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Executive Summary

Recent advancements in non-pneumatic tires (NPT) have highlighted their practical advantages over
conventional pneumatic tires, such as eliminating air pressure management and reducing puncture risks.
This study presents a modeling and estimation framework for NPT by optimizing a modified Magic
Formula tire model using a Genetic Algorithm (GA) based on reference tire data. A vehicle dynamics
simulator, CarMaker, was employed to simulate general driving scenarios and validate the modeled tire
forces within a four-wheel vehicle model. An additional Multi-Layer Perceptron (MLP) network was
developed to estimate the tire-road friction coefficient (TRFC) using estimated tire forces, slip angles,
and slip ratios. Simulation results show accurate TRFC and vehicle state estimations under high-friction
conditions, with moderate performance degradation under low-friction environments. The proposed ap-
proach provides an efficient simulation-based methodology for advancing the development and control
of NPT-equipped vehicles.

Keywords: AI-Artificial intelligence for EVs, Modelling & Simulation, Vehicle Motion & Stability Con-
trol, Electric Vehicles

1 Introduction
Non-pneumatic tires (NPT) are gaining increasing attention as alternatives to conventional pneumatic
tires, offering freedom from the need to maintain air pressure and eliminating the risk of punctures.
NPT maintain consistent performance irrespective of air pressure variations, which is a critical factor in
enhancing vehicle safety and operational efficiency. While previous studies have primarily focused on
structural analyses and component-level force measurements of NPT under pure slip conditions[1, 2],
research on assessing NPT performance through full-vehicle dynamic simulations remains limited.
In parallel, accurate vehicle state estimation has been recognized as essential for ensuring vehicle sta-
bility, safety, and control performance. Among various state variables, the tire-road friction coefficient
(TRFC) plays a crucial role in influencing vehicle dynamics and control strategies. Consequently, reli-
able TRFC estimation has become a major research focus in the field of automotive engineering.
Existing TRFC estimation methods can be broadly categorized into three main approaches: observer-
based methods, nonlinear Kalman filter-based methods, and data-driven methods[3]. Observer-based
methods estimate TRFC indirectly by reconstructing tire forces, whereas nonlinear Kalman filters such
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as the Unscented Kalman Filter (UKF) and Cubature Kalman Filter (CKF) enhance estimation robustness
by fusing sensor measurements with vehicle dynamic models[4, 5]. Data-driven methods, such as those
proposed by Tao et al.[6], utilize neural networks trained on observer-estimated tire forces to infer TRFC.
Recently, hybrid approaches that combine model-based estimation with data-driven learning have been
increasingly explored. Bei et al.[7] introduced a framework that integrates CKF-based state estimation
with Magic Formula-based tire force modeling to generate normalized data for training neural networks,
thereby improving TRFC estimation across varying conditions. Such hybrid methods have gained atten-
tion as they outperform traditional approaches based solely on observers, filters, or physical models by
leveraging the complementary strengths of physical modeling and machine learning.
Despite these advancements, most TRFC estimation research has assumed the use of conventional pneu-
matic tires. Given the distinct force-slip characteristics of NPT compared to pneumatic tires, there is
a critical need to adapt TRFC estimation frameworks to accommodate the specific behaviors of NPT.
Reliable estimation of TRFC for NPT-equipped vehicles is vital not only for performance validation but
also for ensuring driving safety in future applications.
Therefore, this study addresses NPT and proposes a framework for optimizing an NPT tire model using
the Magic Formula and estimating the normalized tire-road friction coefficient during dynamic driving
scenarios. This integrated approach aims to validate the driving performance of NPT-equipped vehicles
through full-vehicle simulations, ultimately contributing to the safer and more efficient design of non-
pneumatic tires.

2 Modeling
2.1 Vehicle Model

Figure 1: Schematic diagram of planar vehicle

A nonlinear 3-degree-of-freedom (3DOF) vehicle model, which includes longitudinal, lateral, and yaw
motions, is considered. The equations below represent the longitudinal, lateral, and yaw dynamics of the
vehicle.

v̇x =
1

m

(
(Fxfl + Fxfr) cos δ − (Fyfl + Fyfr) sin δ + (Fxrl + Fxrr)− CAv

2
x

)
(1)

v̇y =
1

m
((Fxfl + Fxfr) sin δ + (Fyfl + Fyfr) cos δ + (Fxrl + Fxrr)) (2)
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γ̇ =
1

Izz

[
lf ((Fxfl + Fxfr) sin δ + (Fyfl + Fyfr) cos δ)

− W

2
(Fxfl cos δ − Fxfr sin δ) +

W

2
(Fyfl sin δ − Fyfr sin δ)

− W

2
(Fxrl − Fxrr)− lr(Fyrl − Fyrr)

]
(3)

The variables used in the above equations are defined as follows: m denotes the vehicle mass, and δ
represents the steering angle of the front wheels. vx and vy are the longitudinal and lateral velocities of
the vehicle, respectively, while γ means the yaw rate. lf and lr indicate the distances from the vehicle’s
center of gravity to the front and rear axles, respectively. W denotes the wheel tread, and Izz is the
moment of inertia about the vertical z-axis. Fxij and Fyij are the longitudinal and lateral tire forces,
respectively, where ij = [fl, fr, rl, rr] denotes the front-left, front-right, rear-left, and rear-right wheels.

2.2 Magic Formula Tire Model

The Magic Formula tire model[8] is a representative empirical model widely used to describe the force
characteristics of pneumatic tires. In this study, it was adopted to investigate its applicability to NPT,
even though it was originally developed for pneumatic applications.

y0 = D sin [C arctan {Bx− E (Bx− arctan (Bx))}] + SV (4)

Fx0 =
µ

µ0
yx0

(
µ0

µ
λ

)
, Fy0 =

µ

µ0
yy0

(
µ0

µ
α

)
(5)

The general form of the Magic Formula tire force can be expressed as y0, which holds the same structure
for both longitudinal and lateral directions. The pure longitudinal and lateral tire forces are denoted as
Fx and Fy, respectively. When the actual tire-road friction coefficient is represented by µ, the normalized
friction coefficient is denoted as µ0. In this study, the normalized tire force was utilized as a basis for
estimating the actual tire-road friction coefficient µ. For this purpose, the normalized reference value
was set to µ0 = 1, assuming a fully saturated friction condition.
The equations used to compute the vertical load are given as follows:

Fzfj = Fzfj[nominal] −
maxhcg
2(lf + lr)

∓ mayhcg
W

· lr
lf + lr

Fzrj = Fzrj[nominal] +
maxhcg
2(lf + lr)

∓ mayhcg
W

·
lf

lf + lr

(6)

hcg means height of the center of gravity of vehicle.
Tire slip angle can be calculated as follows:

αfl = arctan

(
vy + lfγ

vx −Wγ/2

)
− δl

αfr = arctan

(
vy + lfγ

vx +Wγ/2

)
− δr

αrl = arctan

(
vy − lrγ

vx −Wγ/2

)
αrr = arctan

(
vy − lrγ

vx +Wγ/2

)
(7)
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Tire slip ratio can be determined by:

λij =


Reωij − vxij

vxij
, (vxij ̸= 0 or ωij ̸= 0)

0, (vxij = ωij = 0)
(8)

where Re is the effective rolling tire radius, wij and vxij are angular velocity of each wheel and longitu-
dinal velocity of each wheel’s roll center, respectively.

3 Optimizing NPT with Modified Magic Formula Tire Model
The Genetic Algorithm(GA) was also selected as the global optimization algorithm to enhance the diver-
sity of solutions and search capabilities.

3.1 Magic Formula Tire Model

We utilized the Magic Formula tire model to model NPT, referencing data from Laiyun Ku[2]. Addition-
ally, to reflect the reduced forces at the same vertical load compared to pneumatic tires, we introduced
parameters PDX3 and PDY4. Figure 2 compares pneumatic and non-pneumatic tires under a vertical
load of 4000N. The additional parameters are as follows:

F ∗
x0

= F ∗
x0

· PDX3, F ∗
y0 = F ∗

y0 · PDY 4 (9)
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Figure 2: Pneumatic Tire vs Non-pneumatic Tire (Fz=4000N, µ=1.0)

The reference tire data were obtained from a test conducted on a road surface with a friction coefficient of
0.7 at a driving speed of 60 km/h. The corresponding vertical loads were 2000 N, 3500 N, and 5000 N.
For lateral force modeling, only the data acquired under a camber angle of 0° were considered as a
reference. To improve optimization efficiency and generalization performance under a limited number
of data samples, the following two assumptions were made for the parameter optimization:

1. The force characteristics of the NPT pass through the origin.

2. The force characteristics of the NPT are symmetric with respect to the origin.

min

n∑
i=1

m∑
j=1

(
FMagicFormula
x0

(X,λj , Fzi)− FReference
x0

(λj , Fzi)
)2

(10)

min

n∑
i=1

m∑
j=1

(
FMagicFormula
y0 (Y, αj , Fzi)− FReference

y0 (αj , Fzi)
)2

(11)
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The optimization problem was defined as follows: for the longitudinal direction, parameters, slip ratio,
and vertical load were set as input variables; for the lateral direction, parameters, slip angle, and vertical
load were set as input variables. The objective was to minimize the squared sum of the differences
between the reference data and the Magic Formula tire model. The GA parameters are in the table
below.

Table 1: Parameters of Genetic Algorithm (GA)

Parameters Value

Number of Population (NP) 1000
Number of parameters to optimize (D) 16 (Longitudinal), 15 (Lateral)
Crossover Probability (CP) 0.4
Mutation Probability (MP) 0.1
Number of iterations (itermax) 10000

4 TRFC estimation
4.1 Vehicle state estimation using CKF

To estimate the longitudinal and lateral velocities as well as the yaw rate of the vehicle during driv-
ing, a Cubature Kalman Filter (CKF) [9], a type of nonlinear Kalman filter, was employed. The mea-
surement vector was defined as zk = [ax(k), ay(k), γ(k)]

T , and the state vector was set as xk =
[vx(k), vy(k), γ(k)]

T .

Algorithm 1: CKF Iteration

Inputs: Prior state estimate x̂k−1|k−1, covariance Pk−1|k−1, process noise Qk−1, measurement noise
Rk−1, control input uk−1, measurement zk, auxiliary variable: ζi =

√
n[In,−In]i, i = 1, 2, · · · , 2n

Time Update (Prediction) Measurement Update (Correction)

1) Evaluate the cubature points: 1) Evaluate the cubature points:
Sk−1 =

√
Pk−1|k−1 Sk|k−1 =

√
Pk|k−1

Xi,k−1|k−1 = x̂k−1|k−1 + Sk−1ξi Xi,k|k−1 = x̂k|k−1 + Sk|k−1ξi

2) Evaluate cubature points: 2) Evaluate cubature points:
X∗

i,k|k−1 = f(Xi,k−1|k−1, uk−1) Zi,k|k−1 = h(Xi,k|k−1, uk−1)

3) Estimate the predicted state: 3) Estimate the predicted measurement:
x̂k|k−1 = 1

2n

∑2n
i=1 X

∗
i,k|k−1 ẑk|k−1 = 1

2n

∑2n
i=1 Zi,k|k−1

4) Estimate the error covariance: 4) Estimate the innovation covariance:

Pk|k−1 =
1

2n

2n∑
i=1

X∗
i,k|k−1X

∗T
i,k|k−1

− x̂k|k−1x̂
T
k|k−1 +Qk−1

Pzz,k|k−1 =
1

2n

2n∑
i=1

Zi,k|k−1Z
T
i,k|k−1

− ẑk|k−1ẑ
T
k|k−1 +Rk

5) Estimate the cross-covariance:
Pxz,k = 1

2n

∑2n
i=1 Xi,k|k−1Z

T
i,k|k−1− x̂k|k−1ẑ

T
k|k−1

6) Calculate the Kalman gain: Kk = Pxz,k|k−1P
−1
zz,k|k−1

7) Update the state estimate: x̂k|k = x̂k|k−1 +Kk(zk − ẑk|k−1)

8) Update the error covariance: Pk|k = Pk|k−1 −KkPzz,kK
T
k
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4.2 TRFC estimation with Multi-Layer Perceptron(MLP)

4.2.1 Data Acquisition and Preprocessing

To generate the tire force dataset, simulation-based driving scenarios were designed considering rep-
resentative road surface conditions. The tire-road friction coefficient µ was set to five typical values
corresponding to different road types: 0.2 (snowy road), 0.4 (cobblestone), 0.6 (wet asphalt), 0.8 (dry
asphalt), and 1.0 (high-grip surface), as commonly reported in the literature[10]. For each µ condition,
driving maneuvers were simulated at vehicle speeds of 20, 40, 60, and 80 km/h. Each maneuver involved
maintaining straight-line driving for 7 seconds, followed by sequential left and right steering operations,
with the steering wheel angle increased in steps of 50◦ up to a maximum of ±500◦.
During these maneuvers, the longitudinal force Fx, lateral force Fy, vertical load Fz , slip angle α, and
slip ratio λ were recorded. In particular, normalized tire forces (Fx0 and Fy0) based on the reference
condition of µ0 = 1.0 were used to decouple the tire-road friction effects from the force measurements.
Prior to model training, a data preprocessing step was applied to improve the robustness of the learning
process. Given that non-pneumatic tires exhibit larger force prediction errors at low slip conditions and
that low excitation levels hinder the ability to distinguish meaningful relationships, samples with absolute
slip angle or slip ratio less than 0.015 were excluded from the training dataset. This filtering process
ensures that the model focuses on regions where the excitation is sufficient to capture the characteristic
force-slip behavior. This dataset construction and preprocessing strategy enables comprehensive learning
of the relationships among normalized forces, slip characteristics, and vertical loads, without relying on
extensive real-world testing.

Figure 3: Structure of the MLP model for tire-road friction coefficient (TRFC)

The MLP architecture consists of three hidden layers with 128, 64, and 32 neurons, respectively, each
using the ReLU activation function. The final output layer produces a single continuous value corre-
sponding to the estimated TRFC.
Training was conducted using the mean squared error (MSE) loss function and the Adam optimizer with
an initial learning rate of 0.0005. An adaptive learning rate strategy was applied, increasing the learning
rate by 1.01 when the validation loss decreased and decreasing it by 0.99 otherwise. A batch size of 256
was used, and early stopping with a patience of 30 epochs was implemented to prevent overfitting.
The model was selected based on the best validation loss and evaluated using a threshold-based accuracy
metric, considering predictions correct if the absolute error was within 0.05. Finally, the trained MLP
was exported to the ONNX format for integration into the CarMaker/Simulink simulation environment.

5 Results and discussion
To validate the proposed estimation algorithm, simulations were conducted in the CarMaker/Simulink
environment. The reference data, originally obtained under pure slip conditions, were converted into
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the TYDEX format and incorporated into the simulation. Due to the absence of experimental combined
slip data, the combined slip behavior was reproduced within the simulation environment based on the
TYDEX-formatted NPT pure slip data.

5.1 Optimization results of NPT

Since the camber angle was set to zero, the parameters influenced by camber effects, as well as those
related to horizontal and vertical shifts around the origin, were fixed at zero and excluded from the
optimization process. Figures 4 and 5 compare the reference data and the optimization results of the
non-pneumatic tire (NPT) obtained using GA under pure slip conditions. The solid line in these figures
denotes the reference tire data, whereas the dashed line denotes the tire data resulting from the optimiza-
tion process.
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Figure 4: Optimized vs Reference Data : pure longitu-
dinal (µ=1.0)
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Figure 5: Optimized vs Reference Data : pure lateral
(µ=1.0)

Table 2: Optimized coefficients of Magic Formula Tire Model

PCX1 PDX1 PDX2 PEX1 PEX2 PEX3 PEX4 PKX1 PKX2 PKX3
1.1288 0.9987 0.0261 -3.6586 0.5851 -0.3247 -0.0174 32.4583 -4.6262 0.3158

PHX1 PHX2 PVX1 PVX2 PDX3
0 0 0 0 0.9835

PCY1 PDY1 PDY2 PDY3 PDY4 PEY1 PEY2 PEY3 PEY4 PKY1
1.2514 1.2035 0.0249 0 0.8118 -3.1349 -0.4670 -0.0331 0 -24.4979

PKY2 PKY3 PHY1 PHY2 PHY3 PVY1 PVY2 PVY3 PVY4
1.8913 0 0 0 0 0 0 0 0

The details of the optimized tire parameters are listed in Table 2.
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Figure 7: Optimized vs Reference Data : combined
lateral (Fz=4250N, µ=1.0)

Figures 6 and 7 present the optimization results obtained under combined slip conditions. The deviations
from the reference data are slightly larger compared to those observed under pure slip conditions. This
discrepancy may be attributed not only to the inherent limitations of the Magic Formula in modeling
coupled slip dynamics, but also to the fundamental differences in force curvature characteristics between
pneumatic and non-pneumatic tires (NPT). While conventional pneumatic tires exhibit a gradual decrease
in force beyond the peak point, NPT tend to maintain their force levels even after the peak, resulting in
a distinct force-slip relationship. Since the Magic Formula is an empirical model originally designed to
capture the curvature behavior of pneumatic tires, it may not fully represent the force characteristics of
NPT, particularly under low slip ratio and slip angle conditions. Additionally, it was observed that the
fitting accuracy tended to degrade in low slip regions, where the force magnitudes were relatively small
or large, leading to noticeable deviations from the reference data.
In future work, incorporating combined slip terms into the optimization objective and refining the model
to better account for the deformation behavior unique to NPT could further improve the fitting accuracy
across a wider range of slip conditions.

5.2 TRFC estimation performance

Figure 8: Test track configuration used for TRFC estimation validation
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The performance of the TRFC estimation was validated using the CarMaker/Simulink simulation plat-
form. The test scenario involved a track composed of alternating straight and curved sections. Straight
sections measured 100 meters in length, and curved sections featured a 50-meter radius with a 270-degree
arc. To evaluate performance across different surface conditions, simulations were performed under both
high-mu (µ = 0.8) and low-mu (µ = 0.4) settings. The following results present the estimated states
and tire forces for the front-left (FL) wheel.

Table 3: Test Vehicle Parameters

Parameters Value

Vehicle Mass (m) 1360 kg
Distance to Front Axle (lf ) 0.983 m
Distance to Rear Axle (lr) 1.597 m
Track Width (W ) 1.470 m
Height of Center of Gravity (hcg) 0.531 m
Yaw Moment of Inertia (Izz) 1782.008 kg·m2

The specifications of the test vehicle used for validation are summarized in Table 3.

5.2.1 Case 1: High-mu (µ = 0.8) test results

The vehicle was driven at a target speed of 60 km/h on a track composed of straight and curved sections
under a high-mu surface (µ = 0.8). Figures 9–12 present the estimation results for longitudinal and
lateral velocities, yaw rate, tire forces, and TRFC.

Figure 9: Longitudinal velocity(V x) estimation
(µ=0.8)

Figure 10: Lateral velocity(V y) and yawrate(γ) etima-
tion (µ=0.8)
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Figure 11: Tire force estimation (µ=0.8) Figure 12: TRFC etimation (µ=0.8)

The estimation results for the longitudinal velocity (Vx), lateral velocity (Vy), and yaw rate (γ) are shown
in Figures 9 and 10. The longitudinal velocity (Vx) was accurately estimated across the entire track, with
minimal deviation even in curved sections. In contrast, slight fluctuations were observed in the lateral
velocity (Vy) and yaw rate (γ) during high-curvature maneuvers, while the overall estimation trends were
reasonably maintained.

5.2.2 Case 2: Low-mu (µ = 0.4) test results

The vehicle was driven at a target speed of 40 km/h on a track composed of straight and curved sections
under a low-mu surface (µ = 0.4). Figures 13–16 present the estimation results for longitudinal and
lateral velocities, yaw rate, tire forces, and TRFC.

Figure 13: Longitudinal velocity(V x) estimation
(µ=0.4)

Figure 14: Lateral velocity(V y) and yawrate(γ) etima-
tion (µ=0.4)
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Figure 15: Tire force estimation (µ=0.4) Figure 16: TRFC etimation (µ=0.4)

The estimation results for the longitudinal velocity (Vx), lateral velocity (Vy), and yaw rate (γ) under
the low-mu (µ = 0.4) condition are shown in Figures 13 and 14. The longitudinal velocity (Vx) was
generally estimated with high accuracy throughout the test, although slight deviations were observed
during transient phases such as acceleration and deceleration. For the lateral velocity (Vy) and yaw rate
(γ), larger fluctuations were observed compared to the high-mu case, particularly during curved sections,
owing to the reduced tire-road friction. Nevertheless, the overall trends in Vy and γ were reasonably
captured despite the low-friction environment.

5.3 Discussion

Several factors contributed to the observed estimation errors, particularly under low-mu conditions. First,
even in pure slip scenarios, the force fitting performance of the non-pneumatic tire (NPT) was less accu-
rate in low slip regions. In these regions, the predicted tire forces tended to be either overestimated or
underestimated, depending on the slip magnitude, which introduced discrepancies in force estimation.
Such fitting errors were further amplified under combined slip conditions, where the Magic Formula
model struggled to capture the coupled slip dynamics of NPT.
Moreover, the Cubature Kalman Filter (CKF)-based state estimation exhibited degraded performance un-
der low friction surfaces. Specifically, inaccuracies in the longitudinal force (Fx) estimation, due to both
model fitting errors and increased process noise under low-mu conditions, led to further deterioration in
the overall TRFC estimation.
Additionally, the fitted tire model showed limited variation in force curvature characteristics with respect
to vertical load changes. This lack of distinct curvature behavior made it challenging for the neural
network to learn and differentiate the friction conditions based on normalized tire forces, resulting in
reduced TRFC estimation accuracy across different vertical loads.
Overall, the combination of tire force fitting errors in low slip regions, degraded CKF-based state es-
timation in low-mu conditions, and limited curvature variation across vertical loads contributed to the
challenges observed in TRFC estimation performance.

6 Conclusion
This study proposed a simulation-based framework for modeling and estimating the behavior of non-
pneumatic tires (NPTs). A modified Magic Formula tire model was optimized using a Genetic Algorithm
(GA) to capture the force characteristics of NPTs, and a Cubature Kalman Filter (CKF)-based state esti-
mator combined with a machine learning regression model was developed to estimate tire-road friction
coefficients (TRFC) during vehicle operation. This framework enables not only efficient evaluation of
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NPT-equipped vehicles but also facilitates the development and validation of control strategies within
simulation environments, minimizing the reliance on costly physical prototyping.
Simulation results demonstrated that the proposed method could accurately estimate vehicle states and
TRFC under high-friction conditions. However, under low-friction and combined slip conditions, esti-
mation errors increased due to tire model fitting limitations and reduced robustness in state estimation
performance. These findings highlight the need for further improvements, particularly the development
of tire force models tailored to NPT-specific characteristics and the design of estimation frameworks
capable of maintaining robustness across a wide range of friction conditions.
Despite these limitations, the proposed methodology provides a foundational step toward simulation-
based development of NPT vehicle dynamics and control systems, offering a promising direction for
future research.
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