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Executive Summary

Previous studies using operational data for diesel trucks to assess electrification potential may underesti-
mate by not accounting for scheduling and planning according to battery-electric trucks’ characteristics.
By instead using a novel demand-centric optimization-driven electrification planning approach tailored
for electric truck fleets, the electrification potential may be increased; the question is to what extent. This
study quantifies the benefits of using data-driven optimization tools for the design and planning of BET
fleets by analyzing how optimization-driven fleet design, routing and charging planning can improve
electrification potential in a large real-world distribution network compared to a 1-to-1 replacement ap-
proach. The results show that the optimization-driven approach increases electrification rates across all
metrics while also lowering total cost of ownership.

Keywords: Heavy Duty Electric Vehicles & Buses, Intelligent Transportation Systems for EVs, Modeling
and Simulation

1 Introduction

The transition to low-emission road freight is critical for achieving climate neutrality due to the signifi-
cant amount of emissions caused by the transport sector [[1]. Heavy-duty battery electric trucks (BETSs)
offer significant potential for reducing greenhouse gas emissions, and have been identified as a key path-
way towards decarbonization [1, 2]. However, BETs face numerous barriers to widespread adoption
including technical, financial, and operational factors. Prominent challenges include high upfront capital
costs, limited availability of charging infrastructure, and concerns regarding range and payload capac-
ity [2, 3 /4] which neccesitates dedicated charging infrastructure and scheduling, thus adding significant
complexity to fleet management [5, 6, [7]]. Supporting large-scale truck fleet electrification requires an
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understanding of how BETs can be efficiently integrated and operated at the fleet level, and how electri-
fication affects overall fleet design and transport operations relative to conventional diesel-driven fleets.

However, an operational plan designed for ICETs is likely sub-optimal when introducing BETs due to
their different constraints and cost structures. To account for this, the analysis must explicitly consider
the techno-economic characteristics of BETs by using optimization techniques to redesign truck fleets
and replan transport operations, an approach we denote as “replanning”. This approach could potentially
increase the achievable electrification rate by incorporating factors such as range constraints and charg-
ing scheduling directly into routing and fleet design. However, the extent to which such a replanning
approach quantitatively outperforms directly substituting vehicles in a real-world setting has not been
systematically quantified. Understanding the magnitude of these potential benefits is important for fleet
owners weighing the complexities of transitioning toward optimized electric fleet operations.

This study investigates how a replanning approach incorporating fleet design, routing, charging schedul-
ing, and shipment-to-truck allocation can enhance large-scale electrification, specifically within grocery
retail distribution. This replanning approach aims to maximize the system’s overall efficiency by explic-
itly modeling range limitations, charging requirements, and cost structures of both BETs and ICETs and
using them as input to an electric vehicle routing problem (EVRP) optimization algorithm can provide
detailed operational plans for a mixed fleet.

The aim is to compare the fleet-level electrification potential identified by 1:1 replacement and replan-
ning. Thus, this study addresses the following research question: how does an optimization-driven re-
planning approach for heavy-duty fleet electrification compare with a 1:1 replacement approach in terms
of (1) technical feasibility (measured in electrification rate) and (2) cost performance (measured in total
cost-of-ownership (TCO)).

The comparison is made using a real-world case study of a large grocery distribution network in North-
East Germany, which was previously analyzed in a 1:1 truck replacement study [8]]. This study extends
the 2021 study by analyzing the same transport network and demand, applying the same key assump-
tions for transport supply, costs, and parameter settings, and recreating the 1:1 analysis in addition to
conductilng a replanning analysis, thus allowing for a direct comparison between the two electrification
approaches.

2 Background

Much of the early techno-economic analysis of BETs focused on vehicle-level Total Cost of Ownership
(TCO) comparisons [9, 10} 114112} (13} [14]. While useful for establishing basic economic principles, such
vehicle-level analysis may not sufficiently capture the complexities fleet owners face. It often overlooks
fleet-level synergies, operational heterogeneity (e.g., wide variations in daily mileage across vehicles),
and the system-wide impact of integrating vehicles with different operational needs like charging [6].
Later studies conducting fleet-level analyses often rely on simplified metrics, such as calculating costs
per vehicle-kilometer or tonne-kilometer based on average utilization derived from existing ICET fleets
[15,116,17,118] which can obscure the impact of vehicle-specific utilization patterns, potentially misrep-
resenting both the challenges and opportunities of BET integration for individual fleet owners.

An alternative and more data-driven approach to these analyses is to assess technical and economic fea-
sibility with a “one-to-one” (1:1) replacement approach. This involves using historical operational data
of ICET fleets to evaluate whether existing routes and schedules can be performed by an equivalent BET
given range and charging constraints. One such study was conducted using high-resolution real-world
data for a German grocery retail distribution network’s ICET fleet [8, [19]. While this and other similar
approaches [20] benefit from the analytical simplicity of analyzing each truck individually with minimal
disruptions to fleet planning and operations, it does not consider the potential benefits of changing the
operational planning itself. Thus, analyses using the 1:1 truck replacement approach are potentially sig-
nificantly underestimating the technical and economic feasibility of electrification. Consequently, fleet
owners using a 1:1 truck replacement apﬁroach to electrify their fleet might limit or delay electrification
to perceiving the feasibility to be lower than it actually is.

To our knowledge, no study has yet directly compared the 1:1 approach with the optimization-driven
replanning approach, and there is thus a need to quantify the potential benefits of such an approach.
This study thus directly addresses this gap by comparing both approaches using identical network data,
demand profiles, and technological assumptions.

3 Methodology

This study is based on a real-world case study of a grocery distribution network in north-eastern Ger-
many, which was previously analyzed in a 1:1 truck replacement study by Link et al. (2021), from here
on referred to as the 2021-study. To compare the replanning and 1:1 replacement approaches, both are
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applied to the analysis of the same real-world distribution network. Additionally, the original diesel fleet
is also replanned with VRP for comparison. The results are then compared in terms of the achieved elec-
trification rate and cost performance. This study analyzes the same transport network and demand while
applying the same key assumptions for transport supply in terms of costs and performance characteristics
for trucks and charging infrastructure. By applying both methods to the same problem setting, we are
thus able to provide a direct and quantifiable comparison between these two electrification approaches.

3.1 Problem Setting

The problem setting of this case-study is the distribution logistics of a German grocery retailer in north-
eastern Germany during February 2021. The transport network covers two distribution centers (DCs)
serving more than 500 grocery stores with over 200 vehicles. One DC is located in Mariendorf (MAR)
in south-eastern Berlin, and the other one in Oranienburg (ORB), roughly 30 km north of central Berlin.
From Mariendorf, primarily stores in Berlin and its surroundings are provided with four different types
of assortments: dry goods, fruit and vegetables, fresh goods, and fresh meat. Oranienburg serves the
entire region and also delivers frozen goods in addition to the four aforementioned assortments.

3.2 Data

The case-study company provided data to the previous 2021 study, which this study also uses, in addition
to further datasets to provide more detail. The data sets used are given in Table|l} The Tour data includes
data of 8,281 tours performed during February 2021, aggregated shipment volume, shipment weight,
and assortment type composition per tour, but not broken down for each delivery. This dataset also
contains the data on time per tour split by driving time, loading time and a combined value for time for
unloading and setup at stores. The Site data contains locations for each of the stores and DCs and truck
type accessibility i.e. the largest truck type which can physically enter the site. Furthermore, the Truck-
to-tour data mapping specifies the trucks that were operated to serve the tours in the Tour data and the
specific Tour IDs that were operated by each truck. To enable the replanning approach, additional data
was provided by the case study company. First, the raw shipment data which includes data on deliveries
performed during the month of February 2021. This data is specified on a per-store basis with each row
(sipecifying the cargo delivered to a store during one day. The raw shipment data is complemented by a

ataset with delivery time windows data. However, such data was not available for February 2021, thus,
a dataset with time windows for 2023 is provided.

These datasets were processed and cleaned to provide a complete dataset, thus certain tours were filtered
where shipment data was missing, resulting in a set of 8 235 tours (99.4% of the original dataset).
Additionally, in cases of incomplete fields in the data, these were interpolated. These include assortment
types included in certain shipments where these were missing, loading and unloading times of individual
shipments where these were bundled into larger shipments, and time windows for stores where missing.
Shipments of the same assortment type to the same store on the same day (i.e. with the same time
windows) are bundled together for tractability, and values calibrated to ensure that no bias was introduced
in any of the aforementioned interpolating steps. Finally, in order to accurately measure utilization, path
data was obtained using HERE maps API [21].

Table 1: Datasets and their relevant data points used in this study.

Dataset Datapoints Used Timeperiod
Tour data tourID, home DC, date, volume, payload, assortment type composition, | February 2021
total time and driving, loading and unloading and store setup time for all
tours
Truck-to-tour mapping data truckID, truck type and tourIDs operated for all trucks in fleet February 2021
Site data siteID, location and truck type accessibility for all stores and DC February 2021
Raw shipment data homeDC, siteID, date, tourID, volume, assortment type distribution and | February 2021
loading, unloading and setup at store time for all shipments
Delivery time windows data Delivery window for all assortment types per store and weekday January 2023
Refined shipment data homeDC, sitelD, date, tourID, volume, assortment type distribution, load- | February 2021
ing and unloading time and payload and delivery window for all shipments
Path Matrix (HERE Maps API) Routes between each site for each vehicle type, time and distance 2023
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3.3 Vehicle Types

The vehicle types used in this study are adapted from the 2021 study, comprised of 4 vehicle classes, and
updated with an enhanced energy consumption model. For BETs, different battery sizes were assigned
depending on which DC they are based on, resulting in a total of eight different BET types. For the
ICETs, the same specifications are used for both DCs, resulting in a total of 12 different vehicle types
(see Table[2]). The net battery capacity includes an anticipated 50 kWh degradation at end of life, a 95%
of the gross capacity available for cycling, and a further reduction of 6% to take into account a battery
capacity safety buffer representing a range of 20 km. All in all, this leads to a total net battery capacity of
86% of the gross capacity for new batteries, and 65-76% when including aging effects. The latter values
are adopted as the available net battery capacity in the electrification analysis. For BETs, the max gross
vehicle weight includes an additional two tonnes allowance for zero-emission trucks as approved by the
European Commission to compensate for increased weight due to the batteries.

3.4 Model Formulation

The models for energy consumption and TCO are given in the following two sub-chapters with the model
parameters given in Table

3.4.1 Energy Consumption Model

The energy consumption model used in this study (see Equation [1)) gives the energy consumption of a
vehicle traversing a path 7 with a payload p. This model utilizes three parameters: a baseline parameter
for driving the vehicle empty, an incremental parameter for payload-induced consumption, and a param-
eter accounting for auxiliary system load (see Table ). While applicable to both BETs and ICETs, the
parameter values vary between vehicle types.

EC, = Z (ezmptydij —+ e?}uxsij + egayloadpmjdij) , Wwhere 7 € T}, and v € Fleet

(i,5)€E,

ey

3.4.2 TCO Model

The cost model, and its parameters, are adapted from the 2021-study such that they can be used as
inputs to the EVRP mode as well as for the 1:1 replacement analysis. The TCO of each vehicle is given
by Equations [2| through [8] The demand data is given for an entire month and the EVRP computes the
optimal plan for a given day at a time, and we therefore use the associated fixed cost for a day’s operation
and month of operations according to Equations E]and [10] respectively such that the EVRP optimization
can include the fixed costs in addition to the variable cost of operations. For the 1:1 replacement analysis,
the same cost parameters are used but computed using the planning described in the empirical tour data.
The same equations used in the 2021-study are implemented to calculate the capital cost component of
TCO which is then divided into per-day and per-month values with the assumption that the vehicles have
a mean utilization of 6 days a week, 50 weeks a year over their 8 year holding period.

The cost of charging infrastructure is allocated according to the operational requirements of the vehicles.
In both the 1:1 replacement analysis and the EVRP approaches, each BET is allocated the costs of
one S0kW charger for overnight charging. In the 1:1 replacement analysis, those BETs that require a
150kW charger in order to be technically feasible to electrify are allocated the cost of one such charger
accordingly. In the EVRP analysis, the number of 150kW chargers are chosen based on the maximum

Table 2: Vehicle type parameters used in this study, adapted from 2021 study.

Gross Batter Net Batter Maximum | Weight Volume
Truck Type Class DC Capacity (sz’h) Capacity (l)(]Wh) GVW (1) Capicity (t) | Capacity (CTU)
BET-R18-MAR Rigid MAR 200 129 18 6.1 29
BET-R26-MAR Rigid MAR 350 258 26 12.5 36
BET-TT40-MAR | Tractor with trailer | MAR 400 301 40 23.5 55
BET-RT40-MAR | Rigid with trailer MAR 350 258 40 20.0 60
BET-R18-ORB Rigid ORB 300 215 18 5.6 29
BET-R26-ORB Rigid ORB 350 258 26 12.5 36
BET-TT40-ORB | Tractor with trailer | ORB 450 344 40 232 55
BET-RT40-ORB | Rigid with trailer ORB 350 258 40 20.0 60
ICE-R18 Rigid MAR, ORB | n/a n/a 18 6.3 29
ICE-R26 Rigid MAR, ORB | n/a n/a 26 13.3 36
ICE-RT40 Rigid with trailer MAR, ORB | n/a n/a 40 20.8 60
ICE-TT40 Tractor with trailer | MAR, ORB | n/a n/a 40 24.4 55
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Table 3: Model parameters used to calculate energy consumption and TCO.

Description Dimension | Parameter
Vehicle (vrjeet) - \%

Set of all purchased vehicles - Fleet

Set of paths in the network - E

Subset of paths in E that a vehicle v traverses - E;

Path from site i to site j ((i,5) € E’) - (%))
Energy consumption for empty vehicle kWh/km esmPty
Energy consumption of auxiliary systems (e.g. cooling) kW elu®
Additional energy consumption for payload kWh/(km-t) | epavioed
Driving distance of path from site ¢ to site j km dij

Time duration to traverse path from site 4 to site j h Sij
Payload carried by vehicle v on path from site 4 to site j t Duij

Total cost of ownership of vehicle v € TCO,
Total cost of ownership of charging station C'S allocated to vehicle v € TCOc¢s,v
Number of vehicles utilizing charging station C'S - Ncs

If vehicle v utilizes charging station C'S (z € {0,1}) - TCos,v
Charging station at DC (C'S € DC) - CS

Set of all DCs - DcC
Acquisition cost of vehicle € cy?
Annual insurance cost and registration tax € cannual
Electricity wholesale price per kWh €/kWh ckFWh
Maintenance cost per kilometer for vehicle v €/km cnaintenance
Toll road cost per kilometer for vehicle v €/km ctel!
Driver wage €/h cr9e

Year in holding period - t

Holding period - HP
Interest rate - I

Driver break duration on path from site : to site j h 5%

Driver activity duration on site i (i.e. loading, unloading, and charging) | - s;

CAPEX for charging station C'S € CAPEXcs
Annual OPEX for charging station C'S € OPEXcs
Fixed cost used for VRP input €/day CAPEX yrp
Days per year that a vehicle is utilized (300 days per year) day Yt

Table 4: Energy consumption parameters for each vehicle type.

Truck Type Empty vehicle | Payload-dependent | Auxiliary Systems
(kWh/km) (kWh/t-km) (kW)
BET-R18-MAR 0.512 0.0176 15.93
BET-R26-MAR 0.562 0.0176 18.70
BET-TT40-MAR 0.674 0.0176 19.64
BET-RT40-MAR 0.828 0.0176 22.86
BET-R18-ORB 0.660 0.0176 15.93
BET-R26-ORB 0.689 0.0176 18.7
BET-TT40-ORB 0.778 0.0176 19.64
BET-RT40-ORB 0.053 0.0176 22.86
ICE-R18 2.366 0.0853 442
ICE-R26 2.426 0.0853 5.20
ICE-TT40 2.372 0.0853 5.46
ICE-RT40 2.535 0.0853 6.35
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number of 150kW chargers concurrently in use. The charging costs are therefore allocated a posteriori
of the optimization in the EVRP analysis, and not dimensioned in the input.

TCO, =CAPEX, +OPEX, +TCOc¢cs,, v € Fleet )
CAPEX OPEX
TCOcsw= Y C;Jr S reSw, v € Fleet 3)
cSeDC cs
Tresidual Cgcq + rresidual
CAPEX, = ¢ — (11} + 1)t + 2@ I, v € Fleet 4)

ENETgy driver annual maintenance toll\ ..
Cv + ¢y +C + Z(i,j)eE‘v (Cv + )dl

J
OPEX, = Z a1 1) v € Fleet  (5)
yeHP
crersy = N FREC;v € Fleet (6)
(1.§)EE;
cdriver — Z 9 (si5 + s; + s + si7)v € Fleet (7)
(i.§)EE;

Trcegidual CanSg 4 Té@gidual

CAPEXcg = ¢ — I, CSeDC 8
CAPEX
CAPEXYEP = T” v € Fleet 9)
CAPEXcg

CAPEXLE?P = T,CS e DC (10)

Total cost of ownership (TCO) for each vehicle is calculated according to Equation[%l covering all costs
related to purchase, operation, and resale over the assets lifetime, including the vehicles and charging
infrastructure over an 8 year holding period. The fleet-level TCO is calculated in Equation[IT]as the sum
of each vehicle’s TCO, which includes the charging costs allocated to each vehicle. The same model is
used to evaluate both the 1:1 replacement analysis and the EVRP optimization results based on the total
fleet composition and utilization, thus obtaining the total system TCO for each approach and problem
setting.

TCOpieet = ), TCO, (1)

veFleet

The capital and operational expenditures are synthesized into the following inputs to the EVRP model:
fixed cost per day, energy cost per kWh energy consumed, and wage cost per hour of the drivers’ shift
(see Tables[5] andy [6). The main scenarios in this study consider acquisition costs including the “Climate-
friendly commercial vehicles and infrastructure” (KsNI) subsidy program as in the 2021-study. The
acquisition costs used in the 2021 study are adjusted for both BETs and ICETs, with the acquisition
costs covering certain components such as the transmission, inverter, fuel tank, and engine being based
on the direct manufacturing costs instead of including risk premiums, sales overheads, etc., thus leading
to a slightly lower acquisition cost for both BETs and ICETs.

The EVRP optimization is performed on one day at a time, and as such the input value for the fixed cost
is adjusted to reflect the proportion of utilization represented. The input to the EVRP is therefore based
on either a single day’s worth of utilization, an entire month of 28 days, or without considering fixed
costs depending on the fleet dimensioning step. Since each day might have a different optimal fleet size
and composition, a fleet dimensioning algorithm is used to determine the fleet size required for the entire
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planning period based on the days with the highest required fleet sizes, thus ensuring a sufficient number
of vehicles of each vehicles class are selected. The utilization of the vehicle over its entire lifetime is
therefore estimated to be the holding period multiplied by the nominal utilization of days per year that
the vehicle is active (50 weeks per year, 6 days per week). The fixed cost per day is therefore estimated
to be the sum of the capital cost component of the TCO divided by the holding period and depreciation
costs in addition to the yearly costs such as annual taxes for motor vehicles and insurance divided by the
nominal utilization of 300 days per year.

Furthermore, while the 1:1 replacement analysis considers the cost of a charger to be included in the
cost of a vehicle, the EVRP allows for chargers to be utilized more efficiently, and thus the charging
infrastructure costs are not allocated to the fixed cost of adding a vehicle to the optimization, but instead
added after the EVRP has provided the optimal schedules. This serves as the input to the EVRP model
in order to get the optimized operational usage, but the final TCO calculations are performed the same
way for the 1:1 replacement approach. The ICETs, while sharing the same characteristics for both DCs,
have different nominal usage patterns affecting insurance and taxes, and therefore have different costs
depending on which DC they originate from.

Table 5: Cost parameters for BETs as input for EVRP optimization

Vehicle Type Acquisition cost Acquisition cost | Fixed cost | Energy cost | Variable cost | Wage cost
without subsidy (€) | with subsidy (€) (€/day) (€/kWh) (€/km) (€/h)
BET-R18-MAR 169,400 132,720 69.5 0.18 0.06 20
BET-R26-MAR 220,990 153,878 78.1 0.18 0.06 20
BET-TT40-MAR 257,504 181,125 90.5 0.18 0.06 20
BET-RT40-MAR 265,990 199,518 98.1 0.18 0.06 20
BET-R18-ORB 195,500 137,940 76.5 0.18 0.06 20
BET-R26-ORB 220,990 153,878 78.3 0.18 0.06 20
BET-TT40-ORB 270,554 183,735 91.5 0.18 0.06 20
BET-RT40-ORB 265,990 199,518 98.4 0.18 0.06 20
Table 6: Cost parameters for ICETs as input for EVRP optimization.
Fixed Fixed Variable | Variable Diesel Diesel Wage
Vehicle Acquisition Cost Cost Cost Cost Cost Cost Cost
Type Cost (€) MAR ORB MAR ORB (€-cent/ | (€-cent/ (€/hn)
(€/day) | (€/day) | (€/km) (€/km) Liter) kWh)
ICE-R18 123,550 68 71 | 0.16515 | 0.20840 125 11.84 20
ICE-R26 137,100 73 73 | 0.18220 | 0.22334 125 11.84 20
ICE-TT40 162,030 85 85 | 0.19903 | 0.23456 125 11.84 20
ICE-RT40 182,900 93 94 | 0.18407 | 0.24204 125 11.84 20

The TCO of the charging infrastructure is based on the number of charging points and their respective
power output capacities (see Table[7). Similarly to the vehicles, the costs are discounted and distributed
across the nominal utilization of the fleet and the lifetime of the charging infrastructure. For the 1:1
replacement analysis, the assumption is that each BET requires one 50kW charger each for overnight
charging. Additionally, for the 50+150kW charging scenarios, those vehicles that require a 150kW
charger to be technically feasible to electrify are allocated one 150kW charger each. For the replanning
scenarios, the required number of charging outlets are determined a posteriori based on the maximum
number of concurrent charging sessions as computed by the EVRP optimization instead of allocating on
a per-truck basis. This also applies to the 150kW chargers at the loading bays, whose costs are shared by
the entire fleet rather than allocated.

Table 7: Charging Infrastructure cost parameters from the 2021-study (without subsidies)

Power output capacity | CAPEX (€) | OPEX (€) | Holding Period (years) | TCO per charging point per day (€)
50 kW 41,900 1,257 12 11.76
150 kW 79,100 2,373 12 22.19
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3.5 1:1 Replacement Approach

The 1:1 analysis follows the same methodology and uses the same data as the 2021 study, and is thus
based on the historical tour data of diesel trucks and evaluates, for each of the 224 diesel trucks in the
data-set, whether or not all of their tours could be performed by a battery-electric vehicle of the same type
and weight class and whether or not it would obtain a lower TCO. The 1:1 truck replacement approach
can thus consider either or both technical and techno-economic feasibility.

For a truck to be considered technically feasible to electrify, the battery-electric truck replacing it must
be able to perform all of its tours with the same payload and distance given its battery capacity, energy
consumption, and availability to charge at the DC during the time between each tour. The formulation
is given in Equations [12| through Furthermore, as in the 2021-study, two charging configurations
are considered, with either only W chargers at the DC or with additional 150 kW chargers at the
loading bays. Thus the technical feasibility 1:1 replacement analysis is done twice; with 50 kW charging
between shifts and with 50 kW and/or 150 kW charging between shifts.

Vehicle v is technically feasible to electrify < Constraints and are satisfied for vehicle v.

EC, < BC,, VreT, (12)

SoC > SoC™" Y1 €T, (13)

SoCstart = min(BC,, SoC + ct . x P), V7 €T, (14)
SoC = SoCstt — EC,., VreT, (15)

Table 8: 1:1 replacement analysis parameters

Description Unit | Parameter
Vehicle (v € Fleet) - v

Set of all purchased vehicles - Fleet

Set of all tours performed by vehicle v - Ty

Tour (r € T.,) - T

Energy consumption for tour = kWh | EC;
Usable battery capacity of vehicle v kWh | BC,
State-of-Charge at the start of tour 7 kWh | Socstart
State-of-Charge at the end of tour ~ kWh | Socemd
Minimum allowed State-of-Charge for vehicle v kWh | SoCcmin
Charging time between tour 7 and subsequent tour 7’ h ctorr
Charging power kW P

Paths in the network - E

Subset of paths in E included in tour 7 - E7

3.6 Replanning Approach with EVRP Optimization

To solve the routing and charging planning optimization problems, this study uses proprietary electric
vehicle routing problem (EVRP) optimization software developed by Einride AB. The software uses
a meta-heuristic approach to optimize the size and composition of a fleet of either or both BETs and
ICETs, shipment allocation, routing, and charging scheduling seeking to deliver a set of shipments within
a given transport network at minimal cost. The inputs to the optimizer consist of data on the sites,
paths, shipments, vehicle types, vehicle set, and vehicle shifts which are used to formulate and solve the
optimization problem. In order to study the benefit of EVRP for technical feasibility of electrification,
the optimizer is set to prioritize using BETs given range constraints.

Vehicle operations and charging assumptions align with the 2021 study and German driver regulations.
Operations are organized into predefined vehicle shifts (with start/end times and constraints like maxi-
mum driving/break times) which serve as inputs for an optimizer. The optimizer selects the necessary
shifts and plans activities within them. Due to the problem’s scale, standard 11-hour shifts (max Sh
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driving, 45min break after 4.5h driving or 6h work) starting at 00, 03, 11, and 13 are used, beginning
and ending at the home DC. Partial shifts incur a full 8-hour cost. Driver scheduling and truck allocation
are not modeled; driver availability for all shifts is assumed. A few long-distance shipments requiring
extended driving times are handled separately using dedicated trucks with longer shifts (14h total, 10h
driving) under regulatory exemptions.

4 Results

4.1 Electrification Rates and Operational Feasibility

The Replanning approach yielded significantly higher electrification rates than 1:1 replacement across all
metrics (see Table|9). Furthermore, while 1:1 replacement is highly reliant on having faster chargers to
increase electrification rate (from 57% to 85% tonnes), replanning is able to achieve just as high electrifi-
cation rates even without the 150kW chargers, albeit at the cost of TCO (+4.7%) and fleet size (+23.3%).
This is due to 1:1 schedules being highly constrained on charging times, while the more flexible replan-
ning approach can adjust the schedules for slower charging without compromising electrification rates.
For the 1:1 replacement scenario, 63% of stores are served by both BETs and ICETs while only 11% are
served exclusively by BETs. In contrast, replanning allows for 84% of all stores to be exclusively served
by BETs, thus giving a more accurate representation of BETs technical feasibility by not constraining
scheduling to historical scheduling based on ICET operations.

4.2 Total Cost of Ownership and Cost Performance

Replanning, in addition to achieving higher electrification rates, also outperform the baseline diesel fleet
and both 1:1 replacement scenarios in terms of cost performance (see Table [I0] and Figure [T)). While
1:1 replacement at best can reduce TCO by 2.7%, Replanning with 150kW charging can reduce TCO by
11.6% relative to the baseline diesel fleet, outperforming the 1:1 replacement case by over a factor of 4.
Notably, the more limited S0kW charging scenario requires a larger fleet size (see Table [J), the larger
CAPEX thereof only leading to a 7.2% reduction compared to the 50+150kW scenario.

200.0 +

1900 4
Table 10: TCO values for each scenario.
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Figure 1: TCO and electrification rate for each scenario.

Table 9: Electrification rates for each scenario and charging setup.

Scenario 1:1 Replacement Replanning

Charging Setup S50kW 50+150kW S0kW 50+150kW
BETs in Fleet 81/224 36%) | 128/224 (57%) | 150/185 (81%) | 115/150 (77%)
Tonnes Delivered (BETs) 34% 57% 85% 85%
Tonne-Kilometers (BETS) 14% 26% 55% 55%
Kilometers Driven (BETSs) 16% 32% 55% 54%
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4.3 Fleet Size and Operational Patterns

Across all scenarios, the replanning approach achieved a higher share of Battery Electric Trucks (BETSs)
in the fleet compared to the 1:1 replacement approach (see Table [9). While the 1:1 scenarios have a
fixed total fleet of 224 trucks based on the unique vehicle IDs in the tour data, the optimized replanning
approach yielded varying total fleet sizes depending on the scenario, from 138 trucks up to 185 trucks.

Analysis of operating patterns for the ICET baseline and Replanning scenarios reveals distinct differences
in operational patterns (see Table [I). The replanning approach achieves higher utilization rates on
average across key metrics like distance driven, payload delivered and operational up-time. Faster 150kW
charging generally increased the average daily distance and operational time for BETSs in both approaches
under the replanning scenarios.

Table 11: Mean Daily Utilization Metrics by Scenario

Scenario Powertrain | Mean Distance (km) | Mean Payload (t) | Mean Operating Time (h)
1:1 ICET Baseline ICET 245 15.1 10.3

BET 110 14.2 8.2
1:1 50kW

ICET 319 15.6 11.4

BET 137 14.8 8.9
1:1 50+150kW

ICET 392 15.5 12.1
Replanning ICET Baseline | ICET 384 22.8 16.5

. BET 215 18.7 12.4

Replanning S0kW

ICET 777 14.5 17.0

BET 260 23.7 15.2
Replanning 50+150kW

ICET 777 14.5 17.0

5 Discussion

The results of this study highlight the significant impact of optimization-driven replanning on heavy-dut

freight electrification. The replanning approach significantly outperforms 1:1 replacement strategies bot

in terms of technical feasibility and cost performance. This indicates that previous studies that have solely

relied on historical ICET operational data might have substantially underestimated the scope and costs of

electrification. The replanning method is able to identify and optimize for synergies and efficiencies that

require different planning to realize. This demonstrates the necessity of employing advanced, data-driven
lanning tools when transitioning from fossil fuels to electric heavy-duty freight operations, particularly
or large fleets where the potential emissions and cost savings are the greatest.

A key difference influencing results lies in how fleet composition is determined. The 1:1 replacement
identifies electrifiable trucks in a fleet where each of the 224 individual trucks are considered individually,
i.e. the fleet size is fixed. In contrast, the replanning approach optimizes the fleet size and composition
required to meet the transport demand, assuming all trucks are dedicated to and utilized entirely within
the network. This results in a significantly smaller and optimized fleet compared to the fixed 1:1 fleet.
This is most clearly seen with the ICE Replanning fleet, with 138 instead of 224 vehicles. Therefore,
while the direct comparison of absolute fleet sizes between the two approaches may be less informative,
comparing the resulting share of BETsS is still an accurate measure.

Notably, the Replanning SOkW scenario required the largest fleet size due to the lack of faster charging,
thus requiring more vehicles to serve the demand. This is also shown by the utilization metrics, where
adding faster charging improves the utilization of each vehicle and can thus reduce the fleet size. Another
significant result that stands out is how BETs and ICETSs have highly segmented utilization metrics, with
BETs having higher payloads but lower mileage than ICETs, showing that optimizing for their respec-
tive characteristics leads to more specialized and segmented operational patterns within the fleet. This
indicates that fleet-operators need to be cautious regarding the choice of metrics used to evaluate fleet
and/or vehicle performance, as optimizing a truck for to e.g. cost-per-km or cost-per-tonne might lead
to a less optimal system, thus further highlighting the importance of the system-wide fleet optimization
approach used in this study.

The case-study, grocery retail distribution, represents about 25% of the annual transport performance in
Germany and combines what this case-study and Link et al. [8]] have shown to be favorable operational
Batterns and regulatory drivers, making it a high-potential candidate for short- and mid-term electri-

cation. Specifically, routes and schedules are typically fixed and predictable with shorter distances
compared to long-haul and centralized around distribution centers. Additionally, grocery retailers have
been early adopters of BETs as part of a industry-wide trend of increasingly prioritizing sustainability
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to meet consumer expectations and corporate responsibility goals. The results of this study thus show
how a significantly larger share of the network can be electrified with the same assets and hardware and
without needing larger batteries or relying on public charging infrastructure, which can thus significantly
accelerate the transition to battery-electric freight.

6 Conclusions

This study directly compared an optimization-driven replanning approach with a 1:1 replacement ap-
proach for electrifying a large-scale, real-world heavy-duty grocery distribution network. The results
conclusively show that the replanning approach achieves significantly higher electrification rates, nearly
doubling all metrics (fleet share, tonnes delivered, tonne-kilometers, and mileage), and yields substan-
tially lower total cost of ownership (TCO) compared to both the 1:1 replacement scenarios and the
original diesel fleet baseline, outperforming them by 9.2% and 11.6% respectively.

The results thus demonstrate that leveraging optimization for fleet design, routing, and charging schedul-
ing to unlock operational synergies is crucial for maximizing the technical and economic benefits of elec-
trification in heavy-duty freight. Relying on methods that do not fundamentally replan operations may
underestimate and unnecessarily limit the identifiable electrification and cost savings potential. There-
fore, optimization-driven planning represents a key enabler for acceleratintg the large-scale transition to
sustainable freight logistics where such benefits are likely the most impactful.
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