)−1−pc6)+

+epc7(−SOC2min(n)−pc6) − epc7(−SOC2max(n)−pc6)+

+epc8(SOC2max(n)−SOC2min(n)) − 1+

+pc9(SOC2max(n)− SOC2min(n))) (4b)
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2.4 Battery life calculation
To predict the expected battery life in a specific application, we need to consider a few things:

• The total degradation over one test cycle is calculated here simply as dV I + dC . In reality, degradation of
different types cannot necessarily be added directly, but it is a common simplifying assumption.

• How much reduction in power and energy capacity that is acceptable while still fulfilling the requirements
of the test cycle, this is calculated as the minimum of the margin in energy storage, discharging power and
charging power:

gmargin = min(1−(SOC2max−SOC2min), min
t∈[0 tmax]

(1−P (t)/Pmax(t)), min
t∈[0 tmax]

(1−P (t)/Pmin(t))

(5)
Where min(1 − (SOC2max − SOC2min) is the energy capacity margin, Pmax(t) and Pmin(t) is the
maximum and minimum power that the battery can deliver while the terminal voltage stays in the specified
voltage range, calculated for each timestep. Observe that this is a simplification, since there is no guarantee
that this power could be sustained for the required time.

• A way to translate the total amount of degradation into the remaining energy and power capacity, often the
power capacity decreases faster than the energy capacity, but here it is assumed that both decrease at the
same rate. The degradation parameters are designed so that the degradation of 100% results in the remaining
capacity of p

EOL
= 80%. The function from degradation to remaining capacity can be very different

between different batteries and operating conditions. Often there is a rapid loss of capacity first followed by
a slower loss of capacity and then a knee after which the capacity falls rapidly again. The knee is important to
model; therefore, the remaining capacity is modeled as Ecap(1−(dV I+dC)

p
EOL exp ) where p

EOL exp
= 2,

basically a quadratic loss of capacity with increased degradation. This can be rearranged to

dmax =

(
gmargin

p
EOL

)1/p
EOL exp

(6)

where dmax is the maximum degradation allowed while the battery is still useful in the application.

• Calculate the total battery life by multiply the test cycle time by the ratio of allowable degradation to the
degradation from one cycle.

TEOL = Ttest
dmax

dV I + dC
(7)

Once the battery life has been calculated, the yearly battery-related cost can be calculated.

Fcost(Ecap, pPopt) = Ecap · (cbattFannuity (TEOL (Ecap, pPopt) , rdiscount) +m cmass)+

+ cenergyEloss per year(Ecap, pPopt) + cfail · (EnotDelivered + ENotCharged) (8)

Where EcapcbattFannuity (TEOL (Ecap, pPopt) , rdiscount) is the annual cost of paying the investment at the given
interest rate.
Ecap m cmass is the cost in e.g. lost payload capacity from the battery mass mEcap.
The last term cfail · (EnotDelivered + ENotCharged) is an extra cost applied if the battery cannot follow the test
cycle based on the size of the energy deviation. After optimization, it is normally zero.
The battery life in the examples in Section 3 is assumed to be separate from that of the vehicle. Therefore, the
overall cost of the vehicle does not factor into the cost equation. In reality, it is often practical if the vehicle life is
the same as the battery life, or an integer multiple of the battery life so that used batteries do not need to be moved
between vehicles unnecessarily.

2.5 Rescaling for Energy vs. Power optimization
The model presented so far describes a single type of battery that scales in size but otherwise has the same prop-
erties. In order to compare different charging solutions with different requirements in terms of energy storage and
power capabilities, it is necessary to consider batteries that have different compromises between energy-optimized
and power-optimized cell types, cooling, and interconnections. One way to do this would be to try to model a
number of existing such compromises, optimize each, and then select the cheapest alternative. However, the way
that is used in this work is to do an interpolation of the available compromises. To do this, the parameter pPopt

is defined such that 0 is a fully energy-optimized battery and 1 is a fully power-optimized battery. The parameter
values presented so far represent the case of pPopt = 0.2. The rescaled parameters are presented in Table 2.
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Table 2: Parameters Rescaled by energy optimization level

Parameter Symbol Value

Resistance at terminals R1 0.03(1− 0.8pPopt)

Resistance to C2 R2 0.03(1− 0.8pPopt)

Resistance to C3 R4 0.04(1− 0.8pPopt)

Mass per kWh m 7(1 + p2Popt + 10p20Popt) kg/kWh

Battery cost per kWh cbatt 200(1 + p2Popt + 10p20Popt) EUR/kWh

Scaling for degradation by voltage and current pd5 1(1− 0.5pPopt) p.u./year

2.6 Sanity check of the model
While the model parameters have not yet been systematically optimized to fit the model to any data set for battery
life and are mainly intended to illustrate a proposed model structure for this type of studies, it is still relevant to ver-
ify that the model gives reasonable results. Figure 3a shows the battery life predicted by the model when exposed
to simple cycling similar to a typical cycling test in a laboratory. The general shape and orders of magnitude agree
with expectations. In this case, 0.3 C charging/discharging results in most cycle life and therefore also most cycled
energy. At 0.1 C, the battery has less cycle life due to calendar aging, and at higher C-rates the current-dependent
degradation mechanisms reduce the cycle life.
Figure 3b shows the battery life predicted by the model when exposed to simple cycling around different average
SOC levels and with different SOC ranges. Unlike the previous figure, this figure is scaled in full-cycle equiv-
alences. The highest predicted cycle life is given for SOC average around 0.2 p.u. and a small SOC range, as
expected. At 100% SOC cycles at 1 C, centered around 50% , the predicted battery life is 2500 cycles.
Figure 4 compares the model result with a publicized set of cycling experiments. [4] It can be seen that the battery
life is predicted to be within a factor of 2 in most cases. We hope that much better future predictions will be
possible by properly fitting the model parameter to available data.

(a) Predicted battery life in full cycle equivalents with
EOL at 80% capacity, for simple cycling at different cy-
cle depths and C-rates. Average SOC-level is selected to
maximize battery life.

(b) Predicted battery life in full cycle equivalents with
EOL at 80% capacity, for simple cycling at a C-rate of 1
for both charging and discharging

Figure 3: Model results for simple cycles.
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Figure 4: Comparison between predicted cycle life by the model and the estimated cycle life based on published results [4]. A
full description of these cases is beyond the scope of this article. The different points represent test cycles with different SOC
ranges and C-rates of 1,2 and 4. The points that are encircled are tests where the battery did not degrade to 80% during the
test, the value shown for these points are extrapolated to the number of cycles that would be required to reach 80% remaining
capacity at constant degradation rate.

3 Examples of different charging infrastructure for Long-haul trucks
Table 3 and Figure 5 present four example cases in which a long-haul truck performs the same transport task
but uses different charging infrastructure. The power demand in these examples comes from a simulation of
driving a 40-ton truck the 563 km from Helsingborg to Stockholm in Sweden with an rather high average energy
consumption of 1.91 kWh/km. To make it simple, it is assumed that all days are the same and that it only makes
one trip per day. The battery is slow charged for 8 hours at night, presumably in the depot with a power selected to
reach the same SOC as the day started with. The cases are as follows.

• Using only the charger in the depot without extra charging during the day. This will result in a large,
expensive, and heavy battery, but minimizes the cost of the charging infrastructure.

• Fast charging during lunch break with 800 kW and depot charging. This is probably the most likely case for
operation in the near future.

• Electric road system (ERS). This is a system that supplies power to vehicles while driving, either inductively
or through sliding contacts. It is often more economical to build shorter ERS with higher power rather than
building the entire distance.
The road was divided into 650-meter sections (30 seconds driving). The 15 % of the sections where the
average power consumption is greater than 243 kW had ERS installed, capable of delivering 800 kW. This
means that ERS is installed mainly in uphill sections.

• Fast ch. 5 min every 75 km. In a future with self-driving vehicles, driving and rest-time rules will be
irrelevant. It may therefore be more economical to make shorter charging stops, but more frequent. Since
batteries in general are better at handling high power for short periods, the charging power is set to 1200 kW
instead of 800 kW.
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Figure 5: The battery energy content for the different cases. The time is relative to the start of the transport task.

Table 3: The example cases. All cases consist of a 40-ton truck driving 563 km.

Case Depot
charging
only

Lunch
charging

Electric
road

Fast ch. 5
min every
75 km

Slow charging 8 h @ (kW) 140 60 20 50

Fast charging power (kW) - 800 - 1200

Number of fast chargers 0 1 0 7

Total fast charging time (minutes) - - 45 - 35

Electric road power (kW) - - 800 -

Electric road coverage (%) 0 0 15 0

EVS38 International Electric Vehicle Symposium and Exhibition 10



Table 4: Optimized batteries for the example cases. All cases consist of a 40-ton truck driving 563 km.

Case Depot
charging
only

Lunch
charging

Electric
road

Fast ch. 5
min every
75 km

Battery Capacity (kWh) 1519 811 440 627

Power (pPopt = 1) or energy (pPopt = 0)
optimized, (pPopt)

0.069 0.19 0.15 0.14

Battery mass (kg) 10700 5900 3100 4500

Used SOC window (%) 74 74 72 74

Max charging C-rate including regenerative
braking (kW/kWh capacity)

0.11 0.99 1.27 1.91

Economic battery life (years) 10.5 7.6 9.6 9.7

Battery related costs (EUR/km) 0.48 0.30 0.16 0.23

How much more the charging infrastructure
may cost relative to ”Depot charging only” for
break even (EUR/vehicle/year)

Reference
case

37 000 66 000 51 000

4 Results
The results of the model are shown in Table 4. In each case, an optimization algorithm (fminsearch in MATLAB)
has selected the battery capacity, the power optimization level, and the initial state of charge (SOC) to minimize
battery-related costs.
Given the limited validation and calibration of the model, all these results should be seen as an illustration of the
principles and how this type of model can be used rather than as facts.
The Used SOC window only varies from 72 to 74 % between the cases, but this is probably just a coincidence.
We can see that the case with Lunch charging requires the most power-optimized battery according to this model.
This is because long fast-charging sessions are the most demanding, even if the C-rate is higher in Cases 3 and 4.

Battery-related costs include battery investment with interest, energy loss in the batteries, and the cost of lost
payload capacity due to battery mass.
The battery-related costs are lowest in the case of electric road, 0.24 EUR/km cheaper than depot charging, but a
large part of this cost reduction can be gained by the much simpler lunch charging.
These costs can be combined with the cost of the different charging infrastructures and other costs to compare the
total cost of the system of the different solutions.
The maximum infrastructure cost for break even against Depot charging only is shown in the last row of Table 4,
expressed as EUR per vehicle and year. Whether a case can become profitable compared to the other cases depends
not only on this break-even cost, but also on how many vehicles can share the infrastructure.

5 Conclusions
A model structure is presented that makes it feasible to compare battery-related costs for widely different charging
solutions, including solutions with highly dynamic and complex charging patterns such as electric roads.
Together with cost estimates for the charging solutions themselves, this makes it possible to compare the cost of
different solutions in an early concept evaluation stage, before vehicles that fit the application may even have been
developed.
All models have a trade-off between complexity and approximations; we are not aware of any other model that fits
the same niche, even though there are many other battery aging models, both simpler and more detailed.
This model helps to compare different solutions on technical grounds regardless of what types of vehicle currently
are in mass production.
The parameter values presented give reasonable results and can be used to demonstrate the principles, but further
calibration and validation of the parameter values is needed before qualitative results can be trusted.
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6 Future work
• Further calibrate and validate the model against experimental aging data.

• Implement automatic optimization of the charging , to minimize battery damage.

• Expand the range of example cases and try to compare different applications, such as haul trucks, buses,
boats, and airplanes.

• Integration with more detailed total cost of ownership (TCO) model.
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