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Executive Summary 

Electric Vehicle (EV) battery warranties are given to provide confidence to buyers and encourage EV sales. 

However, these warranties are often very simplistic and do not consider vehicle usage or driving behavior 

differences. As a result, some customers are overpaying while others are underpaying for the coverage that 

they receive. This study critically examines current EV battery warranties using a lithium-ion battery 

degradation model alongside EV energy consumption to evaluate warranty effectiveness under various 

usage conditions. Simulating 48 distinct scenarios reveals diverse degradation patterns, suggesting that 

warranties could be improved by differentiating based on these conditions. It also highlights limitations, 

such as the absence of coverage for vehicle-to-grid (V2G) technology.  

To address these issues, a dynamic battery warranty is proposed, designed to align driver incentives with 

battery lifetime considerations without increasing risks for EV manufacturers. 
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1 Introduction 

Electric vehicles (EVs) are increasingly recognized as pivotal in the global effort to mitigate climate 

change and decarbonize the transportation sector. However, despite significant technological 

maturation and supportive government incentives, the widespread adoption of EVs faces ongoing 

challenges. As of 2024, purely electric vehicles represented only 14.5% of new vehicle sales in Europe 

[1] , indicating that substantial barriers remain. Among the primary concerns for prospective buyers 

is the uncertainty surrounding the long-term performance and lifespan of the EV battery [2], [3]. The 

battery constitutes a significant portion of the vehicle's total cost [4], making its durability and 

potential replacement cost a critical factor in the purchasing decision. This apprehension acts as a 

barrier to broader EV acceptance. Consequently, maximizing battery longevity and providing 

consumers with confidence in battery performance are key challenges for the industry. 

To address consumer concerns and mitigate the financial risk associated with battery degradation, 

Vehicle Original Equipment Manufacturers (OEMs) provide warranties. These typically guarantee a 

minimum battery State of Health (SOH), often defined as retaining around 70% of the original 
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capacity, for a specified duration or accumulated mileage – common figures being 8-10 years and 

160,000 km (approx. 100,000 miles), whichever threshold is reached first. In a highly competitive 

market, offering more generous warranty terms (extended time or mileage) can serve as a significant 

differentiating factor for OEMs. 

Despite their importance, current warranty structures exhibit several limitations.  

• Simplified Degradation Assumption: Battery degradation is a complex phenomenon influenced by 

both time (calendar aging) and usage intensity (cycle aging). Key operational factors such as ambient 

temperature, average State of Charge (SOC), Depth of Discharge (DoD), and charging/discharging 

rates (C-rate) significantly affect the rate of degradation [5]. Standard warranties, however, often 

implicitly assume a uniform degradation rate or average usage profile across all users, which rarely 

reflects the diverse real-world operating conditions.  

• Potential Inconsistencies: Warranty terms sometimes appear driven more by market positioning than 

precise, data-driven lifetime predictions. For example, offering the same mileage warranty (e.g., 

160,000 km) for vehicle variants with substantially different battery capacities and ranges is 

questionable, as the smaller-range vehicle will inherently undergo more cycles to cover the same 

distance, potentially leading to faster degradation.  

• Inadequate Coverage for Vehicle-to-Everything (V2X): The emergence of V2X technologies– 

including Vehicle-to-Grid (V2G), Vehicle-to-Home (V2H), and Vehicle-to-Load (V2L) – presents a 

new challenge. These functionalities utilize the EV battery for stationary energy applications, 

contributing to cycle aging independently of mileage accumulation. Current mileage-based warranties 

generally fail to account for, or explicitly exclude, degradation resulting from such stationary use. This 

creates a coverage gap and introduces uncertainty, potentially hindering the adoption of V2X 

capabilities despite developed standards (e.g., ISO 15118-20 for V2G communication) and their 

potential economic and grid benefits. Some studies suggest calendar aging dominates [6], implying 

V2X might be feasible without excessive harm, but warranty ambiguity remains a barrier. 

• Lack of User-Specific Adaptation: Because current warranties don't typically account for individual 

usage patterns (e.g., frequency of fast charging, typical driving environment temperatures, V2X 

usage), they may be overly conservative for some users and insufficient for others. This one-size-fits-

all approach lacks fairness and transparency regarding how usage impacts long-term battery health 

and warranty validity. 

 
Addressing these shortcomings necessitates a move towards more sophisticated warranty models that better 

reflect the nuances of battery degradation. While various methods exist for modeling battery degradation, 

ranging from detailed electrochemical models to data-driven approaches, empirical models based on fitting 

equations to experimental data are common [7] and provide a basis for developing practical warranty 

structures. In the stationary energy storage sector, performance-based warranties already exist, often 

guaranteeing a minimum SOH per period under specified operating conditions. Adapting such concepts to 

the dynamic and varied use patterns of EVs presents a challenge, requiring a balance between accuracy, 

measurability, transparency, and user-friendliness. It is crucial that any proposed warranty clearly defines 

how operating conditions and SOH are measured, and by whom, ensuring fairness for both the consumer and 

the OEM. Some manufacturers are beginning to explore options like conditional warranty extensions, 

potentially tied to maintenance or subscription services, indicating an industry awareness of the need for 

more flexible solutions. 

 

This study leverages battery degradation and EV energy consumption models to critically evaluate the 

limitations of current EV battery warranties. Building upon this analysis, the paper proposes and explores 

the concept of a "dynamic warranty" framework that adapts warranty coverage based on actual battery usage 

patterns. Specifically, this work will: 

1. Highlight the shortcomings of standard fixed time/mileage warranties under diverse, realistic user 

profiles. 

2. Propose and analyze several potential dynamic warranty structures, considering their positive 

impacts and implementation challenges.  
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The aim is to contribute to the development of fairer, more transparent, and technologically informed battery 

warranty solutions that can enhance consumer confidence, reduce battery degradation, and support V2X 

integration. 

 

 

2 Methodology 
 

Two models are used: one for vehicle energy consumption and another for battery degradation. Vehicle 

consumption can be modeled in various ways, such as using physical equations. In this study, data from a 

simulator of the Nissan Leaf 62 kWh is used to model EV consumption [8].  A simple model (Eq.(1)) is 

developed to estimate consumption (C) under different speed (𝑣) and temperature (𝑇) conditions, based on 

the data collected from the simulator.  Figure 1 illustrates how vehicle consumption varies depending on 

these conditions. 

 

𝐶 [
𝑘𝑊ℎ

𝑘𝑚
] = 0.2345 − 2.09 · 10−3𝑣 +  −4.08 · 10−3𝑣2 + 2.46 · 10−5 𝑇 + 4.51 · 10−6𝑣 · 𝑣 + 9.94 · 10−5𝑇2 (1) 

 

 

Figure 1: Nissan Leaf 62 kWh Energy Consumption at different temperatures 

and speeds. 

 
To analyze battery degradation, a battery lifetime model is used. The model referenced in this study, sourced 

from the literature, was developed for a lithium iron phosphate (LFP) cell. It accounts for two types of aging: 

calendar aging, which depends on time[9] and cycling aging, which depends on the Full Equivalent Cycles 

(FEC) the battery undergoes [10]. The models, shown in Eqs (2)-(8) with parameters from Table 1, consider 

the main stress factors: State of Charge (SOC), Temperature (T), Depth of Discharge (DOD), and C-rate. 

Total degradation is calculated as the sum of both aging effects. The models yield a Mean Absolute Error 

(MAE) of 3.1% 
 

𝐶𝑓𝑎𝑑𝑒
𝑐𝑎𝑙 = 𝑘𝑡𝑒𝑚𝑝 ∗ 𝑘𝑆𝑂𝐶 ∗ √𝑡 

 

(2) 

𝑘𝑡𝑒𝑚𝑝 = 𝑘𝑟𝑒𝑓 · 𝑒𝑥𝑝 (−
𝐸𝑎

𝑅
· (

1

𝑇
−

1

298.15
)) 

 

(3) 

𝑘𝑆𝑂𝐶 = 𝑒 · (𝑆𝑂𝐶 − 0.5)3 + 𝑓 

 
(4) 

𝐶𝑓𝑎𝑑𝑒
𝑐𝑦𝑐

= 𝑘𝑐𝑟𝑎𝑡𝑒 · 𝑘𝐷𝑂𝐷 ·  √𝐹𝐸𝐶 (5) 

 

𝐹𝐸𝐶 =
𝐸𝑛𝑒𝑟𝑔𝑦 𝑐ℎ𝑎𝑟𝑔𝑒 + 𝐸𝑛𝑒𝑟𝑔𝑦 𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
 

(6) 
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𝑘𝑐𝑟𝑎𝑡𝑒 = 𝑎 · 𝐶𝑅𝑎𝑡𝑒 + 𝑏 
 

(7) 

𝑘𝐷𝑂𝐷 = 𝑐 · (𝐷𝑂𝐷 − 0.6)3 + 𝑑 
 

(8) 

 
 

Table 1: Battery degradation model parameters. 

𝒂 0.0630 𝒄 4.0253 e 2.8575 kref 0.0012571 

𝒃 0.0971 𝒅 1.0923 𝒇 0.60225 Ea 17126 

 

Once vehicle consumption and battery degradation models are defined, different scenarios are designed to 

explore how battery degradation may occur under varying conditions.  Scenarios are designed by combining 

the parameters in Table 2: two average temperatures, yearly driving mileage, average speed, three DOD and 

SOC conditions, and the option to use V2G for over 20 years. The intensity of V2G operations has a direct 

effect on battery degradation. In simulations where V2G is implemented, a daily additional discharge 

equivalent to 30% of the DOD is assumed. This results in 48 scenarios simulated to evaluate battery 

degradation under varying usage conditions. 

 
Table 2: Simulation parameters. 

Monthly Average Temperature Barcelona, Gothenburg 
Driving per year  10 000 km, 20 000 km 
DOD and SOC  (80, 60), (50, 75), (20, 90) 
Average Speed  70, 110 

V2G  Yes, No 
Time 20 years 

 

 

After analyzing current warranty limitations, different warranty strategies are compared. These strategies are: 

 

• Conventional Fixed Warranty: This strategy defines a fixed number of kilometers and a time, 

guaranteeing a minimum SOH at the end of the warranty. The degradation model can be used by 

assuming worst-case stress factors to calculate how much battery degradation occurs under extreme 

conditions. The warranty is reflected in Eqs (9)-(10). Since degradation comprises both calendar and 

cycling aging, and the warranty includes both time and kilometers, one must be fixed to estimate the 

other.  For example, the calendar degradation over 10 years can be calculated, and the remaining 

degradation up to the guaranteed SOH (e.g., 70%) can be assigned to cycling. To translate cycles 

into kilometers, the worst estimated energy consumption (e.g., kWh/km) can be used. This ensures 

a conservative warranty design by assuming low efficiency, which leads to fewer kilometers per 

cycle. Moreover, this enables trade-offs like offering more years with fewer kilometers or vice versa. 
 

𝐶𝑓𝑎𝑑𝑒 𝑀𝐴𝑋
𝑡𝑜𝑡𝑎𝑙 =  𝐶𝑓𝑎𝑑𝑒𝑀𝐴𝑋

𝐶𝐴𝐿 + 𝐶𝑓𝑎𝑑𝑒𝑀𝐴𝑋
𝐶𝑌𝐶  (9) 

𝑆𝑂𝐻𝑤𝑎𝑟𝑟𝑎𝑛𝑡𝑦 = 1 − 𝐶𝑓𝑎𝑑𝑒 𝑀𝐴𝑋
𝑡𝑜𝑡𝑎𝑙  (10) 

 

 

• Energy Throughput-Based Warranty (kWh): This warranty replaces kilometers with energy 

throughput (kWh), making it compatible with V2G and other V2X technologies. It can also be given 

as FEC. This warranty accounts for varying driving styles by penalizing higher energy consumption. 

Although consumption is not directly considered in the warranty, estimated consumption profiles 

can be included to help users translate kWh into approximate km in vehicles without V2X 

functionality.  For warranty modeling, the same worst-case approach used in the basic warranty can 

be applied. 

 

• SOH Evolution Profile Warranty: Rather than just guaranteeing a minimum SOH at the end of a 

period, this strategy informs users about how SOH is expected to evolve. It enables visibility into 

whether degradation is expected to occur rapidly at the beginning and then slow down, or remain 

stable and degrade sharply later. This profile is generated using the degradation model under the 
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worst-case stress conditions for each year, considering kWh or km caps based on usage intensity. 

Minimum SOH values are guaranteed per year, and different numbers of full equivalent cycles per 

year can be considered.  

 

• Dynamic Warranty Using Look-Up Tables: This strategy adapts based on the SOH profile. In this 

case, information about stress factors (Sf) that affect degradation is incorporated. The influence of 

individual stress factors can be shown or hidden depending on their relevance to the battery or user. 

For example, if the battery operates in a temperature-controlled environment, temperature may be 

excluded. The impact of each stress factor can be evaluated by comparing it to worst-case scenarios, 

as defined by Equations (11)-(12). The figure displays the normalized impact of each stress factor, 

illustrating how capacity fade can be reduced by operating the battery under less stressful conditions. 
 

𝑆𝑓 = {C − rate, Depth of Discharge, SOC , T}   
 

(11) 

𝑆𝑓𝑛𝑜𝑟𝑚 =
𝑘𝑆𝑓

𝑘𝑀𝐴𝑋𝑆𝑓
 

(12) 

 

 

Due to the nonlinear nature of capacity fade, where the rate of degradation decreases over time, the order of 

exposure to stress factors matters—early exposure has more impact than later exposure. To simplify 

calculations, it is proposed to use the average of the stress factors over a fixed warranty update window, 

typically one year, following equation (13) for the calendar factors and equation (14) for the cycling factors. 

A smaller time window provides a more precise estimation of degradation by better preserving the temporal 

impact of stress factors. However, shorter windows may overly complicate control for OEMs and 

communication with customers. Additionally, to improve precision, the warranty can be divided into calendar 

and cycling components, splitting both the time window and the calculations accordingly. 

 

Previous approaches already included a conservative bias, assuming worst-case stress levels that rarely occur 

continuously in real use. With dynamic warranties and simplification through the averaging of impact factors, 

it is now recommended to include an additional safety factor—especially during the first year or initial cycles, 

when the degradation rate is higher. The MAE of the battery lifetime model can serve as a useful metric for 

determining the safety factor. Equation (15) reflects the full expression of the SOH Dynamic Warranty. 

 

𝑆𝑓𝑆𝑂𝐶,𝑇
̅̅ ̅̅ ̅̅ ̅̅ ̅ =

∑ 𝑆𝑓 · ∆𝑡

∑ ∆𝑡
 

 

(13) 

𝑆𝑓𝐷𝑂𝐷,𝐶−𝑟𝑎𝑡𝑒
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =

∑ 𝑆𝑓 · ∆𝐹𝐸𝐶

∑ ∆𝐹𝐸𝐶
 

 

(14) 

SOH Dynamic Warranty = 100-  𝑆𝑓𝑆𝑂𝐶,𝑇
̅̅ ̅̅ ̅̅ ̅̅ ̅ · 𝐶𝑓𝑎𝑑𝑒𝑀𝐴𝑋

𝐶𝐴𝐿 +  𝑆𝑓𝐷𝑂𝐷,𝐶−𝑟𝑎𝑡𝑒
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ · 𝐶𝑓𝑎𝑑𝑒𝑀𝐴𝑋

𝐶𝑌𝐶 -MAE (15) 

 

3 Results 
3.1 Current Warranties limitations 

 
Significant variability in battery degradation is observed after evaluating the 48 scenarios over a 20-year 

simulation period. As shown in Figure 2, capacity fade at the end of the simulation ranged from 18.09% to 

32.97%, confirming that battery degradation is highly dependent on usage patterns, including charging 

cycles, energy throughput, and the specific conditions under which the battery is operated.  

 

Although the models may not perfectly represent all battery packs, the results indicate that the degradation 

rates predicted by the model are consistently lower than the thresholds set by EV battery manufacturers in 
their warranties for 160000km and 10 years. This discrepancy is likely due to the conservative safety factors 

manufacturers apply to ensure reliability and avoid potential warranty claims. 
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Figure 2: Capacity fade statistics of 48 scenarios simulated  

Figure 3 presents eight scenarios to illustrate differences in simulation parameters. For instance, Gothenburg 

experiences less degradation than Barcelona under identical conditions, due to lower temperatures reducing 

calendar aging. Paradoxically, while the vehicle range in Gothenburg is lower than in Barcelona (due to 

higher energy consumption and internal battery losses), the overall capacity fade is less pronounced. This 

paradox illustrates that, from a user perspective, it would be beneficial to display the State of Health (SOH) 

of the battery alongside the expected vehicle range under different conditions. Doing so would provide a 

more comprehensive understanding of battery performance over time. 

 

The degradation curves reveal a non-linear trend. Current warranties lack clarity on SOH progression, which 

creates uncertainty for EV buyers. Batteries with a slower initial decline in SOH retain higher value, even if 

the final SOH is similar. 

 

A battery that maintains a higher SOH for longer has more value than one that degrades quickly at the 

beginning, even if both reach the same endpoint. This suggests that warranties should not only specify the 

final degradation limit (such as 70% capacity) but also clarify how the degradation rate might progress over 

time, providing users with a clearer picture of long-term battery health. 

 

Additionally, V2G technology is also evaluated as part of degradation analysis. The results show that 

batteries subjected to daily V2G usage show increased degradation per kilometer but decreased degradation 

per cycle, highlighting the importance of cycle-based degradation assessment. This suggests that V2G usage, 

while contributing to overall degradation, enables more efficient use of the battery by extracting additional 

performance over the same lifespan. However, manufacturers do not address the effects of V2G in their 

warranties, leaving a gap in coverage for users who engage in regular V2G operations. 

 

Figure 3: Capacity fade (%) vs Mileage, Time, and FEC for 8 different 

simulations.  
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3.2 Proposal Dynamic Battery Warranty 
 

To compare the performance of the proposed warranty strategies, a case study under dynamic operating 

conditions is evaluated. 

 

For the conventional warranty, the degradation model is applied by fixing the period under warranty to nine 

years. Over this period, calendar aging, under the most extreme stress factors, results in a degradation of 

23.9%. With the remaining 6.1% margin before reaching the standard warranty threshold of 70% SOH, it is 

estimated that approximately 800 additional FECs can be sustained due to cycling-induced degradation.  If 

expressed in conventional units (kilometers), these 800 FECs would correspond to approximately 165,000 

km, assuming an average energy consumption of 0.30 kWh/km.  

 

The Energy Throughput-Based Warranty is equivalent in coverage to the conventional warranty, but 

expressed in kilowatt-hours (kWh) instead of kilometers, thereby enabling compatibility with V2G 

technologies. 

 

The SOH Evolution Profile Warranty is presented in the Table 3. It has been calculated assuming worst-case 

degradation and a fixed number of cycles per year. Various cycles per year scenarios can be given for the 

warranty. An alternative is that this warranty model could be combined with the conventional approach in 

cases where the yearly cycle limit is exceeded. 
 

Table 3: Warranty annual SOH Coverage- Profile Warranty.  

FEC/Year Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8 Year 9 
50 90 86 83 80 77 75.5 73.6 72 70 

175 89 84 80 77 74 72 70 - - 

 

For the dynamic warranty, the first step involves calculating the look-up tables. Figure 4 presents these tables, 

illustrating how the reduction factors (Sf) vary for each of the stress factors. In general, lower values of C-

rate, DOD, temperature, and SOC are associated with reduced battery degradation. Among these, SOC is the 

most influential factor, capable of reducing degradation by more than 70%. 

 

Figure 4: Influence of each Stress Factor. Normalized values.  

 

To apply stress factors, it is necessary to gather data on how the battery was used during the evaluation 

period, typically one year. The most effective method is through histograms, like those shown in Figure 5, 

which capture either the number of cycles or the percentage of time spent under different operating 

conditions. After applying the weighted averaging process, the resulting normalized stress factors for the data 

of Figure 5 are: 0.737 for SOC, 0.773 for temperature, 0.747 for C-rate, and 0.750 for DOD. 
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Figure 5: Compilation of Stress Factors Using Histograms for Dynamic 

Warranty Analysis.  

 

Figure 6 shows a comparison among the three warranty types. The shaded area represents the combinations 

of SOH with kWh or years where the battery is covered by the warranty and is therefore eligible for repair 

or replacement. The larger this area, the greater the benefit and reassurance for the user. A substantial 

difference can be observed between the dynamic warranty and those based on worst-case assumptions. This 

supports findings from previous simulations, which showed that current warranty strategies tend to be overly 

restrictive. Moreover, the dynamic warranty ensures that after more than 25 years and over 1,500 cycles, the 

battery’s SOH will remain above 75%. If the vehicle does not support V2G, this would correspond to more 

than 310,000 km, providing strong reassurance to users regarding the long-term reliability of electric 

vehicles. 
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Figure 6: Comparison of Different Warranty Strategies 

 

4 Conclusions 
 

Current warranties have limitations that go beyond the safety factors set by OEMs. The kilometer-based 

limits do not accurately capture the true impact of cycling degradation, which is better measured in kilowatt-

hours consumed or FEC. This also restricts the integration of V2G technologies and limits the extension of 

battery warranties to other applications if the vehicle reaches the end of its life before the battery warranty 

expires. 

 

The dynamic warranty proposed addresses these challenges by shifting the focus from kilometers to cycles. 

Dynamic warranties enable tracking of battery degradation throughout its lifecycle and enhance optimization 

by providing insights into how various factors affect degradation. Additionally, the dynamic warranty offers 

consumers an incentive to prioritize battery health in their decision-making process.  

 

Building confidence in battery lifetime models is key for OEMs to offer dynamic warranties and, therefore, 

extend coverage without incurring additional costs. 

 

Finally, simplicity and understandability are essential to drive market adoption.  This paper also explores 

practical strategies for the implementation of dynamic warranties.  These include structural changes (e.g., 

offering a traditional warranty but also offering an extension using the dynamic warranty that is based on 

usage) as well as financial changes (e.g., rebate structures for leased vehicles based on SOH). These can 

further bolster customer confidence while encouraging health-conscious usage.  
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