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Executive Summary

Lithium-ion batteries are pivotal components in battery electric vehicles, significantly influencing vehicle
design and performance. This study investigates the interactions between cell properties and battery pack
characteristics through statistical correlation analysis of datasets derived from industry-leading bench-
marking platforms. Findings indicate that energy densities are comparable across cell formats at the pack
level. While NMC and NCA chemistries outperform LFP in energy density at both cell and pack levels,
LFP’s favorable cell-to-pack factors mitigate these differences. Analysis of cell properties reveals that
increases in cell-level volumetric and gravimetric energy density result in proportionally smaller gains
at the pack level due to the growing proportion of required passive components. The study also investi-
gates the emerging sodium-ion battery technology and assesses pack-level energy densities derived from
cell-level properties. The insights of this study provide a fundamental understanding of cell-to-pack re-
lationships, guiding R&D toward improved energy storage solutions for electric vehicles.

Keywords: Electric Vehicles, Trends & Forecasting of e-mobility, Batteries, Energy storage systems,
Vehicle manufacturing

1 Introduction

Given the global energy transition, electrochemical energy storage systems are crucial in future mo-
bility concepts [1]. One of the main drivers for this development is the significant contribution of the
transportation sector to climate change. For instance, the transportation sector currently accounts for ap-
proximately 22 % of total greenhouse gas emissions in Germany [2]. Therefore, reducing environmental
im}?acts in this sector is particularly relevant for achieving climate protection goals [3]. Battery electric
vehicles (BEVs) hereby offer a promising mobility alternative. When powered by electricity from re-
newable sources, they cause lower environmental impact over their lifecycle compared to vehicles with
modern internal combustion engines [4].

Battery cells are of significant importance, accounting for approximately 60-80 % of the total value cre-
ation in battery systems [5]. Cell parameters such as energy density and capacity significantly contribute
to the performance and efficiency of the entire battery system and play a crucial role in developing bat-
tery pack concepts. However, many interdependencies between battery cell selection and resulting pack
characteristics remain insufficiently quantified. Consequently, numerous concepts for battery pack de-
sign exist, with no specific approach prevailing [6,7]. A deep understanding of the interactions between
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battery cell properties and the resulting battery pack characteristics is essential for optimizing the effi-
ciency and practicability of future energy storage systems and advancing the energy transition.

This work aims to empirically analyze the fundamental relationships between battery cell properties and
pack characteristics using a comprehensive database to identify interdependencies. We strive to con-
tribute to the foundation for optimization strategies for future battery pack designs through a detailed
analysis of these interactions. Therefore a systematic literature review was conducted to establish the
current state of the art regarding cell-to-pack relationships and to identify research gaps.

Research on the relationships between battery cells and packs is limited. Hettesheimer et al. [6] evalu-
ated the development potential of different lithium iron phosphate (LFP) cell formats using multi-criteria
analysis, considering volumetric energy density, cooling requirements, safety, and costs. Their findings
indicate that cylindrical and pouch cells exhibit the highest volumetric energy densities at cell and mod-
ule levels, a trend expected to continue through 2025. However, pack-level analysis was not included in
their study. Sch'c')berFet al. [8] provided essential insights into the relationships between cell chemistry
and pack performance. While investigating thermal runaway in lithium-ion batteries (LIBs), they ana-
lyzed gravimetric and volumetric energy densities at cell and pack levels with the resulting pack factors.
Their findings demonstrate that nickel cobalt manganese oxide (NMC) and nickel cobalt aluminum ox-
ide (NCA) cells experience significantly higher energy density losses during pack integration than LFP
cells. While systems with NMC and NCA cells maintain higher gravimetric energy densities than LFP
systems, the volumetric energy density remains comparable across all systems, primarily due to reduced
safety recllulrements for LFP cells in battery packs [8]. These findings highlight the complex interplay be-
tween cell chemistry, safety requirements, and overall pack performance. Lobberding et al. [9] examined
the differences between gravimetric and volumetric energy density at the cell, module, and pack levels
using boxplots and regression analyses to determine cell-to-pack factors. Their study reveals that despite
cylindrical cells showing the highest energy density at the cell level, pack-level energg densities remain
similar across all three variants. This is attributed to factors 1nclud1ng cell volume and system boundary
conditions. They suggest that cell chemistry, rather than format, primarily influences pack-level energy
density variations, though detailed chemistry analysis was not part of their study scope [9].

While existing research provides data on individual cell and pack characteristics, including cell-to-pack
factors for various vehicles and cell types, most analyses are based on limited datasets and focus only on
specific aspects of cell-to-pack relationships. A systematic analysis across cell formats, chemistries, and
their influence on pack-level characteristics remains unexplored. This work addresses this gap by ana-
lyzing cell-to-pack relationships through statistical methods based on a comprehensive empirical c%;ltaset
of contemporary electric vehicles.

2 Methodology

The methodology is structured as shown in Figure 1. Initially, the structure of the empirical database that
forms the analysis’s foundation is described. Subsequently, the analysis of nominal and metric battery
cell properties and their impact on pack characteristics is presented. Finally, an outlook on sodium-
ion battery (SIB) technology’s implications for battery pack characteristics is provided within the scope
of the study. This study employs box-whisker plots and linear regression analysis to visualize data
distributions and reveal correlations between battery cells and packs.

Box-Whisker plot
1. Structure of the database

Linear regression analysis

2. Analysis of nominal cell properties
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3. Analysis of metric cell properties

4. Outlook sodium-ion battery technology
Figure 1: Structure of the methodology.

A comprehensive database of state of the art BEVs is required to perform the study. The database
was designed to be sufficiently large to approximate a normal distribution of the investigated battery
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groperties. Data was collected from prominent electric vehicle benchmarking platforms, including the
enchmark platform A2MACI [10], focusing exclusively on current electric vehicle models to ensure
technical comparability of the analysis results and to avoid inconsistencies. The database comprises 145
vehicle models launched between 2020 and 2024, with 16 distinct variables extracted for analysis. Since
obtaining all variables for every vehicle in the database was not possible, and analyzing relationships
between variables requires the respective cell- and pack-level characteristics, only a subset of the com-
plete dataset can be used for each specific analysis. Nevertheless, the database enagles statistical analysis
based on a substantial dataset and is therefore suitable for achieving the research objectives of this work.

To conduct the statistical analysis based on the compiled dataset, relevant cell properties are systemat-
ically compared and combined with pack characteristics. Figure 2 illustrates these properties and char-
acteristics and categorizes them into nominal and metric variables. The nominal variables comprise
cell format and cell chemistry. In contrast, the metric variables include the cell energy densities and
properties such as the battery cell’s mass, volume, and energy content.

Battery cell properties Battery pack characteristics

Nominal Cell format

variables

Cell chemistry

Cell mass Gravimetric energy density

Cell volume Volumetric energy density

Cell energy Gravimetric cell-to-pack ratio

Gravimetric energy density Volumetric cell-to-pack ratio
Metric

variables

Volumetric energy density Mass fraction of electrical components
Mass fraction of mechanical components
Mass fraction temperature management system

Mass fraction degassing system

Mass fraction sum of passive components

Figure 2: Classification of the analyzed battery cell properties and battery pack characteristics.

Figure 2 also shows the battery pack characteristics as metric variables. These include energy densities,
cell-to-pack factors, and metrics addressing passive components. This is crucial as the passive com-
ponents’ mass fractions directly influence energy densities and pack factors, making them essential for
interpreting differences in these metrics. While an analysis of passive components’ volume fractions
would be valuable for identifying volumetric effects, this was not feasible due to missing volume data in
the current database. All analyses conducted within this study are derived from cell properties and pack
characteristics combinations for nominal and metric variables. Since this work focuses on the influence
of battery cell properties on pack characteristics, cell properties are consistently handled as independent
variables. In contrast, pack properties are shown as dependent variables.

The effects of nominal cell properties on battery pack characteristics are analyzed using box-whisker
lots. These plots provide statistical representations of the pack energy densities, pack factors, and mass
ractions for different cell formats and chemistries. The resulting box-whisker plots reveal the compar-

ative strengths and weaknesses of various cell formats and chemistries. The evaluation is conducted
visually and through statistical measures in the box plots. The interpretation focuses on relative com-
parisons between cell formats and chemistries, explicitly examining the datasets’ medians, quartiles,
whiskers, and ranges. Outliers are excluded from interpretation due to their limited representativeness
for the overall dataset.

The influence of metric cell properties on battery Fack characteristics is investigated using linear re-
gression analyses. This analysis focuses on identifying the direction and strenFth of relationships to
determine correlations relevant to the study’s research objectives. Key statistical measures include the
Pearson correlation coefficient r and sample size n. According to Vo6lkl and Korb [11], 7 quantifies the
strength and direction of linear relationships between variables. The coefficient is normalized for sample
size and units of measurement, resulting in values bounded between —1 and 1. Values near 41 indicate
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strong correlations, while values approaching 0 suggest weak or no linear correlation. Correlations are
classified as strong (|r| > 0.7), moderate (0.5 < |r| < 0.7), or weak (|r| < 0.5) [12]. A positive coef-
ficient indicates variables increasing together, while a negative coefficient implies an inverse relationship.

The evaluation of correlations is based on both the correlation coefficient classification and statistical
completeness. Visual assessment of diagrams and data points is essential, as r alone may be misleading
for non-linear relationships. While correlations are evaluated against threshold values for r and n, the as-
sessment is not bound to rigid criteria. Despite small sample sizes, this approach prevents the categorical
exclusion of relationships with good correlation properties. Such flexibility in evaluation is significant,
given the uneven distribution of cell properties in the database. Each result is individually assessed for
significance, considering both n and . Combining box plots and linear regression analyses yields 108
analysis plots, necessitating a structured evaluation approach.

The validation is based on data from [8,9, 13]. This data includes gravimetric and volumetric energy den-
sities at the pack level in relation to their respective cells, as well as corres ondin% cell-to-pack factors.
This information is used to validate the value ranges and trends identified in both nominal and metric
analyses. Care is taken to ensure that validation vehicles are not already included in the database to avoid
circular references and subsequent false validation of results.

Estimation of SIB pack characteristics is based on the analysis results and literature values, starting with
cell-level properties of SIBs derived from an extensive literature review. Both current and long-term
expectations for gravimetric and volumetric energy density are derived alongside long-term expected
values for the considered LIBs. Pack characteristics for SIBs are then calculated using appropriate pack
factors. Building on this, a prediction of energy density ranges for current and long-term expected SIB
packs is conducted, including a comparison to the considered LIB packs.

3 Results

The following section presents the statistical analysis results based on the empirical database. The results
are organize§ into three sections. The first section examines the effects of nominal cell properties on
battery pack characteristics. Subsequently, the metric relationships between battery cells and packs are
analyzed. The final section derives insights for SIB packs from these findings. Given the extensive
number of analyses, only the most relevant findings from each section are discussed and interpreted. All
results not presented in this paper are available upon request.

3.1 Results of the Nominal Analysis

The analysis of nominal variables focuses explicitly on the gravimetric and volumetric battery pack en-
ergy densities and corresponding cell-to-pack factors, as these metrics provide the highest information
content and are supported by the most extensive available dataset. Figure 3 illustrates the nominal anal-
ysis examining the cell format’s influence on volumetric battery pack energy density and cell-to-pack
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Figure 3: Nominal analysis of the cell formats according to volumetric energy density and cell-to-pack factor. The
cell chemistry of the cells with the highest values is indicated.

Regarding volumetric energy density, battery packs with cylindrical cells range from 150-280 Wh/L,
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pouch cells from 110-305 Wh/L, and prismatic cells from 140-290 Wh /L. The corresponding median
values are located near the center of these ranges. While pouch cells can achieve the highest volumetric
energy densities at the pack level, they exhibit lower average values than cylindrical and prismatic cells.

A detailed examination of the analyzed vehicles within the database reveals that cylindrical and pouch
cells consistently employ a module-to-pack (MtP) architecture. This architectural choice necessitates
additional components, such as module housings and module contacts, leading to unutilized volume
at the pack level. The modules’ thermal management and volumetric efficiency vary significantly be-
tween cell formats. Due to geometric constraints, cylindrical cells inherently result in the highest dead
volume within modules. Meanwhile, pouch cells achieve better volumetric utilization within modules
than cylindrical cells. However, unlike hard-case cells with integrated structural stability, they often re-
quire increased module wall thickness as well as additional components within the modules to meet the
additional mechanical requirements. In contrast, prismatic cells with a LFP chemistry in the database
predominantly utilize cell-to-pack (CtP) designs, where cells are directly integrated into the battery pack
rather than MtP architectures. This approach vastly reduces the overall number and size of passive com-
ponents while maximizing packing efficiency. Consequently, prismatic cells show the best performance
regarding the volumetric pack factor, while pouch and cylindrical cells yield lower packaging efficien-
cies. Prismatic cells’ superior volumetric cell-to-pack factor can also be traced to their ability to be better
stacked within the given battery pack space. This relationship does not result in better volumetric energy
density at the pack level because prismatic cells generally have lower volumetric energy densities at the
cell level due to the significant structural void spaces inherent to this cell type.

Figure 4 illustrates the nominal analysis examining the influence of cell chemistry on gravimetric energy
density and cell-to-pack factor. For the gravimetric energy density, battery packs with LFP cells range
from 125-145 Wh/kg, NCA cells from 150-174 Wh/kg, and NMC cells from 140-180 Wh/kg. While
the median values for LFP and NMC cells are located near the center of their ranges, the median for
NCA cells lies directly below the upper whisker and, thus, above the medians of LFP and NMC cells.
Consequently, NCA cells achieve the highest gravimetric energy density at the pack level, followed by
NMC and LFP cells. Compared to the volumetric enerigy densities in Figure 3, the variations between
cell chemistries are less pronounced, with only NMC cells exhibiting larger spreads.
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Figure 4: Nominal analysis of the cell chemistries according to gravimetric energy density and cell-to-pack factor.
The cell format of the cells with the highest values is indicated.

Among the chemistries examined, NMC shows the highest variation in the gravimetric cell-to-pack fac-
tor, while LFP cells demonstrate significantly higher cell-to-pack factors compared to both NCA and
NMC. Unlike NMC and NCA cells predominantly used in MtP concepts, many vehicles with LFP cells
utilize CtP concepts, significantly reducing the mass proportion of passive components and increasing
the gravimetric cell-to-pack factor. LFP vehicles are almost exclusively purpose-built BEVs, enabling
optimal storage architectures dominated by flat storage designs. In contrast, NMC and NCA cell vehicles
include purpose-built and conversion BEVs, often resulting in complex storage geometries that necessi-
tate additional passive components, leading to increased weight and reduced cell-to-pack factors.

At the pack level, NMC and NCA cells achieve higher gravimetric energy densities due to their superior
energy density at the cell level. However, these differences are substantially reduced compared to cell-
level ratios, as LFP cells show distinct advantages in pack integration. They achieve notably better
pack factors since the mass proportions of electrical and mechanical components in the battery pack are
significantly lower than in packs with NMC or NCA cells. The spreads in the gravimetric cell-to-pack
factor are more pronounced, which can be attributed to the various cell integration approaches in the pack.
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Additionally, the pack integration efficiency is significantly better in the gravimetric case compared to
the volumetric case shown in Figure 3.

3.2 Results of the Metric Analysis

Figure 5 depicts the impact of changes in cell-level volumetric energy density on pack-level volumetric
energy density and cell-to-pack factor according to the cell formats. Analysis reveals that increasing cell-
level energy density leads to higher volumetric energy density at the pack level across all cell formats,
with battery packs using cylindrical cells showing the most pronounced response to cell-level energy
density changes.

Pouch cells demonstrate the most substantial interdependencies with a moderate correlation factor of
0.67, while cylindrical and prismatic cells show only weak correlations. The volumetric cell-to-pack
factor decreases for prismatic cells with a moderate correlation coefficient of —0.56. In contrast, no clear
correlation can be established for cylindrical and pouch cells due to significant data scatter and weak
correlations. Prismatic cells exhibit the lowest volumetric energy densities at the cell level, while pouch
cells achieve the highest volumetric energy density at both cell and pack levels. Notably, prismatic cells
demonstrate superior volumetric cell-to-pack factors compared to pouch and cylindrical cells, primarily
due to their rectangular hard-case housing that minimizes unused space. When analyzing vehicles by
energy density, prismatic cells with lower energy density are predominantly used in CtP concepts, while
higher energy density cells tend toward MtP architectures. In contrast, cylindrical and pouch cells are
particularly used in modular designs and typically employ higher energy density cathode materials like
NMC and NCA. The observed decline in pack factors for prismatic cells can be attributed to increased
proportions of passive components, particularly the additional mechanical structures required to ensure
safety in the usage of high energy density cells.
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Figure 5: Metric analysis of the impact of cell volumetric energy density on pack volumetric energy density and
cell-to-pack factor considering cell formats.

Figure 6 illustrates the impact of changes in cell-level gravimetric energy density on pack-level gravimet-
ric energy density and the gravimetric cell-to-pack factor for the investigated cell chemistries. Notable
differences in cell-level energy densities are evident among the three cell chemistries compared. NMC
cells show the broadest spectrum of cell energy density, including the highest cell and pack gravimetric
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energy densities. In contrast, LFP cells exhibit the lowest energy density values on the cell and pack
levels. NCA cells rank in the upper mid-range for gravimetric energy density at the cell level and in the
upper range at the pack level.

Due to the scattering of values, the correlation coefficients for all cell chemistries are below 0.5, indi-
cating weak correlations. The correlations are more pronounced for cell-to-pack factors, with LFP and
NMC showing correlation coefficients just above —0.50, while NCA exhibits a moderate correlation co-
efficient of —0.66. Linear regression analysis reveals that an increase in cell-level gravimetric energy
density leads to higher pack-level energy density, with one notable exception considering NCA cells,
which negatively correlate with pack-level gravimetric energy density. This anomaly may be attributed
to the limited statistical significance due to the small sample size of NCA cells. Despite the general
increase in pack-level energy density, cell-to-pack factors decrease with increasing energy density across
all cell chemistries. LFP demonstrates the best cell-to-pack factors among all cell chemistries, primarily
due to the prevalent use of CtP approaches, as discussed in the previous section. In contrast, NCA and
NMC show similar, lower cell-to-pack factors, which can be attributed to their predominant use in MtP
architectures with higher energy-density cells. The decline in cell-to-pack factors for all cell chemistries
can be attributed to the growing proportion of passive components required as cell-level energy density

increases.
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Figure 6: Metric analysis of the impact of cell gravimetric energy density on pack gravimetric energy density and
cell-to-pack factor considering cell chemistries.

3.3 Outlook Sodium-Ion Battery Technology

Based on the interdependencies between the battery cells and packs of LIBs presented thus far, the
following section aims to provide an outlook on current and future developments of the gravimetric and
volumetric energy density of LIBs and SIBs at the battery pack level. This requires determining a cell-to-
pack factor for SIBs, which can be used to estimate pack-level characteristics from cell-level properties.
Table 1 presents the current gravimetric and volumetric energy densities of LFP, NMC, and NCA cells
and their corresponding cell-to-pack factors. Additionally, gravimetric and volumetric energy densities
for SIBs were derived from a comprehensive literature review. Long-term projections for cell-level en-
ergy densities are also presented to assess future implications for all cell chemistries.
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Table 1: Current and long-term expected cell energy densities and cell-to-pack factors for LIBs and SIB.

Unit LFP NMC NCA SIB
Grav. cell Wh/k Current: 165-190 195-300 250-265 140-160 [14,16-21]
energy density & Expected:  200-250 [14]  300-400 [14] 300400 [14]  180-220[14,17-19,21-24]
Vol. cell Wh/ Current: 340-450 440-750 600-720 290-350 [14,18,25]
energy density Expected:  500-550 [14]  750-1000 [14]  750-1000 [15] 380-500 [14,18,24]
Grav. cell-to-
pack factor - 0.77 0.63 0.67 0.77*
Vol. cell-to-
pack factor - 0.52 0.40 0.34 0.52*

* theoretically estimated based on Mei et al. [26], Kim [27] and Rudola et al. [28]

The comparison of LIBs and SIBs regarding pack properties can be based on either cell formats or cell
chemistries. Since SIBs utilize the same cell formats as LIBs and primarily differ in chemical compo-
sition, the comparison in this study focuses solely on cell chemistries. The gravimetric and volumetric
cell-to-pack factors for SIBs can only be estimated theoretically based on the literature. These estima-
tions are based on Mei et al. [26], Kim [27] and Rudola et al. [28], demonstrating that SIBs exhibit
thermal stability characteristics similar to LFP cells, suggesting that SIBs can employ a battery pack
design with a cell-to-pack ratio comparable to an LFP system — consequently, the same cell-to-pack
factors as LFP were applied for SIBs.

Figure 7 compares current pack-level energy densities between LIBs and SIBs, along with future pro-
jections. The results indicate that energy densities of battery packs with SIBs are situated at the lower
boundary of LIB pack energy densities, given the assumption of similar pack factors. Considering ex-
pected cell-level developments, the analysis reveals that SIB packs can achieve energy density levels

comparable to current lower and mid-range LIB packs, reaching up to 150 Wh/kg and 200 Wh/L.
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Figure 7: Comparison of the current energy densities at pack level of LIBs and SIBs and long-term expectations.

4 Conclusions and Outlook

This study investigates the interactions between cell properties and battery pack characteristics through
statistical analysis of empirical datasets derived from industry-leading benchmarking platforms. This
comprehensive analysis contributes to the ongoing discourse on battery design optimization and offers a
robust methodology for evaluating cell-to-pack relationships. By addressing critical trade-offs in energy
density, pack factors, and passive component integration, the study provides a valuable resource for
researchers in energy storage systems.
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* Analysis of nominal cell characteristics reveals that volumetric energy densities at the pack level
exhibit comparable values across all cell formats. The results demonstrate that this comparable
behavior of cell formats is attributed to pack factors being higher for prismatic cells than cylindrical
and pouch cells. Regarding cell chemistries, NMC and NCA cells show higher gravimetric energy
densities than LFP cells at both cell and pack levels. However, these differences at the pack level
are reduced due to the advantageous pack factors of LFP cells.

* Analysis of metric cell characteristics demonstrates that increases in volumetric and gravimetric
cell-level energy density lead to proportionally smaller increases in corresponding pack-level en-
ergy density. This effect is particularly pronounced in prismatic cells, where the volumetric cell-
to-pack factor significantly decreases with increasing volumetric cell energy density. A similar
trend is observed in the progression of the gravimetric cell-to-pack factor for NMC and LFP cells.
These correlations can be attributed to the growing proportion of passive components required
as cell-level energy density increases. Furthermore, cells with lower energy density are predom-
inantly implemented in CtP architectures, with the database showing this approach is primarily
represented by vehicles using prismatic LFP cells. This architectural choice results in superior
cell-to-pack factors for this specific cell format and chemistry combination in gravimetric and
volumetric terms.

* The outlook for SIBs shows that, due to the lack of pack factors for SIBs, these can only be esti-
mated based on pack factors of LFP cells. This approach is justified by the similar thermal char-
acteristics exhibited by sodium-ion and LFP cells. Results indicate that SIBs position themselves
at the lower boundary of LIB energy densities at both cell and pack levels. As both technologies
are expected to advance, similar relative performance levels are projected for the long term.

Expanding the database with additional data points is recommended for future research to increase data
coverage, alongside enhanced analytical methods for identifying non-linear relationships. Developing
a specialized neural network is proposed as one approach for analyzing these non-linear correlations.
Additionally, as commercial SIBs become available on the market, the analysis should be extended to
include SIB data to verify or adjust their positioning within the current findings. All results of this paper
are available upon request.
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