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Executive Summary  

This study assesses the charging infrastructure requirement to support a fully electrified vehicle fleet in 

Sweden, considering the sensitivity of battery electric vehicle (BEV) users to their charging behavior 

preferences. Using a synthetic population with daily travel activity plans, we simulate BEV charging and 

discharging patterns across multiple charging strategies. The corresponding energy demand drawn from the 

electricity grid is then estimated, followed by a geographic mapping of charging infrastructure needs across 

Sweden. The existing charging infrastructure in Sweden is found to be insufficient to meet future energy 

demand. Our findings also reveal significant variations in load profiles and infrastructure requirements at 

public places depending on assumed charging behaviors.  
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1 Background  

As a key technology in combating climate change and transitioning the transport system, battery electric 

vehicles (BEVs) are replacing traditional internal combustion engine vehicles (ICEVs). The European Union 

has enacted legislation that prohibits the sale of new ICEVs starting in 2035 [1]. By 2050, the sales volume 

of BEVs is expected to surpass that of ICEVs globally [2, 3]. Sweden, in particular, has established itself as 

a frontrunner in sustainable mobility, trying to transition entirely to BEVs in the coming decades. However, 

the uptake of BEVs is dependent on sufficient charging infrastructure. A future scenario with 100% BEV 

adoption will increase electricity demand for charging, posing possible challenges for the operation and 

planning of the power system [4]. Understanding these behaviors is essential for efficient infrastructure 

deployment and for minimizing grid-stress and user inconvenience [5].  

The infrastructure deployment could develop very differently depending on the charging behaviors of the 

users [6]. While much research has been conducted on EV charging simulations and projections, there still is 

a sizeable research gap in linking the charging energy demand with user charging behavior preferences. In 

planning the placement and capacity of BEV charging infrastructure, existing research often relies on overly 

simplistic assumptions regarding user charging habits and access to private home chargers [4, 7, 8]. However, 

with the transition to BEV adoption, residents across all types of housing — detached houses and apartments 
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— will require reliable access to charging [7, 9]. This highlights a critical gap in current planning models. As 

such, determining the necessary scale and distribution of public charging stations remains a central policy 

challenge. Accurate forecasting must consider diverse living arrangements, urban density, and socio-

economic disparities to ensure equitable and effective infrastructure deployment. 

This study offers valuable insights into the charging infrastructure requirement assuming 100% BEV 

adoption in Sweden by incorporating BEV charging and discharging behaviors. A key innovation of this work 

lies in the use of a large-scale synthetic population that retains realistic socioeconomic characteristics and 

diverse daily activity patterns for performing a detailed estimation of charging demand across various 

dwelling types. Additionally, we introduce a classification of charging strategies. Our findings reveal that the 

spatial and temporal patterns of charger usage as well as the required number of charging points at home, 

workplaces, and other locations are significantly influenced by the diversity of charging strategies considered.  

The remainder of the paper is structured as follows. In the next section, relevant literature pertinent to BEV 

charging infrastructure, charging behavior preferences and their interaction are reviewed and presented. The 

Methodology section outlines the analytical framework, including details on the datasets used, simulation 

components, and the analysis for estimating charging demand. In the Results and Discussions section, we 

present simulation outcomes including spatiotemporal energy demand & the corresponding charging 

infrastructure requirement and interpret these findings. The Conclusions section highlights the key 

contributions and limitations of the study. 

2 Literature Review 

Advancements in charging technologies are pivotal for accommodating the growing BEV market. Effective 

deployment of BEV charging infrastructure necessitates integrated planning across transportation and power 

distribution networks [10]. The International Energy Agency (IEA) projects that the number of public 

charging points worldwide will need to increase sixfold by 2035 to support mass-market EV adoption [11]. 

This expansion must encompass both slow and fast charging options to accommodate diverse user needs and 

ensure accessibility across urban and rural areas [12]. However, despite its critical importance, the 

deployment of charging infrastructure is costly and often entangled in a classic chicken-and-egg dilemma: 

infrastructure providers are hesitant to invest due to uncertain profitability, while potential BEV users are 

discouraged by limited charging availability [6, 8]. Identifying optimal locations and appropriately sizing 

charging stations is essential to encouraging BEV adoption and ensuring a seamless driving experience 

without disrupting users' daily routines. A comprehensive classification of charging options can support this 

goal by considering various factors — such as the underlying technology (e.g., wireless or inductive 

charging) [13, 14], power levels (e.g., slow, medium, fast, and ultra-fast charging) [13, 15, 16, 17], and usage 

scenarios (e.g., destination-based charging) [14, 17, 18].  

Charging behavior is fundamentally a spatiotemporal phenomenon, referring to the timing, location, and 

duration of BEV users’ interactions with charging points [8]. Previous studies have identified various factors 

influencing EV charging behavior by analyzing diverse user groups. These factors may generally be 

categorized into scenario-related attributes, socio-demographic attributes and behavioral habit attributes. 

Scenario-related attributes are defined by conditions associated with the vehicle or charging facility and are 

often referred to as alternative factors [19, 20]. Among scenario-related factors, State of Charge (SOC), 

charging cost, and range anxiety are particularly influential. SOC, which indicates the remaining energy in 

the vehicle's battery (ranges from 0% to 100%), is widely considered the most critical factor [8, 19]. Statistics 

show that most charging events occur when SOC is between 20% and 80%, and public charging sessions 

tend to start at higher SOC levels compared to those at home [21, 22]. Charging price is another key 

consideration for EV users. While drivers typically prefer lower prices [14], they don’t always opt for the 
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cheapest option. Time-sensitive individuals, for example, may prioritize convenience over cost [20]. 

Furthermore, the uncertainty of dynamic pricing means that higher price levels tend to disproportionately 

influence user decisions [20, 23].  

In contrast, socio-demographic attributes capture individual differences, including age, gender, and other 

personal characteristics, which significantly shape users’ charging preferences and decisions [4, 9, 23]. 

Studies have explored strong existing relationships between socio-demographics, activity engagement, and 

travel behavior [24, 25]. The travel patterns of low-income people and high-income people are significantly 

different, as well as age, gender, and education level [23, 24]. Apart from these observable attributes, there 

exist behavioral habit attributes which mainly focus on individual habits, user perceptions, mental models, 

and refilling strategies [5, 26, 27, 28]. These attributes account for individual heterogeneity by treating them 

as latent variables that are specific to each person. 

Most of the existing studies do not account for the impact of all those three classes of attributes on charging 

behavior preferences and overlook realistic charging behaviors [8, 29]. Some models have attempted an 

oversimplification approach by assuming that BEV users only initiate charging once the SOC drops below a 

specific threshold value [28, 30]. These assumptions often stem from our familiarity with refueling ICEVs, 

despite the fundamental differences between ICEVs and BEVs [5]. BEVs require considerably more time to 

recharge, which influences how drivers schedule charging to align with their travel plans [31]. This 

oversimplification of charging behavior in the literature is partly due to limited availability of detailed user 

data. Most studies rely on patterns from early BEV adopters, who typically have convenient home charging 

access [4, 19]. However, as BEV adoption expands, future users are likely to adopt more diverse charging 

strategies shaped by their daily activity patterns, mental models, electricity pricing schemes, and willingness 

to pay [5, 8]. How these evolving strategies will influence overall charging demand and infrastructure needs 

remains uncertain. Furthermore, studies that assume universal access to home charging [22] often conclude 

that the demand for daytime charging at workplaces or public locations is minimal [28], which may not hold 

true for broader segments of future users [8]. 

The extent and location planning of electric vehicle charging infrastructure often revolves around the field of 

optimization and operation research. Some studies have used classic mathematical programming approaches 

(such as p-median, p-center, maximum coverage methods, etc.) that can generate effective charging 

infrastructure layouts by optimizing specific objectives from various perspectives [32, 33, 34]. However, due 

to the interdisciplinary nature of the problem, characterized by high complexity and uncertainty, these models 

often remain largely theoretical only [32]. To ensure their practical relevance, such approaches need to be 

validated in environments that closely resemble real-world conditions, such as large-scale vehicle movement 

simulations. In response to this need, several agent-based models (ABM) have been developed to assess and 

refine charging infrastructure deployment strategies. These models simulate diverse agents such as potential 

EV buyers, current EV users, passengers, and fleet operators, each endowed with a degree of decision-making 

intelligence, enabling more realistic evaluations of charging infrastructure planning [33, 35, 36]. These ABMs 

have the capability to simulate realistic charging strategies and integrate different charging decisions from 

individual user’ perspective, while being able to handle a large number of agents.  

In this study, we try to circumvent the concerns regarding optimal locations of charging infrastructure by 

assuming that BEV users use charge points when they want to. This assumption helps in simplifying the 

charging demand and potential charging points locations and presents scenarios based on the charging needs 

of the users. We apply an agent-based modeling approach with a synthetic population of Sweden and simulate 

BEV charging and discharging dynamics considering different charging strategies over a typical weekday.  
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3 Methodology 

The simplified broad methodological framework is shown in Fig. 1. The steps are discussed below. 

 

Figure 1: Methodological framework for the study 

3.1 Synthetic population with activity plans 

Our study utilizes Synthetic Sweden Mobility Model (SySMo), an agent-based decision support framework 

to explicitly simulate BEV driving behaviors and charging needs with high spatial (coordinates) and temporal 

detail (second). SySMo provides a synthetic replica of over 10.2 million Swedish individuals (i.e., agents), 

their socio-demographic characteristics, and activity-travel plans for an average weekday while preserving 

privacy [37]. For this study, we focus only on the car agents (agents that drive cars on the simulated day) in 

Sweden, the total number of which is around 3.26 million. 

For preparing the input dataset, the daily activity plans of all the car agents along with the road network are 

fed to a MATSim environment for simulating the agents’ movement trajectories and thereby getting realistic 

estimation of travel times of individual agents. Each agent is characterized by a set of socioeconomic 

attributes, including age, gender, income level, employment status, and dwelling type. Additionally, every 

agent follows a daily activity schedule consisting of four possible activities: home (H), work (W), school (S), 

and other (O). The majority of car agents reside in detached houses (60.2%), while the remaining (39.8%) 

live in apartments. The frequency distribution of daily distance travelled by all car agents is shown in Fig. 

2(a). It follows a Pareto distribution which is expected as the majority of the car agents travel for 

comparatively shorter distances over a day [38]. 

3.2 Estimation of total energy requirement 

We consider that each agent has the hindsight to know the exact distance to be travelled on the simulated day. 

Using the data from a previous study on future charging infrastructure planning in Sweden [39], we simulate 

the discharging dynamics of BEVs for different battery sizes. The BEV fleet is assumed to include three 
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battery sizes: 40 kWh (12%), 60 kWh (49%), and 100 kWh (39%) [8, 39]. These battery sizes are assigned 

to the agents based on their income levels and extent of daily travel distance; the proportions of assigning are 

determined heuristically. For discharging, each battery size has a lookup table of energy efficiency (kWh/km) 

as a function of travel speed (m/s) and road slope (%). The detailed vehicular characteristics corresponding 

to different battery sizes and their energy efficiency tables are provided by Márquez-Fernández et al. [39]. 

Based on the travel distance requirement of each agent and energy efficiency maps, we estimate the 

corresponding energy consumption during each car trip for an individual agent. Then we estimate the daily 

total energy requirement (or consumption) of an agent by summing energy consumptions values over all 

activities. The frequency distribution of daily energy requirement of all car agents is shown in Fig. 2(b). 

 

 

 

Figure 2(a): Travel distance distribution of agents            Figure 2(b): Energy consumption distribution of agents 

3.3 Simulation of charging and discharging behavior 

As earlier mentioned, we simulate BEV usage for approximately 3.26 million individual car agents, 

considering overnight charger access, the current EV fleet composition (in terms of battery sizes) in Sweden, 

the road network, and BEV charging and discharging dynamics. During charging, the power delivered by the 

charge point is constrained by the battery's SOC; as the SOC increases, the effective charging rate decreases 

and subsequently the required charging duration increases. The SOC-dependent charging profiles for 

different battery sizes are also provided by Márquez-Fernández et al. [39]. The parking duration (activity 

duration) provides the opportunity to charge the BEVs; so, the charging duration is constrained by the parking 

time, battery capacity and other assumptions we have considered for different strategies. 

 Two charging strategies are simulated - ‘Plan Ahead’ (PA) and ‘Event Triggered’ (ET) [5, 8]. The PA strategy 

involves anticipating future charging needs. For instance, before parking, drivers assess whether their BEV 

has sufficient charge for the next trip. If not, they choose to plug in and charge in advance. For ET strategy, 

drivers charge their vehicles whenever they park at certain locations (such as workplaces or shopping stops) 

regardless of whether the stop allows for a full charge. This often results in opportunistic partial charging. As 

ET involves more frequent charging events and leads to charging beyond what is immediately necessary, the 

energy requirement is likely to be higher as compared to PA. The details of considerations regarding the two 

strategies are presented in Table 1.  

Four types of charging points are provided based on dwelling types of agents, parking duration, and the SOC: 

(1) fast charging (50 kW), (2) intermediate charging (22 kW), (3) home charging (11 kW), and (4) apartment 

charging (11 kW). Agents residing in detached houses are assumed to have access to home chargers, while 

apartment dwellers rely on non-home-based charging points (apartment chargers) for end of day charging 

(see Table 1). For daytime charging at public parking spaces, if the parking time is below 60 minutes and 

SOC is below 80%, agents are assigned fast chargers; otherwise, intermediate chargers are used. We limit the 

maximum possible SOC to 90% with reference to the battery degradation standpoint. 
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Table 1: Summary of charging strategies 

Charging Strategy Description End of Day Charging 

(Detached house) 

End of Day 

Charging (Apartment) 

1. Plan Ahead (PA) Plan ahead for when 

charging is needed – 

focused on the energy 

requirement to 

complete the trips for 

the day. 

Charge if SOC is 

insufficient for the next 

day energy requirement. 

When plugged in, charge 

up to 90% capacity. 

Charge if SOC is insufficient 

for the next day energy 

requirement. When plugged-

in, charge up to 90% capacity. 

2. Event Triggered 

(ET) 

Plug in to charge 

whenever parking at a 

specific location. 

Always plugged in to 

charge to 90% capacity. 

Charge if SOC is insufficient 

for the energy requirement 

corresponding to the next day 

1st travel activity. When 

plugged-in, charge up to 90% 

capacity. 

 

The initial SOCs of the agents at the start of the day range from 20% to 90%, randomly drawn from a skewed 

normal distribution with skewness of -4 [8]. For both the charging strategies, we run ten consecutive 

simulation days with the same sets of daily planned activities to eliminate possible bias in simulation results. 

After running the simulation continuously over several activity days, the initial SOC patterns reach a steady 

state, and the results from the tenth day are then used for further analysis. 

3.4 Estimation of energy drawn from the grid 

From the BEV simulation output, we get the simulated charging amount and SOC during each activity 

duration for an agent. The charging amount and SOC are recorded at the end of each individual activity. We 

then aggregate the individual charging patterns over a day as well as the spatiotemporal energy demand at 

DeSO zone level1. The occurrence of peak charging demand for both strategies and how it aligns with the 

existing scenario are also investigated.  

3.5 Mapping of charging infrastructure requirement 

Charging points are allocated based on agents' charging needs. Accordingly, the required number of charging 

points in each DeSO zone is determined by identifying the maximum number of BEVs plugged in 

simultaneously within that zone at any given minute throughout the simulation day [8]. As we assume that 

every detached house has access to a personal home charger, the total number of home chargers becomes 

equal to the total number of detached houses. So, we quantify the charging points requirement for fast, 

intermediate and apartment chargers at DeSO zone level. 

4 Results and Discussions 

The BEV simulation results show variations in individual charging profile by the charging strategy. As a 

sample result, hourly SOC levels of two different agents – one living in detached house and the other in 

apartment – are presented for both charging strategies in Fig. 3(a) and Fig. 3(b) respectively. 

 
1 DeSO zone - Swedish Demographic Statistical Areas which follow municipal boundaries. Each municipality 

consists of a number of DeSO Zones, for a total of 5984 zones. 
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Figure 3(a): SOC levels of a detached house agent            Figure 3(b): SOC levels of an apartment agent 

The detached house agent starts with 20% SOC, and during ET simulation (blue line), the charging continues 

during the first home activity using the home charger until 90% SOC is reached. Whereas, for PA simulation 

(green line), the charging stops when it reaches the required energy level for covering the daily trips and stays 

horizontal till the end of the home activity. The segments depicting the decrease in SOC represent discharging 

BEVs due to travelling. For the apartment agent, no charging is done during the first home activity as the 

apartment dwellers do not have access to home charging points (barring the last home activity). When the 

agent returns back to home at the end of the day, they start charging using the available apartment charger as 

the SOC is not adequate enough to cover the next day trips. The amount of charging differs for different 

charging strategies. For both the agents, charging at public places is done using intermediate chargers.  

 

Figure 4: Hourly energy drawn from the grid corresponding to PA Charging Strategy 

The results also indicate variations in hourly energy drawn from the grid by the charging strategy, as 

illustrated in Figs. 4 and 5. The daily total energy demand for the ET strategy is found to be about 15% higher 

than that of the PA strategy, which is expected as ET being an opportunistic strategy, is more energy-intensive 

than PA strategy. For the PA strategy, 11 kW slow charging (home and apartment chargers) contributes most 

to the energy profile, with peaks occurring during evening home activities. This pattern aligns with the 

occurrence of current peak hourly electricity load in Sweden (about 25 GWh during evening) [40]. On the 

other hand, the ET strategy shows higher reliance on public charging places (workplace/school/other), with 

intermediate chargers dominating the energy profile. The peak occurs during morning hours (typically around 

7-8 am when most of the agents reach their respective first trip destinations). For both strategies, the peak 

load is found to be around 3 GWh. Though no reliable statistics are available regarding how much of the 

current peak demand in Sweden comes from charging EVs alone, it is projected to be in the range of 0.5-1 
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GWh [41]. So, in case of 100% BEV adoption, the peak load component of BEV charging may increase by 

up to 300-600%. That may have a significant impact on the overall energy demand and grid congestion.  

 

Figure 5: Hourly energy drawn from the grid corresponding to ET Charging Strategy 

The overall charging points requirement to cater for all car agents is summarized in Table 2. The demand of 

apartment chargers for PA strategy is almost 3 times that of ET strategy, while the intermediate charging point 

demand for ET is more than 6 times that of PA. Considering our assumption regarding the allotment of fast 

chargers to agents, the corresponding infrastructure requirement is comparatively lower. As of 2023, Sweden 

has approximately 32,000 public EV charging points (including 3000 fast charging points) distributed across 

the country [42]. Now, we have only considered private cars to be electrified in this study (ignoring other 

vehicles that may need more intermediate and fast charging points), so, the existing infrastructure is 

somewhat sufficient to cater the need for intermediate and fast charging points for PA strategy. However, 

there still needs to be a larger infrastructure deployment for apartment chargers (for both PA and ET). In 

addition, ET strategy necessitates more than 5 times the existing intermediate charging infrastructure.   

Table 2: Summary of charging points requirement 

Charging Strategy Apartment Charging 

Points (11 kW) # 

Intermediate Charging 

Points (22 kW) # 

Fast Charging Points (50 

kW) # 

Plan Ahead 434061 22720 1093 

Event Triggered 150553 137394 1032 

 

As both home and apartment chargers are assumed to be located at respective dwelling locations of agents, 

and the demand for fast charging points is lower, we focus more on the infrastructure requirement for 

intermediate charging points. The spatial distribution of intermediate charging points requirement at different 

activity locations (workplace and other place) is shown in Fig. 6. As expected, the charging infrastructure 

demand is much more intense for ET strategy than PA strategy. Across both strategies, charging demand in 

terms of energy is a bit higher at other places as compared to workplaces. This is primarily due to the higher 

frequency of ‘Other’ activities relative to work-related ones in the dataset.  

For major cities (e.g., Stockholm, Gothenburg, Malmo, etc.), a higher concentration of charging demand is 

observed near the city-centers. Many DeSO zones are observed with only 1-2 public charging points 

requirement, regardless of  strategy. However, in most cases, varying charging strategies lead to significant 

differences in the density of charging points requirement. 
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Work Other 

    

 

Figure 6: Spatial distribution of intermediate charging points at work and other places by charging strategy 

5 Conclusions 

This study attempts to investigate the charging infrastructure requirement from the perspective of BEV users 

under a future scenario of full BEV fleet in Sweden. Using a synthetic population of Sweden, we conduct an 

agent-based simulation to examine charging demand over an average weekday, considering various charging 

strategies and dwelling types. The analysis captures individual-level charging behaviors with high spatial and 

temporal resolution, offering insights at a local scale. By incorporating realistic charging behaviors and home 

charger availability (both with and without access), our study provides valuable insights into charging 

infrastructure planning , highlighting the infrastructure BEV users prefer, rather than only what they require. 

We simulate two different charging strategies — Plan-ahead and Event-triggered, and quantify the charging 

demand across two dwelling types — detached houses and apartments. The spatiotemporal distributions of 

desired apartment, intermediate and fast charging points are approximated across different activity locations 

such as residential areas, workplaces, and other public venues, and a comparison of corresponding 

infrastructure requirement across charging strategies is performed. As per the results, the existing charging 

infrastructure in Sweden is found to be insufficient to meet future energy demand. The PA strategy demands 

the installation of more 11kW home and apartment chargers, whereas the ET strategy requires a significant 

expansion of public charging infrastructure, especially in central areas of major cities like Stockholm and 

Gothenburg.  

The study has several limitations associated with the input dataset and underlying assumptions. The most 

significant one is the lack of charging cost consideration from users’ as well as infrastructure’s perspectives. 

One possible future work may involve consideration of time-of-use electricity price and other relevant cost 

components to simulate more realistic charging strategies and explore the price-sensitivity of users. Another 

limitation is that we simulate agents’ activity plans for an average weekday without considering weekends or 

continued activity plans over multiple weekdays. This assumption results in under-representation of long-

distance travel which in turn leads to under-estimation of fast charging demand. We may employ a more 

refined and updated synthetic population dataset containing multiple days of continuous activity plans in the 

future. The approach could be further improved by incorporating the effect of temperature on battery 
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charging-discharging dynamics and investigating the seasonal variations . Our ongoing research focuses on 

the potential impacts of consumer charging preferences and economic incentives on infrastructure 

requirements, with particular attention to equity-related issues across different dwelling units. The future 

direction includes investigation of regional disparities in infrastructure availability and their effects on 

equitable access to charging facilities, as well as the varied economic burdens associated with charging 

infrastructure. 
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