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Executive Summary 

Long-haul trucks are major contributors to carbon emissions in road transport, and electrifying truck fleets is 

essential for reducing emissions in the transport sector. This transition requires not only adequate charging 

infrastructure along highway corridors but also advanced software and information systems that seamlessly 

connect charger operators and vehicles. Data interoperability offers a promising means to enhance data 

sharing between operators and trucks, yet its effect on charging supply–demand efficiency remains unclear. 

In this study, we quantify the performance of long-haul truck networks under data interoperability. We 

develop an assessment framework to estimate and assign charging demand across the given charging 

infrastructure. A case study on European highway networks demonstrates that implementing data 

interoperability can reduce daily delayed charging time by 19%. We also find that marginal benefits are 

larger at lower penetration rates of data interoperability, which encourages early‐stage implementation 

of data interoperability. 
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1 Introduction 

The transport sector contributes over 20 % of global carbon emissions [1], with road transport alone 

responsible for 71 % of that share [2]. Although heavy-duty vehicles represent 8 % of the total fleet, they 

account for more than 35 % of road transport emissions [3]. To achieve the net-zero carbon emission target 

by 2050, electrifying heavy-duty vehicles has been considered to be a promising and feasible pathway 

worldwide. The European Union has responded with ambitious CO₂ standards for new heavy-duty vehicles 

in 2024, identifying long-haul truck electrification as a critical milestone [4]. In 2025, the Chinese Ministry 

of Transport launched a policy to promote the large-scale deployment of zero-emission heavy-duty trucks 

according to local conditions [5]. In the US, under the Advanced Clean Fleets regulation, truck manufacturers 

must ensure 100% of market share for zero-emission vehicles by 2036 [6].  

Smooth and successful vehicle electrification requires sufficient charging infrastructure to alleviate range 

anxiety. This is especially critical for long-haul electric trucks, which typically cover long distances. At the 

policy level, the European Union requires heavy-duty electric vehicle charging stations along the trans-
European transport core network at intervals not exceeding 60 kilometers by 2030 [7]. At the research level, 

a growing number of studies focus on the deployment and siting of charging infrastructure specifically for 

long-haul electric trucks [8-10].  
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Besides the charging infrastructure requirements, advanced software and information sharing systems that 

serve and seamlessly connect charger operators and vehicles are also necessary. Data interoperability, which 

allows multiple systems to exchange and effectively use shared charging information, offers a promising way 

to enhance interactive data sharing between charging operators and vehicles [11]. Such data interoperability 

systems facilitate charging convenience for drivers. In addition, by leveraging information on charging 

demands and time windows (i.e., arrival and departure time) of vehicles, smart charging strategies that 

incorporate dynamic charging power rates have proven effective in mitigating peak loads within depot 

aggregate load profiles [12].  

Quantifying the impact of data interoperability on long-haul electric truck drivers’ experience is essential for 

decision-making and implementation, especially given limited financial resources and high upfront costs. To 

date, no studies have examined this issue. To fill this gap, we measure the effect of data interoperability by 

defining delayed charging time at charging points as the key metric. We then develop an assessment 

framework to estimate charging demand and distribute it across the given infrastructure. Finally, we conduct 

a case study on the entire European core road network using a synthetic road freight transport flow dataset 

[13].  

This study makes two aspects of contributions. First, we present an assessment framework that estimates 

spatiotemporal charging demand for long-haul electric trucks and assigns this demand using three approaches: 

uniform allocation, user equilibrium, and system optimization. Uniform allocation represents a business-as-

usual scenario, while user equilibrium and system optimization capture the effects of data sharing under data 

interoperability. Second, we conduct a large-scale case study to analyze simulation outcomes and derive 

practical insights for relevant stakeholders. The remainder of this paper is structured as follows. Section 2 

describes the methods developed in this study. Section 3 presents the simulation results. Section 4 offers 

discussion, conclusions, and limitations. 

 

2 Method  
This section begins by describing the problem setting within the context of data interoperability. Next, we 

introduce two key datasets used in this study. Then, we outline our method for estimating spatiotemporal 

charging demand for long-haul electric trucks in 2030. Finally, we present three approaches to simulate 

charging demand assignment across charging points under three scenarios.  

 

2.1 Problem setting 

First, we define the following three simulation scenarios. a) Business as usual (BAU): No data 

interoperability exists between trucks and charging points. Truck drivers select charging locations uniformly 

along their route, subject only to standard break rules; b) Data interoperability with user equilibrium (DI-

UE): Real-time charging information is shared between trucks and charging points. Drivers choose charging 

points according to the user equilibrium principle; c) Data interoperability with system optimization (DI-SO): 

Real-time charging information is shared between trucks and charging points. Charging point operators 

centrally schedule driver demand to maximize system efficiency. Drivers should follow the assigned 

schedules. Next, we present the fundamental assumptions in this study, aside from the scenario definitions 

above: 

Assumption 1. Drivers can only recharge their trucks during scheduled breaks at charging points. According 

to the European Commission’s regulation [14], we assume that after every 4.5 hours of driving, a driver must 

take a 45-minute break. This break is divided into two segments: a 15-minute segment and a 30-minute 

segment, designed to maximize charging opportunities in an electrification context. In addition, after nine 

hours of work, a driver must take a nine-hour rest. We also assume that during the 15-minute or 30-minute 

breaks, trucks use megawatt chargers with a power of 1000 kW, whereas during the nine-hour rest period, 

they charge using fast chargers at 100 kW. 

Assumption 2. Drivers are restricted to charging points along their predetermined routes, so rerouting to find 

charging points is not considered in this study. Battery state of charge (SoC) is constrained between 20 % 

and 100 %. 

Assumption 3. Under the DI‐UE scenario, drivers select charging points to minimize their delayed charging 

time. Under the DI‐SO scenario, the charging point operator assigns charging demands among charging 

points to minimize the total delayed charging time of drivers. Delayed charging time is defined as the extra 
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waiting time incurred before charging due to limited charging resources. We assume both drivers and 

charging point operators can access updated information one hour in advance with data interoperability.   

Assumption 4. We assume that, before reaching their scheduled break or rest period, drivers have two 

additional opportunities at road nodes to exit and locate charging points. 

 

2.2 Datasets 

This study used two primary public datasets: synthetic European road freight transport flow data [13] and 

European truck parking locations data [15]. From the synthetic European road freight transport flow dataset, we 

extract origin–destination (OD) pairs and road network details. Each OD pair includes origin and destination 

locations, the corresponding road route, and the projected annual freight volume in tons for 2030. The road 

network dataset includes information on road nodes and edges. The European truck parking locations data 

mainly includes the locations of current truck parking points, which are selected as the charging points in this 

study.  

 

2.3 Charging demand estimation 

Using the OD pair data and origin departure times (generated from the assumed distribution), we could 

determine when and how much electricity each truck is recharged. First, we use the following equations to 

calculate the truck’s electricity consumption (TEC in kWh) [16].  

 

𝑇𝐸𝐶 = 0.212 ∙ 𝑊0.6672 ∙ 𝐴𝑑𝑣𝑎𝑛𝑐𝑒𝑑_𝐹𝑎𝑐𝑡𝑜𝑟 (1) 

Here, we use W to denote the total weight of the truck in tons. Let Advanced_Factor denote the adjustment 

factor reflecting battery technology advancements in 2030, and we set Advanced_Factor to be 0.73. To 

determine the total truck weight per OD pair, we assume that 30 % of freight flows use trucks with an 8-ton 

tare weight (excluding battery weight), and 70 % use trucks with an 11-ton tare weight (excluding battery 

weight). Given a battery energy density of 260 Wh/kg [17], we define seven battery capacities ranging from 

600 kWh to 1000 kWh and assign each OD truck’s battery capacity according to its OD pair’s total distance. 

Based on the Eurostat database [18], we assume an average payload of 13.4 tons for domestic transport and 

15.7 tons for international transport.  

Given the origin departure time, we could determine the break and rest timetable for each OD according to the 

European Commission’s regulation and OD route information. During the break and rest time, the truck is 

recharged according to the following equation. 

 

𝑅𝑒𝑐ℎ𝑎𝑟𝑔𝑒𝑑𝐸𝑛𝑒𝑟𝑔𝑦 = min⁡{(1 − 𝑆𝑜𝐶𝑃𝑟𝑒𝑠𝑒𝑛𝑡) ∙ 𝐶𝑎𝑝𝑐𝑎𝑐𝑖𝑡𝑦, 𝑃𝑜𝑤𝑒𝑟 ∙ 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑇𝑖𝑚𝑒} (2) 

Here, let RechargedEnergy denote the amount of recharged electricity in kWh. Let SoCPresent denote the 

current SoC of the battery. Let Capacity denote the vehicle battery capacity in kWh. We use Power to denote 

the charging power in kW of chargers. AvailableTime represents the available charging time during the break 

or rest. We assume that upon arriving at a charging point, each truck requires a five-minute charging 

preparation period. 

Then, we calculate the hourly charging demand at each road node daily. First, we calculate the annual electric 

truck flows (AnnualElectricFlow) for each OD as below. 

𝐴𝑛𝑛𝑢𝑎𝑙𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝐹𝑙𝑜𝑤 = ⁡
𝐴𝑛𝑛𝑢𝑎𝑙𝑉𝑜𝑙𝑢𝑚𝑒

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐿𝑜𝑎𝑑
∙ 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑆ℎ𝑎𝑟𝑒 

(3) 

Here, AnnualVolume represents the projected annual freight volume in tons for 2030 for an OD pair. 

AverageLoad means the average payload in tons of trucks for an OD pair. ElectricShare represents the share 

of electric trucks for an OD in 2030, which can be estimated by the following equation.  

 

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑆ℎ𝑎𝑟𝑒 = ⁡
𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑆ℎ𝑎𝑟𝑒𝑂 ∙ 𝐴𝑛𝑛𝑢𝑎𝑙𝑉𝑜𝑙𝑢𝑚𝑒𝑂 + 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑆ℎ𝑎𝑟𝑒𝐷 ∙ 𝐴𝑛𝑛𝑢𝑎𝑙𝑉𝑜𝑙𝑢𝑚𝑒𝐷

𝐴𝑛𝑛𝑢𝑎𝑙𝑉𝑜𝑙𝑢𝑚𝑒𝑂 + 𝐴𝑛𝑛𝑢𝑎𝑙𝑉𝑜𝑙𝑢𝑚𝑒𝐷
 

(4) 

Here, ElectricShareO denotes the share of electric trucks in 2030 for the country containing the origin, and 
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ElectricShareD denotes the share for the country containing the destination. AnnualVolumeO is the 2030 

annual freight volume from origin to destination, while AnnualVolumeD is the volume from destination to 

origin. Then, the daily electric truck flows for each OD (DailyElectricFlow) could be obtained via 

AnnualElectricFlow/365. For each OD, given DailyElectricFlow and RechargedEnergy, we then calculate the 

hourly charging demand at road nodes, which corresponds to the OD pair’s break and rest periods.  

Based on the estimated hourly charging demand at each road node, we determine the required number of 

megawatt chargers at each charging point as input for the three simulation scenarios. In this study, we focus 

exclusively on megawatt chargers and their charging demand, since delayed charging time is relevant during 

15‐ or 30‐minute breaks rather than the nine‐hour rest period. We divide the entire region covered by the road 

network dataset into 50 km × 50 km zones. Within each zone, we identify the peak‐hour charging demand at 

each road node and determine the minimum number of megawatt chargers required at each node from that 

demand. Next, we sum the total number of megawatt chargers required for each zone and uniformly allocate 

70 % of these chargers among all charging points within that zone to simulate a scenario where charging 

demand exceeds supply. 

 

2.4 Charging demand assignment under three scenarios  

Up to this point, charging demand has not been allocated to specific charging points, as we have only calculated 

the recharged electricity for each OD pair during its break and rest periods. As Figure 1 shows, we have 

assumed that, before reaching their scheduled break or rest period, drivers have two additional opportunities 

to locate charging points. Therefore, drivers generally have three road nodes where they can exit the highway 

to find a charging point before their break or rest period. 

 
Figure 1: The illustration of charging point selection 

 

Under the BAU scenario, the charging demand assignment is simulated for each divided zone based on 

Algorithm 1. The hourly charging demand for each OD pair in each zone is uniformly assigned to accessible 

charging points of the corresponding OD pairs. The cumulative delayed charging time at the current hour 

equals the previous hour’s cumulative delayed time plus the delayed time incurred in the current hour. 

 
Algorithm 1. Charging demand assignment under the BAU scenario.  

1 for each zone:                      

2   Set the current unmet charging demand to be zero for each charging point.        

3   Set the current total accumulated delayed charging time in this zone to be zero.     

4   for t from 1 to 24:                    

5     for each OD via this zone:                  

6       Uniformly assign the charging demand among accessible charging points. 

7       Update the current unmet charging demand for each charging point in this zone.  

8       Update the current total accumulated delayed charging time in this zone.   

9     end                        

10   end                         

11 end                          

 

Under the DI-UE scenario, charging demand is allocated within each zone using Algorithm 2. We employ 

the Method of Successive Averages (MSA), a widely used iterative algorithm for traffic assignment, to 

approximate the user equilibrium solution [19]. In line 15 of Algorithm 2, we define a termination condition 

for the MSA iteration. Specifically, we monitor the maximum change in charging demand at any charging 
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point between consecutive iterations. If this change falls below 0.1, the iteration process is terminated. 

 

 
Algorithm 2. Charging demand assignment under the DI-UE scenario.  

1 for each zone:                      

2   Set the current unmet charging demand to be zero for each charging point.        

3   Set the current total accumulated delayed charging time in this zone to be zero.     

4   for t from 1 to 24:                    

5     Set demand_x to be a zero vector, and the length of demand_x is the number of charging points. 

6     Let n = 0. 

7     while True:                 

8      Let n = n + 1. 

9      for each OD via this zone: 

10        
Assign the charging demand to the charging point with the least unmet charging 

demand. 

11      end  

12      Update the current charging demand assignment solution, and denote it as demand_y. 

13      Update demand_x as demand_x = demand_x + (1/n)*(demand_y - demand_x). 

14      Update the current unmet charging demand for each charging point.  

15      If the termination condition is met, go to line 17; otherwise, return to line 8. 

16     end 

17     Update the current total accumulated delayed charging time in this zone. 

18   end  

19 end 

 

Under the DI-SO scenario, we develop a linear programming model to minimize the total delayed charging 

time for each zone at each hour. Let I denote the set of charging points in the zone. Let t denote the current 

hour t. We use 𝑑𝑖,𝑡
𝑀𝐶𝑆,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑

 denote a continuous decision variable that represents the cumulated charging 

demand at charging point i and hour t. Let 𝐷𝑖,𝑡
𝑀𝐶𝑆 denote the satisfied charging demand at charging point i and 

hour t. The objective function (5) is to minimize the total delayed charging time for the zone at hour t.  

𝑚𝑖𝑛∑(𝑑𝑖,𝑡
𝑀𝐶𝑆,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 − 𝐷𝑖,𝑡

𝑀𝐶𝑆)

𝑖∈𝐼

 (5) 

Let J denote the set of road nodes in the zone. Let K denote the OP pair set that passes through the zone. We 

use 𝑑𝑗,𝑘,𝑖,𝑡
𝑀𝐶𝑆  denote a continuous decision variable, which means the assigned charging demand associated with 

OD pair k, road node j, charging point i, and hour t. Let 𝐷𝑗,𝑘,𝑡
𝑀𝐶𝑆 denote the input information that represents 

the charging demand associated with OD pair k, road node j, and hour t.  Constraint (6) ensures that the total 

charging demand allocated across all charging points equals the charging demand at the road node. 

∑𝑑𝑗,𝑘,𝑖,𝑡
𝑀𝐶𝑆

𝑖∈𝐼

− 𝐷𝑗,𝑘,𝑡
𝑀𝐶𝑆 = 0, ∀𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 

(6) 

Let 𝛿𝑗,𝑘,𝑖 be a binary indicator parameter equal to 1 if the charging demand of OD pair k at road node j can 

be assigned to charging point i, and 0 otherwise. Constraint (7) restricts the assignment of charging demand 

to only those charging points that are accessible for the given OD pair. 

𝑑𝑗,𝑘,𝑖,𝑡
𝑀𝐶𝑆 − 𝛿𝑗,𝑘,𝑖𝐷𝑗,𝑘,𝑡

𝑀𝐶𝑆 ≤ 0, ∀𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 (7) 

Let 𝑑𝑖,𝑡
𝑀𝐶𝑆 denote the total charging demand at charging point i and hour t. It is also a continuous decision 

variable, and it can be calculated as Constraint (8) shows.  

∑ ∑ 𝑑𝑗,𝑘,𝑖,𝑡
𝑀𝐶𝑆

𝑘∈𝐾 = 𝑑𝑖,𝑡
𝑀𝐶𝑆

𝑗∈𝐽 , ∀𝑖 ∈ 𝐼  (8) 
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Constraint (9) gives the relationship between the cumulated charging demands at hour t - 1 and t. 

𝑑𝑖,𝑡
𝑀𝐶𝑆,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 = 𝑑𝑖,𝑡

𝑀𝐶𝑆 + 𝑑𝑖,𝑡−1
𝑀𝐶𝑆,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 − 𝐷𝑖,𝑡−1

𝑀𝐶𝑆 , ∀𝑖 ∈ 𝐼 (9) 

Let 𝑁𝑖
𝑀𝐶𝑆 denote the input information that represents the number of megawatt chargers at charging point 

i. Constraints (9) and (10) ensure that the satisfied charging demand does not exceed the charging supply. 

All decision variables are non-negative in this linear programming model.   

𝐷𝑖,𝑡
𝑀𝐶𝑆 − 𝑑𝑖,𝑡

𝑀𝐶𝑆,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 ≤ 0, ∀𝑖 ∈ 𝐼  

 

(10) 

𝐷𝑖,𝑡
𝑀𝐶𝑆 − 1000 ∙ 𝑁𝑖

𝑀𝐶𝑆 ≤ 0, ∀𝑖 ∈ 𝐼  (11) 

 

We solve the proposed linear programming model independently for each zone and sequentially for each 

hour from 1 to 24. For hour t, we regard 𝑑𝑖,𝑡−1
𝑀𝐶𝑆,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑

 and 𝐷𝑖,𝑡−1
𝑀𝐶𝑆  as model inputs, and all linear 

programming models are solved by Gurobi solver.  

 

3 Results 

 
3.1 Charging demand distribution in 2030 

In this study, we focus on the charging demand distribution for megawatt chargers, covering 39 countries in 

Europe. On an average day, total charging demand during the 15- and 30-minute break periods exceeds 17 

million kWh. Figure 2 illustrates the cumulative probability curve of the daily total charging demand of road 

network nodes before charging demand assignment under the three scenarios. We find that 90 % of road nodes 

have a daily charging demand of less than 10,000 kWh. 

 
Figure 2: Cumulative probability curve of the daily total charging demand of road network nodes  

 

To identify daily charging demand patterns, we normalized each node’s hourly charging demand by its total 

daily demand and then applied K-means clustering. Figure 3 presents six distinct patterns; five of these exhibit 

pronounced peaks in charging demand at specific times of day. In patterns 1, 5, and 6, the peak hour accounts 

for more than 40 % of the total daily charging demand. In this situation, charging infrastructure experiences 

highly uneven demand: drivers arriving outside this window contend with minimal waiting, whereas those 

arriving during the peak face substantial queuing delays. Identifying and quantifying such temporal spikes 

enables operators to implement targeted congestion‐mitigation strategies, such as introducing data 

interoperability systems.  
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Figure 3: Six daily charging demand distribution patterns 

 

3.2 Impacts of data interoperability on delayed charging time 

To assess the impact of data interoperability on delayed charging time, we compare average delayed charging 

time per zone under BAU and DI-UE scenarios (Figure 4). In this figure, each point represents a zone, with its 

x‐coordinate indicating delayed charging time under DI-UE and its y‐coordinate indicating delayed charging 

time under BAU. The average total delayed charging time per zone is 21.5 hours under BAU and 17.5 hours 

under DI-UE. The results indicate that the daily delayed charging time under DI-UE is 19 % lower than under 

BAU. Figure 4 shows that nearly all zones experience improvements after introducing data interoperability.  

 
Figure 4: Comparing the average delayed charging time at each zone under the scenarios of BAU and DI-UE 

 

Now, we compare average delayed charging time per zone under DI-UE and DI-SO scenarios (Figure 5). In 

this figure, each point represents a zone, with its x‐coordinate indicating delayed charging time under DI-UE 

and its y‐coordinate indicating delayed charging time under DI-SO. The average total delayed charging time 

per zone is 17.9 hours under DI-SO and 17.5 hours under DI-UE. The results indicate that the daily delayed 

charging time under DI-SO could not be improved by system optimization assignment. This is primarily 

because our optimization is performed on an hourly basis rather than across the entire 24‐hour period. Under 

data interoperability, we have assumed that both drivers and charging point operators can access updated 

information one hour in advance with data interoperability. It is unrealistic to expect charging point operators 

to predict demand a full day ahead. Therefore, the solution that is optimal for the current hour does not coincide 

with the globally optimal solution over the entire day. 
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Figure 5: Comparing the average delayed charging time at each zone under the scenarios of DI-SO and DI-UE 

 

Lastly, we examine how varying the penetration rate of trucks participating in data sharing affects the average 

delayed charging time (Figure 6). For example, at a 20 % penetration rate, we allocate 20 % of the charging 

demand via Algorithm 2 and the remaining 80 % via Algorithm 1. Figure 6 shows that with just 30 % of drivers 

participating in data sharing, half of the total reduction achieved at 100 % participation is realized.  Notably, 

the marginal benefit of data interoperability is greater at lower penetration levels than at higher ones. This 

finding is encouraging for the early‐stage implementation of data interoperability. 

 
Figure 6: Average delayed charging time with different penetration rates of trucks participating in DI-UE 

 

4 Conclusion  

This study demonstrates that data interoperability could alleviate delayed charging time for long‐haul electric 

trucks. Under the DI‐UE scenario, average per‐zone delayed charging time decreases by 19 % compared to 

business‐as‐usual, indicating that real‐time information sharing can meaningfully improve queuing issues. The 

gain achieved by DI‐SO suggests that, given the one‐hour information horizon, hourly‐level optimizations 

cannot capture inter‐hour demand dynamics. In practice, charging operators would require foresight beyond a 

single hour to approach the global daily optimum; however, such lead times are infeasible in a real‐time context. 

Clustering of normalized daily demand profiles reveals that five of six patterns exhibit highly concentrated 

peak hours, with up to 40 % of a road node’s daily charging demand occurring in a single hour. These 

pronounced spikes highlight the importance of mitigating localized congestion. Without data interoperability, 

drivers arriving during peak hours face disproportionately long waits. The adoption of real‐time sharing 

enables more balanced utilization, reducing the gap between peak and off‐peak waiting times. 

Analysis of penetration‐rate effects indicates that raising data‐sharing participation from 0 % to 30 % captures 

roughly 50 % of the maximum achievable delay reduction. This nonlinear benefit highlights that early‐stage 

implementation yields disproportionately large improvements. Policy initiatives and charging‐network 
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providers should therefore prioritize lightweight, interoperable communication protocols even before full 

ecosystem coverage is attained. 

Despite these promising results, several limitations merit consideration. First, our optimization assumes 

uniform detour opportunity within predefined highway nodes; in reality, geographic constraints and driver 

preferences may further limit accessible alternatives. Second, the analysis uses synthetic freight‐flow data and 

assumes perfect compliance with break schedules. Therefore, field‐level validation is required to quantify 

behavioral variability.  

 

Acknowledgments 

 

References 

[1] International Energy Agency, https://www.iea.org/energy-system/transport, accessed on 2024-12-11. 

[2] European Parliament, https://www.europarl.europa.eu/topics/en/article/20190313STO31218/co2-emissions-

from-cars-facts-and-figures-infographics, accessed on 2024-12-11. 

[3] International Energy Agency, https://www.iea.org/energy-system/transport/trucks-and-buses, accessed on 

2024-12-11. 

[4] European Commission, https://ec.europa.eu/commission/presscorner/detail/en/qanda_24_2527, accessed on 

2024-12-11.  

[5] Ministry of Transport of the People’s Republic of China, 

https://www.gov.cn/zhengce/zhengceku/202504/content_7021087.htm, accessed on 2025-05-22.  

[6] California Air Resources Board, Advanced Clean Fleets Regulation Summary, 

https://ww2.arb.ca.gov/resources/fact-sheets/advanced-clean-fleets-regulation-overview, accessed on 2025-

02-01.    

[7] European Union, https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32023R1804, accessed 

on 2025-02-01.    

[8] Shoman W, Yeh S, Sprei F, Plötz P, Speth D. Battery electric long-haul trucks in Europe: Public charging, 

energy, and power requirements. Transportation Research Part D: Transport and Environment. 2023; 121: 

103825. https://doi.org/10.1016/j.trd.2023.103825  

[9] Alonso-Villar A, Davíðsdóttir B, Stefánsson H, Ásgeirsson EI, Kristjánsson R. Optimising fast-charging 

infrastructure for long-haul electric trucks in remote regions under adverse climate conditions. 

eTransportation. 2025; 24: 100414. https://doi.org/10.1016/j.etran.2025.100414  

[10] Speth D, Plötz P, Wietschel M. An optimal capacity-constrained fast charging network for battery electric 

trucks in Germany. Transportation Research Part A: Policy and Practice. 2025; 193: 104383. 

https://doi.org/10.1016/j.tra.2025.104383  

[11] Haneem F, Kama N, Adam RM, Basri S, Rusli HM, Sarkan, HM. Data exchange interoperability protocol 

for electric vehicle charging systems infrastructure. In IEEE EUROCON 2023-20th International 

Conference on Smart Technologies. 2023. https://doi.org/10.1109/EUROCON56442.2023.10198979 

[12] Al-Hanahi B, Ahmad I, Habibi D, Masoum MA. Smart charging strategies for heavy electric vehicles. 

eTransportation. 2022; 13: 100182. https://doi.org/10.1016/j.etran.2022.100182    

[13]  Speth D, Sauter V, Plötz P, Signer T. Synthetic European road freight transport flow data. Data in brief. 

2022. 40; 107786. https://doi.org/10.1016/j.dib.2021.107786  

[14]  European Commission, https://transport.ec.europa.eu/transport-modes/road/social-provisions/driving-time-

and-rest-periods_en , accessed on 2024-12-11.  

[15] Link S, Plötz P. Geospatial truck parking locations data for Europe. Data in brief. 2024; 54: 110277. 

https://doi.org/10.1016/j.dib.2024.110277  

https://www.iea.org/energy-system/transport
https://www.europarl.europa.eu/topics/en/article/20190313STO31218/co2-emissions-from-cars-facts-and-figures-infographics
https://www.europarl.europa.eu/topics/en/article/20190313STO31218/co2-emissions-from-cars-facts-and-figures-infographics
https://www.iea.org/energy-system/transport/trucks-and-buses
https://ec.europa.eu/commission/presscorner/detail/en/qanda_24_2527
https://www.gov.cn/zhengce/zhengceku/202504/content_7021087.htm
https://ww2.arb.ca.gov/resources/fact-sheets/advanced-clean-fleets-regulation-overview
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32023R1804
https://doi.org/10.1016/j.trd.2023.103825
https://doi.org/10.1016/j.etran.2025.100414
https://doi.org/10.1016/j.tra.2025.104383
https://doi.org/10.1109/EUROCON56442.2023.10198979
https://doi.org/10.1016/j.etran.2022.100182
https://doi.org/10.1016/j.dib.2021.107786
https://doi.org/10.1016/j.dib.2024.110277


10 EVS38 International Electric Vehicle Symposium and Exhibition  

[16] Liimatainen H, van Vliet O, Aplyn D. The potential of electric trucks–An international commodity-level 

analysis. Applied energy. 2019; 236: 804-814. https://doi.org/10.1016/j.apenergy.2018.12.017  

[17] Basma H, Beys Y, Rodríguez F. Battery electric tractor-trailers in the European Union: A vehicle 

technology analysis. International Council on Clean Transportation. 2021; 29. 

https://theicct.org/publication/battery-electric-tractor-trailers-in-the-european-union-a-vehicle-technology-

analysis/  

[18] Eurostat, https://ec.europa.eu/eurostat/web/main/data/database, accessed on 2024-11-02. 

[19]  Patriksson M. The traffic assignment problem: models and methods. Courier Dover Publications. 2015.  

 

 

Presenter Biography 

 
Dr. Xiaohan Liu received a PhD from Beihang University, China, in 2024.At present, He is a 

postdoc in the Urban Mobility Systems research group. His research focuses on sustainable 

transportation electrification and renewable energy integration. Special interests are attached to 

establishing new approaches and data-driven frameworks for electric vehicle charging demand 

estimation, charging infrastructure planning and management, and coupled transportation and 

energy systems. The overall goal is to facilitate green, economically sustainable, and resilient 

electrified transportation systems in the uncertain future against climate change and societal 

development. Dr. Liu has published 22 peer-reviewed journal papers and 3 peer-reviewed conference papers in the 

fields of transport and energy, including leading journals of Nature Energy, npj sustainable mobility and transport, 

Transportation Research Part E/D/F, Computer-Aided Civil and Infrastructure Engineering, Renewable and 

Sustainable Energy Reviews, and Sustainable Cities and Society. 

 

 

https://doi.org/10.1016/j.apenergy.2018.12.017
https://theicct.org/publication/battery-electric-tractor-trailers-in-the-european-union-a-vehicle-technology-analysis/
https://theicct.org/publication/battery-electric-tractor-trailers-in-the-european-union-a-vehicle-technology-analysis/
https://ec.europa.eu/eurostat/web/main/data/database

