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Executive Summary 

In the fuel cell hybrid test train, increasing the number of full cell control input variables, such as battery 

SOC, speed, track data, and power demand, enhances the system's adaptability to various operational 

scenarios, including track geometry, local, and rapid services. However, this increase in input variables 

complicates the assessment of their individual impacts, making it challenging to determine optimal control 

strategies based purely on engineering experience. This paper discusses optimized multivariable control 

methods, including PI and feedforward (PI+FF) and Fuzzy control, using a driving energy simulator for the 

test train. The study compares the performance and adaptability of each method for implementation. 
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1 Introduction 
1.1 Background and Motivation 

Rail transport offers significantly higher passenger transport efficiency and lower greenhouse gas emissions 

compared to automobiles and aircraft. However, to meet carbon neutrality goals, further emission reductions 

are essential [1]. The development of fuel cell (FC)-based railway systems presents a promising solution by 

utilizing hydrogen to reduce environmental impact and improve energy efficiency. This approach also offers 

benefits such as replacing diesel trains, reducing overhead line maintenance for electric trains, and enabling 

catenary-free electric train operation, which further reduces maintenance requirements. Consequently, many 

countries are actively promoting the development of FC-powered trains [2]. 

In FC-battery hybrid trains, control of the FC output is critical to energy management, as it directly impacts 

hydrogen consumption, traction performance, and dynamic response. This critical role is challenged by the 

fact that the discharge and charge power capabilities of battery are constrained by its state of charge (SOC) 

[3]. Although adding more battery or FC modules could mitigate these limitations, space and weight 

restrictions in heavy‑duty FC-battery hybrid vehicles often make this impractical [4][5]. For example, when 
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the SOC is either too low or too high, the required power cannot be provided or the regenerative energy 

cannot be fully absorbed. In such cases, the system must rely on the FC to provide additional power [6]. 

However, since the FC operates most efficiently in the mid-to-low output range, Frequent high-output 

operation degrades the FC efficiency and leads to an increase in SOC. An excessively high SOC restricts the 

capacity of battery to absorb regenerative power due to its limited charging capability, thereby reducing the 

regeneration rate. This reduction, combined with lower FC efficiency, results in worsened fuel economy. 

Achieving an appropriate multi-objective balance between fuel economy and acceleration capability under 

these operational constraints remains a key challenge. Advanced control strategies, such as multi-objective 

reinforcement learning, have been proposed to address this challenge. For instance, Wu et al. developed a 

method that simultaneously optimizes fuel efficiency and lifecycle cost in FC-battery hybrid vehicles [7]. 

However, the practical application of such approaches is often limited due to high computational complexity 

and insufficient real-time feasibility. 

 

1.2 Objectives 

To address these challenges, this study proposes an optimization framework for two rule-based control 

strategies: a combined proportional-integral (PI) and feedforward (FF) control system, and a fuzzy logic-

based control system. Both strategies are designed to handle multiple control variables relevant to FC-battery 

hybrid train systems. The objective of the optimization is to minimize hydrogen consumption while meeting 

acceleration performance constraints. Additionally, a comparative evaluation was conducted between the 

two optimized control strategies to assess their impact on key performance metrics, including acceleration 

capability, fuel economy, and the degree of fuel cell degradation. The goal is to clarify the advantages and 

limitations of each control approach in improving the overall energy efficiency and operational reliability of 

FC-battery hybrid train systems. 

 

2 Configuration of the FC Hybrid Test Train and Simulator 

The FC-battery hybrid test train consists of one trailer car and one motor car, as illustrated in Figure 1. The 

configuration of its traction circuit is shown in Figure 2, and the main specifications are summarized in Table 

1. The powertrain incorporates an FC system composed of two polymer electrolyte membrane fuel cell 

(PEMFC) systems, each rated at 90 kW, along with a lithium-ion battery system that provides a total energy 

capacity of 45.3 kWh and a maximum output power of 540 kW. Both the traction and auxiliary converters 

operate at 1,500 V DC, which corresponds to the standard overhead line voltage of the base train before 

modification. 
 

 
Figure 1: Exterior view of FC test train 

 

 
Figure 2: Circuit diagram of FC test train 
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Table 1: Specifications of test train 

 Value 

Type of Train Commuter 

Train Configuration 2 Cars in 1 Train Set 

Mass of Train 
Trailer Car 31.8 t 

Motor Car 37.2 t 

Dimension (1 car) 19,670 × 2,950 × 3,702 mm 

Traction Motor Induction Motor 95 kW × 4 

Power Converter 

Traction Converter IGBT  2Level 

Auxiliary Converter IGBT  3Level 

DC/DC Converter for Battery step-up Chopper 

DC/DC Converter for FC Boost Chopper and High-frequency Isolated DC-DC Converter 

Fuel Cell (FC) PEFC 90 kW × 2 

Battery for Traction Lithium Ion Battery (540 kW・45.3 kWh) 

 

As the FC system generates approximately 300 V DC, this voltage is first stepped up to around 600 V DC 

using a galvanically isolated DC/DC converter. The output is then integrated with the battery system. To 

meet the inverter’s power demand and control battery charging and discharging, a bidirectional DC/DC 

converter further boosts the voltage to 1,500 V DC. 

To support control strategy development and performance evaluation, a forward-type energy simulator has 

been developed for this test train, as shown in Figure 3. The simulator includes a driver behavior model that 

determines traction force commands by calculating acceleration and braking notches to reach the target speed 

or stop at station platforms. The target speed is set according to the train’s service type. These commands are 

fed into detailed dynamic models of the FC system, battery, and DC/DC converters. As a result, the simulator 

computes key operating parameters such as motor torque, SOC, DC link voltage (i.e., the voltage supplied to 

the traction converter), motor output power, and speed. 

To reproduce the acceleration and regenerative braking limitations under realistic conditions, the simulator 

imposes variable voltage variable frequency (VVVF) traction converter power limits within the FC, bat. and 

DC/DC Converter Model shown in Figure 3, based on the SOC-related charge and discharge capabilities of 

battery and FC output, as shown in Figure 4. Acceleration performance is limited when SOC is below 30%, 

and regenerative braking is restricted when SOC is outside the 30%-45% range due to battery charging 

limitations. These constraints reflect the inherent characteristics of the battery and FC system. 

Additionally, as illustrated in Figure 3, the simulator incorporates key operational variables such as passenger 

occupancy rate, track gradient, and interstation distance. A comparison with actual test track data confirms 

that the simulator maintains speed, distance and fuel consumption errors all within 4%, indicating sufficient 

accuracy for practical use [8]. 

Driving simulations were conducted on a virtual 18 km route that incorporates these operational variations, 

as shown in Figure 5. This route reflects typical service conditions, including different stopping patterns, 

gradients, and passenger load profiles depending on the train service type. The simulation results were used 

to evaluate energy consumption and traction performance under representative scenarios. 

 

 
Figure 3: Overview of the driving energy simulator 
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Figure 4: Battery and VVVF Power limits depending on SOC 

 

 
Figure 5: Virtual route profile 

 

3 Fuel Cell Output Control Methods 
3.1 Parameters Subject to Optimization in PI+FF Control 

PI+FF control enables flexible adjustment of control parameters based on the performance characteristics of 

onboard devices. As shown in Figure 6, the PI+FF control is based on PI control targeting a battery SOC of 

50%. This approach is designed to fully utilize the battery while supplementing the power shortfall with the 

fuel cell. Specifically, between the PI limiter and the FC output limiter, the PI output command is computed 

by subtracting the battery discharge limit (i.e., the battery output constraint), which is determined based on 

SOC, from the sum of the traction converter (VVVF) power demand and the SIV (auxiliary power supply 

inverter) power demand. This allows the fuel cell to meet the VVVF power demand. 

In PI control, only the proportional gain (𝐾𝑝) and integral gain (𝐾𝑖) influence the FC output characteristics. 

As shown in Figure 7, to ensure appropriate FC output characteristics for different SOC levels, the current 

PI control divides the FC output range into three zones using two thresholds, 𝑀𝑖𝑑𝑡ℎ𝑟𝑒 [kW] and 𝐻𝑖𝑡ℎ𝑟𝑒 [kW], 

based on the SOC deviation (ΔSOC) from the target value. These parameters affect both acceleration 

performance and fuel economy, and therefore require optimization. 
 

 
Figure 6: PI+FF control 

 
Figure 7: Efficiency of FC module & control zone 
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3.2 Parameters Subject to Optimization in PI+FF Control 

Fuzzy control, as a multivariable control method, is widely applied to vehicle control optimization owing to 

its logic that generates output surfaces based on input variables and allows high flexibility in parameter tuning. 

 owever, in many previous studies, Fuzzy rules have been constructed based on engineers’ experience, with 

optimization limited only to membership functions (MFs) [9]. Under such circumstances, this study proposes 

a new approach that simultaneously optimizes both a subset of Fuzzy rules and MFs that particularly where 

experience alone cannot determine optimal settings. 

Specifically, for FC hybrid rail vehicles, Fuzzy control is designed to control FC output [kW] based on two 

inputs: SOC and VVVF power [kW] (traction converter power). This control logic is structured so that FC 

output increases when SOC decreases or VVVF power increases. As shown in Figure 5, the input MFs for 

SOC and VVVF power, and the output MFs for FC output, were designed. As the shape of MFs significantly 

effects on the output surface, the threshold values (𝑥1~𝑥4) of the input MFs were selected as optimization 

parameters. 

Considering the performance constraints of onboard devices, the design policy dictates that FC output should 

be high when VVVF power is high, and low when SOC is high. Based on this policy, Fuzzy rules were 

established as shown in Table 2. Specifically, when SOC is extremely low (VL), FC output is set to high 

(HO) to prevent battery discharge limits and degradation. When SOC is extremely high (VH), FC output is 

set to low (LO) to reduce light-load regenerative braking. Furthermore, considering that maximum traction 

converter power demand exceeds the maximum FC output, fuzzy rules were designed to ensure sufficient 

acceleration performance. Concretely, the gray areas in Table 2 represent rules where FC output is fixed at 

high or low. The blue areas limit the output to medium (MO) or higher, while the green areas have no 

restrictions. The fuzzy rules in the blue and green areas are subject to optimization. 

The optimization parameters for fuel efficiency improvement in this study are the MF thresholds (𝑥1~𝑥4) 

and the selected fuzzy rules (𝑅1~𝑅6). 
 

 
Figure 8: Input and output MFs of Fuzzy control 

Table 2: Fuzzy rules 
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4 Optimization Method for FC Control Parameters 
4.1 Simplified Modeling of Energy Simulator Using Neural Networks 

Unlike automobiles, trains operate on the same routes back and forth every day. Therefore, in this study, it 

was assumed that control parameters need not be modified during operation, which allows for a reduction in 
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to perform a round-trip operation on a representative route. The resulting hydrogen fuel economy [km/kg-

 ₂  was used as an index to evaluate the effectiveness of each parameter set. 
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model was built with the FC control parameters 𝐾𝑝, 𝐾𝑖, 𝑀𝑖𝑑𝑡ℎ𝑟𝑒 [kW], and 𝐻𝑖𝑡ℎ𝑟𝑒 [kW] as input variables, 

and the hydrogen fuel economy 𝐶𝑓𝑢𝑒𝑙 [km/kg- ₂  and operation time 𝑇𝑡𝑟𝑎𝑣𝑒𝑙 [s], which reflects acceleration 

performance, as output variables. Similarly, for Fuzzy control, as shown in equation (2), the input variables 

consisted of MFs thresholds (𝑥1~𝑥4) and selected Fuzzy rules (𝑅1~𝑅6). The model was constructed using 

the Backpropagation (BP) method. 
 

[𝐶𝑓𝑢𝑒𝑙 , 𝑇𝑡𝑟𝑎𝑣𝑒𝑙] = 𝐵𝑃𝑚𝑜𝑑𝑒𝑙(𝐾𝑝, 𝐾𝑖, 𝑀𝑖𝑑𝑡ℎ𝑟𝑒, 𝐻𝑖𝑡ℎ𝑟𝑒) (1) 

[𝐶𝑓𝑢𝑒𝑙 , 𝑇𝑡𝑟𝑎𝑣𝑒𝑙] = 𝐵𝑃𝑚𝑜𝑑𝑒𝑙(𝑅1~𝑅6, 𝑥1~𝑥4) (2) 

To enhance the generalizability of the model, the diversity of the training data was ensured by explicitly 

incorporating three types of service patterns-local, rapid, and a combined pattern in which both services are 

performed using the same control parameters. This design choice reflects real-world scenarios in which some 

trains are required to perform both local and rapid services within a single day without adjusting FC control 

parameters. 

For the PI+FF control, a total of 2,248 simulations were conducted for each service type, using diverse 

parameter sets. The FC control parameter ranges and simulation settings used in the training data are listed 

in Table 3. For the Fuzzy control, which involves a greater number of adjustable parameters, 2,880 

simulations were conducted per service type, following the same approach. The parameter ranges and 

conditions are summarized in Table 4. 

 

Table 3: Simulation conditions of the training data 
for BP model (PI+FF) 

FC control 

parameters 
Range Division 

𝐾𝑝 0.1~4.9 0.3 

𝐾𝑖 0.1~1.0 0.3 

𝑀𝑖𝑑𝑡ℎ𝑟𝑒  [kW] 20~140 20 

𝐻𝑖𝑡ℎ𝑟𝑒 [kW] 80~180 20 
 

Table 4: Simulation conditions of the training data for 
BP model (Fuzzy) 

FC control 

parameters 
Range Division 

𝑥1 10~50 20 

𝑥2 15~85 35 

𝑥3 50~90 20 

𝑥4 -400~400 400 

𝑅1 MO，HO - 

𝑅2 MO，HO - 

𝑅3 LO，MO，HO - 

𝑅4 LO，MO，HO - 

𝑅5 LO，MO，HO - 

𝑅6 LO，MO，HO - 
 

 

4.2 Optimization Using Island Model Genetic Algorithm 

In this study, an island model Genetic Algorithm (GA) was employed to optimize the input variables of the 

BP model. For each round-trip operation on the virtual route (36 km), the operation time which directly 

reflects acceleration performance and hydrogen fuel economy were used to evaluate the effectiveness of FC 

control parameters. 

In general, acceleration performance and fuel economy are in a trade-off relationship. Therefore, it is 

necessary to improve fuel economy while satisfying the operation time limit required for each train operation 

pattern. For this purpose, operation time limits were defined for each operation mode. These were calculated 

based on route length and scheduled speed using equation (3): 
 

𝑇𝑙𝑖𝑚𝑖𝑡 =
𝐿𝑟𝑜𝑢𝑡𝑒

𝑣𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒
× 3600 [s] (3) 

Here, 𝑇𝑙𝑖𝑚𝑖𝑡 is the operation time limit [s], 𝐿𝑟𝑜𝑢𝑡𝑒 is the round-trip route distance [km], and 𝑣𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 is the 

scheduled speed [km/h]. The scheduled speed was set to 45 km/h for rapid trains and 41.5 km/h for local 

trains. Based on equation (3), the resulting time limits were 3,160 seconds for local and 2,350 seconds for 
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rapid trains. For the mixed operation evaluation, where both rapid and local operations are performed once 

each, the total operation time limit was set to 5,510 seconds. 

Figure 9 shows the process of the island model GA, and Table 5 summarizes the initial settings. The GA 

aims to maximize hydrogen fuel economy 𝐶𝑓𝑢𝑒𝑙 [km/kg- ₂  defined in equation (1)( ). The algorithm runs 

GA independently on 15 islands. Each island evolves a population by selection, crossover, and mutation, 

searching for FC control parameters that yield better fuel economy. If an individual violates the operation 

time limit, it is regenerated to ensure compliance. Every 40 generations, the best-performing individuals are 

exchanged between islands. Through this migration process, information is shared across islands, enhancing 

search performance and promoting convergence to a global optimum. 

 

 
Figure 9: Process of island model GA with  

operation time limit 

Table 5: Initial settings of island GA 

 GA initial settings 

Number of islands 15 

Number of 

populations per island 
40 

Islands migration 

generation 
40 generations 

Crossover probability 70% 

Mutation probability 10% 

Optimization objective 
Maximum fuel 

economy [km/kg-H2] 
 

 

5 Results of FC Control Parameter Optimization 
5.1 Optimization Results for PI+FF Control 

Conventional FC output control parameters were designed based on hardware performance constraints. 

Specifically, they were configured to utilize the maximum allowable battery charge/discharge power defined 

by SOC, aiming to maximize both acceleration capability and regenerative energy recovery. 

Table 6 presents the optimized FC control parameters that achieved the highest fuel economy through GA, 

while Table 7 summarizes the corresponding simulation results. The application of the proposed optimization 

method led to a clear improvement in fuel economy. Notably, the results confirmed that operation time was 

reduced across all driving patterns, while fuel economy was simultaneously improved. 

Figure 10 illustrates the frequency distribution of FC operating efficiency points during rapid operation of a 

single FC module, where PI+FF control achieved the most significant fuel economy improvement. Under 

conventional parameter settings based on empirical rules, the FC operating points were dispersed over a wide 

range of efficiency levels, indicating that FC output control was conducted in a pointwise manner without 

prioritizing efficiency. In contrast, the GA-optimization results suggest that improvements in both 

acceleration performance and hydrogen economy were achieved by concentrating FC operation in two 

specific regions: the high-efficiency zone around 45 kW and the high-output zone around 85 kW for strong 
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acceleration. However, PI+FF control offers limited degrees of freedom, as its feedforward logic primarily 

tracks the power demand from the traction converter, thereby reducing the effectiveness of parameter tuning. 

Figure 11 shows the time-series variations of SOC and FC output during rapid operation. Both before and 

after optimization, SOC remained above  0 , and the SOC variation (ΔSOC) between the start and end 

points was within 5%, demonstrating good SOC stability. Moreover, PI+FF control effectively tracked the 

power demand from the traction converter, successfully meeting the uphill traction power requirement and 

adhering to the operation time constraints, thereby confirming its superior acceleration performance. 

However, the results also indicated that large FC output fluctuations in FC output may accelerate FC 

degradation [10][11][12]. 

 
Table 6: Results of FC control parameters through optimization 

 𝐾𝑝 𝐾𝑖 𝑀𝑖𝑑𝑡ℎ𝑟𝑒  [kW] 𝐻𝑖𝑡ℎ𝑟𝑒 [kW] 

Local 0.224 0.553 87.5 88.1 

Rapid 1.30 0.933 91.5 94.7 

Combined (Local & Rapid) 1.22 0.508 80.1 92.2 

 
Table 7: Improvement in vehicle performance through optimization 

(Red: Compare with the results without optimization) 

 Time limit [s] Operation time [s] Fuel economy [km/kg-H2] 

Local 3,160 3,107 -0.06 ↑ 7.78 +1.43 ↑ 

Rapid 2,350 2,289 -0.09 ↑ 7.70 +1.99 ↑ 

Combined (Local & Rapid) 5,510 5,396 -0.06 ↑ 7.75 +1.84 ↑ 
 

 
Figure 10: Frequency of FC operation points (Rapid) 

 

 
Figure 11: Simulation results of time variation (Rapid) before & after Optimization 
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5.2 Optimization Results for Fuzzy Control 

Similar to PI+FF control, the conventional fuzzy control parameters were originally configured according to 

hardware performance constraints, aiming to maximize both acceleration capability and regenerative energy 

recovery. Tables 8 presents the optimized fuzzy rules and MF parameters, respectively, obtained through GA, 

while Table 9 shows the simulation results using these optimized parameters. These results demonstrate that 

GA-based optimization using the BP model significantly improved the fuel economy. The method 

successfully optimized the trade-off between acceleration performance and hydrogen fuel economy within 

the predefined operation time limits, achieving significant fuel economy improvement.  

Figure 12 and Figure 13 display the FC output surface corresponding to the VVVF power and SOC during 

local service operation before and after optimization. The optimized fuzzy control suppressed FC output 

fluctuations and concentrated the operating points within the high-efficiency range (yellow area), as 

illustrated in Figure 13. 

 

Table 8 Results of Fuzzy rules & MFs parameters through optimization 

 𝑅1 𝑅2 𝑅3 𝑅4 𝑅5 𝑅6 𝑥1 𝑥2 𝑥3 𝑥4 

Local MO MO MO LO LO LO 17.4 17.4 65.6 299 

Rapid HO MO MO LO LO LO 11.0 15.5 81.4 -42.1 

Combined (Local & Rapid) MO MO MO MO LO LO 18.1 18.1 72.8 279 

 

Table 9 Improvement in vehicle performance through optimization 
(Red & Blue: Compare with the results without optimization) 

 Time limit [s] Operation time [s] Fuel economy [km/kg-H2] 

Local 3,160 3,141 +1.   ↓ 8.19 +10.  ↑ 

Rapid 2,350 2,299 +0.5  ↓ 8.09 + .   ↑ 

Combined (Local & Rapid) 5,510 5,437 +0.8  ↓ 8.05 + .91 ↑ 

 

 
Figure 12: FC operating points efficiency before 

optimization (Local) 

 
Figure 13: FC operating points efficiency after 

optimization (Local) 

 

5.3 Comparison of Vehicle Performance between Fuzzy Control and PI+FF 

Control 

By employing fuzzy control, the trade-off between acceleration performance and hydrogen fuel economy 

was successfully optimized, resulting in improved fuel economy. In contrast, PI+FF control-characterized by 

its ability to closely follow the VVVF power demand of the traction converter-demonstrated superior 

acceleration performance. However, due to its effectiveness of PI control parameters tuning, instances were 

observed where the train arrived earlier than the operation time limit even after optimization. To ensure a fair 

comparison between the two control strategies, a re-optimization was conducted for the fuzzy control such 

that its operation time limit matched the optimized operation time obtained from the PI+FF control. The 

results are summarized in Table 10. Even under the unified operation time, fuzzy control outperformed PI+FF 

control in terms of fuel economy. This advantage is attributed to the greater degree of parameter tunability 
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in fuzzy control, owing to its flexible control logic. Fuzzy control can be adjusted through parameter tuning 

to create a surface where each input variable corresponds to a specific output based on its control logic. This 

enables enhanced optimization benefits compared to PI+FF control, which operates on a fundamentally 

different logic. 

Figure 14 presents the time-series results of SOC and FC output during rapid operation for both strategies. 

Although SOC stability of fuzzy control was slightly inferior to that of PI+FF control, the operation times 

were consistent. In addition, fuel economy was corrected by ΔSOC.  n contrast,   +FF control exhibited 

significant fluctuations in FC output when tracking the VVVF power demand from the traction converter, 

suggesting a potential risk for accelerated FC degradation. Furthermore, fuzzy control further suppressed FC 

output fluctuations, as shown on Figure 14. According to previous studies, key factors contributing to FC 

degradation include the number of on/off cycles, output fluctuations, and output load intensity [10][11][12].  

Table 11 summarizes these degradation-related parameters for the FC output during rapid operation shown 

in Figure 14. It was confirmed that by adopting fuzzy control, the average FC output was reduced by 2.11% 

and the cumulative power fluctuation was suppressed by 41.1%. These results indicate that fuzzy control is 

also advantageous from the perspective of FC degradation prevention. 

A comparative summary of the optimized results is provided in Table 12. PI+FF control demonstrated 

advantages in training efficiency and SOC stability, whereas fuzzy control showed better performance in FC 

degradation suppression and fuel economy through greater parameter tunability. These results suggest that 

each control strategy offers distinct advantages depending on the operation plan and route conditions. In this 

study, fuzzy control met the required acceleration performance while achieving greater fuel economy and FC 

degradation suppression, making it well-suited to the current operation plan. Given its high parameters 

tunability, it is expected to be adaptable and optimizable for other operation scenarios as well. 

 
Table 10: Optimization results in unified operation time 

 
Unified 

operation time [s] 

Fuel economy [km/kg-H2] 

PI+FF Fuzzy 

Local 3,107 7.78 7.90 +1.54 ↑ 

Rapid 2,289 7.70 8.01 +3.8  ↑ 

Combined (Local & Rapid) 5,396 7.75 7.87 +1.55 ↑ 

 

 
Figure 14: Simulation results of time variation (Rapid) 

 
Table 11: Comparison of the FC damage parameters 

 PI+FF Fuzzy 

Cumulative power change [kW] 2923.7 1721.8 -41.1 ↑ 

Average FC power [kW] 113.6 111.2 - .11 ↑ 

Number of start-ups and shutdowns 1 1 
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 Table 12: Comparison of PI+FF control and Fuzzy control after optimization 

 Reference PI+FF Fuzzy 

Required training data 

collection time 

Different parameters dataset 

(Table 3, Table 4) 

Shorter 

2,248 [set] 

Longer 

2,880 [set] 

SOC stability Final ΔSOC (Figure 14) 
Better 

-0.16% 

Worse but acceptable 

-3.13% 

FC degradation 

suppression 

Cumulative power change:  

∑FC output [kW] (Table 11) 

Worse 

2923.7 [kW] 

Better 

1721.8 [kW] -41.1 ↑ 

Parameters tunability 
Fuel economy in unified 

operation time (Table 10) 

Lower 

- 

Higher 

+3.8  ↑ in Rapid 

 

6 Conclusion 

This study developed a simplified model for a fuel cell hybrid test train by utilizing a driving energy simulator 

and a BP neural network. The model takes FC control parameters as input variables and outputs hydrogen 

consumption and operation time. Based on this model, GA optimization was conducted under the constraint 

of maintaining scheduled speed, targeting two multivariable control methods-PI+FF control and fuzzy 

control with the SOC and VVVF traction converter power as input variables. The results confirmed that 

optimal control parameters could be obtained for various driving patterns to improve fuel economy. 

PI+FF control demonstrated excellent SOC stability and acceleration performance. Notably, PI+FF control 

enhanced fuel economy while reducing operation time across all patterns. However, due to its feedforward 

logic that closely tracks the VVVF power demand from the traction converter, it exhibited sharp FC output 

fluctuations, raising concerns about potential degradation risks. Furthermore, as PI+FF control involves a 

relatively small number of tunable parameters, its degrees of freedom are limited, resulting in a lower 

optimization margin. 

In contrast, fuzzy control offered a greater degree of parameter tunability owing to its flexible control logic. 

It effectively optimized the trade-off between acceleration performance and hydrogen fuel economy. 

Moreover, when the operation time for both control methods was unified-i.e., when acceleration performance 

was identical-fuzzy control not only improved fuel economy but also significantly suppressed fluctuations in 

FC output. This suppression contributes to the reduction of degradation factors such as output variation and 

output load intensity. The results suggest that control strategies with a larger number of parameters, which 

are typically difficult to tune based on human experience, tend to benefit more from optimization owing to 

their higher degrees of freedom. 

In conclusion, fuzzy control was demonstrated to be an effective strategy in simultaneously enhancing 

hydrogen economy and mitigating FC degradation. Future work will aim to further develop the proposed 

optimization method and improve FC output control strategies with consideration of equipment durability 

and FC aging characteristics. 
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