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Executive Summary

Today’s world is marked by a significant increase in the amount of data generated, and Electric Vehi-
cles batteries are no exception. Although the importance of analysing and storing battery data is clear,
methods to characterize dynamic profiles, distinctive of real-driving, are not standardized. This study
evaluates different ways of characterizing Electric Vehicle battery data, balancing data volume and bat-
tery health assessment accuracy. Different features are extracted and used to build degradation models.
Voltage and State of Charge show the most relevance for degradation prediction and boxplot-based char-
acterization yields the best model performance. Data aggregation, meaning storing only relevant features
per driving cycle, is proposed as the best method to reduce data quantity and generate accurate results, es-
pecially when employing histogram-based models. The results of this study can be used to guide feature
selection for degradation models, reduce the dimensionality of laboratory datasets and as information for
the Battery Passport.

Keywords: Electric Vehicles, AI - Artificial intelligence for EVs, Batteries, Battery Management System,
Sustainable Energy

1 Introduction
The Electric Vehicle (EV) is positioned to drive the global transition to sustainable transportation in the
next years. Beyond reducing emissions, the broader shift towards circularity in the EV industry is gain-
ing importance, with increasing focus on reselling EVs and repurposing their batteries for second-life
applications [1]. An enabler of this circular approach is the Battery Passport, a digital record that tracks
key information about a battery throughout its lifecycle, from manufacturing to End of Life (EoL). This
comprehensive system includes detailed information on battery composition, carbon footprint, and per-
formance history, ensuring compliance, transparency and traceability [2].

One important category of information in the Battery Passport is the battery’s usage history, as it is key
for determining which EoL treatment the battery should follow. The analysis of battery usage is essential
for two key aspects. Firstly, variations in driving patterns, charging habits, and environmental conditions
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lead to diverse degradation rates in the battery. These factors significantly impact the battery’s State of
Health (SoH) and its Remaining Useful Life (RUL). Both indicators are critical in deciding whether the
EoL battery can be resold, repurposed, or directed to recycling [3]. However, recently there has been an
increased focus on the State of Function (SoF), which represents how functional a battery is at a given
state for a particular driver and allows to tailor EoL estimation for each case [4]. Historical usage data
also encapsulates key information about driving patterns that define the requirements to be considered
for the SoF.

Given the vast amount of data generated throughout a battery’s life, there is a need to reduce data volume
by extracting key features to capture essential information. The Battery Regulation Annex XIII provides
a broad framework to characterize battery operation, requiring information on the number of charging
and discharging cycles, negative events (e.g., accidents), and environmental operating conditions, like
temperature and State of Charge (SoC). However, the exact technical features and metrics that should be
included in the Battery Passport are not fully standardized and may leave room for interpretation.

In this sense, degradation models play a crucial role in establishing the relationship between operational
stress factors during usage and the rate of degradation. Many existing models rely on static laboratory
testing, where cycling conditions are controlled and simplified. In these scenarios, degradation is typ-
ically characterized using parameters such as the C-rate, temperature, Depth of Discharge (DoD), and
average SoC [5, 6]. While this approach yields valuable insights, it falls short of capturing the dynamic
nature of real-world EV driving conditions. In real-world applications, the C-rate, temperature, SoC and
voltage are subject to constant fluctuations, rendering static models inadequate for accurately predicting
battery health and lifespan. Considering just the average values from the battery operation curves may
miss on important information.

The goal of this study is to address this limitation by analyzing dynamic EV battery operation data and
evaluating different methods to characterize it. The goal is to identify the features that most accurately
represent real-world conditions and drive the degradation of the battery as represented by the SoH. Be-
sides the usage of the proposed methods for the Battery Passport and degradation models, by reducing
the high-frequency time-series data to lower-dimensional key features, the study aims to streamline the
representation of historical usage, making it suitable for storing extensive laboratory data efficiently.

2 Methodology
The methodology of this study is based on long-term ageing tests conducted on six battery cells over
a period of two years, as described in Section 2.1. Various approaches to characterize the time-series
recorded during driving are evaluated in Section 2.2 to identify the features that best represent battery
ageing. Using these features, a baseline degradation model is developed as explained in Section 2.3.
Subsequently, in Section 2.4 different data reduction techniques are explored to assess the trade-off
between predictive accuracy and data storage requirements. A visual summary of the methodology is
provided in Figure 1.
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Figure 1: Graphical representation of the methodology of the study.
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2.1 Data description
The data employed for this study contains the laboratory cycling of 6 cells labeled as ALB1-ALB6. The
cell model is the one employed to build the battery packs for the EV in the H2020 Albatross project [7].
A summary of the cell characteristics is presented in Table 1.

Table 1: Characteristics of the cell tested in the laboratory

Manufacturer LG Chem
Model INR21700-M50T

Positive Electrode LiNiMnCoO2
Negative electrode graphite and silicon

Diameter 21.44 mm
Length 70.80 mm
Weight 69.25 g

Nominal Capacity (Qnom) 4.85 Ah
Nominal Voltage 3.63 V

Charge cutoff Voltage 4.2 V
Discharge cutoff Voltage 2.5 V

Cutoff current 50 mA

The testing protocol consists of repeated cycling for battery ageing and Reference Performance Test
(RPT) for characterization. Figure 2 shows an example of a cycling test between two RPTs, with zoom-
in views on each of the periods.
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Figure 2: Representation of voltage and current during part of the testing.
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Regarding the cycling tests, each of the cells tested aims to represent a driver who uses the EV to per-
form relatively homogeneous trips and charges after each use. Each driving cycle varies in duration, peak
currents, resting times, etc. This aims to introduce variability common to real-world driving conditions,
which is typically overlooked in standard cycling protocols consisting of constant test conditions (C-rate,
DoD etc.). The synthetic cycles are obtained from a synthetic driving cycle model [8]. Figure 2c shows
an example of a few synthetic driving cycles followed by a constant current charge at 0.5C.

The first cycling tests were performed at ambient temperature and later at 35ºC with the use of the cli-
mate chamber. For the purpose of this study it should be highlighted that the same charging rate was
employed for the entire testing and that the ageing aims to represent cycling ageing conditions, with only
short calendar ageing periods between some of the cycling tests and RPTs, which where not character-
ized.

After cycling and throughout the testing period, RPTs were performed to measure cell capacity and In-
ternal Resistance (IR) at different SoC values. The capacity test consists of two sets of a full constant
current - constant voltage charge at C/3 and a full discharge at 1C. An example of a RPT is shown in
Figure 2b. The SoH is obtained considering the average between both discharges.

Figure 3 shows the evolution of the SoH over Full Equivalent Cycles (FEC) and time for each of the
tested cells. Variability in the degradation rate is observed across the cells, reflecting differences in
their cycling histories. Considering the last capacity measurement, the fastest degradation over FEC is
observed for ALB2 followed by ALB5, ALB6, ALB1, ALB3 and ALB4.

2.2 Characterization methods
The characterization of battery operation during its first life relies on key variables such as voltage, cur-
rent, temperature, and SoC. In this study, the analysis is conducted under laboratory conditions with
constant temperature, thereby narrowing the scope to voltage, current and SoC profiles at the cell level.
The focus is specifically placed on features related to driving periods that influence degradation. Charg-
ing phases, resting periods, and driving requirement characterization, essential for defining the SoF, are
considered out of scope and will be addressed in future work.

The selected features are described below and visualized in Figure 4. Later a subindex ’V’, ’Ich’, ’Idis’
or ’S’ next to the feature will be used to refer to the voltage, charge current during regeneration, discharge
current during driving or SoC profile, respectively.

• Basic statistical features: these features capture key aspects of the distribution and central ten-
dency of the data. The mean (µ) provides the average value, the minimum (Min) and maximum
(Max) represent the extreme values, the standard deviation (σ) measures the spread or variabil-
ity, while skewness (γ1) indicates the asymmetry of the data distribution, and the kurtosis (K)
describes the sharpness of the peak of the distribution.
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Figure 3: Evolution of the SoH for each of the cells.

EVS38 International Electric Vehicle Symposium and Exhibition 4



LW Q1

Min

Q3

Max

HWQ2

Outliers
Interquartile Range (IQR)

Skewness (γ1 )

Ku
rt

os
is

 (
Κ

)

μ 

μ +σ μ -σ 
Range i

Hi

Figure 4: Graphical representation of characterization features.

• Boxplot-based features: a boxplot summarizes data by highlighting its spread and central ten-
dency through quartiles. The first quartile (Q1) represents the 25th percentile, indicating that 25%
of the data falls below this value. The median (Q2), or 50th percentile, divides the data in half,
while the third quartile (Q3) marks the 75th percentile, meaning 75% of the data falls below this
value. The whiskers extend from the quartiles to show the range of the data. The lower whisker
(LW ) represents the smallest value within 1.5 times the interquartile range (IQR) below Q1, and
the upper whisker (UW ) represents the largest value within 1.5 times the IQR above Q3. Values
outside of these whiskers are considered outliers.

• Histogram-based features: a histogram provides a visual representation of the data distribution
by dividing the entire range of values into a set of bins. In this study, the ranges between the
LW and the UW of the entire dataset (3 to 4.2 V for voltage, −14 to 0 for discharge current, 0 to
6.2 A for charge current, and 0-1 for SoC) are divided into five equally sized bins, following the
square-root rule. The histogram-based features (H1-H5) represent the percentage of time that the
battery spends in each interval.

2.3 Base degradation model
The objective of the base degradation model is to estimate the capacity fade (∆SoH) between two RPTs
based on operational data collected during the cycling period, as reflected by Figure 5. The degradation
model incorporates a set of basic features that are known to significantly influence degradation. These
include:

• ∆FEC: to capture differences in cycling lengths (in FEC).

• ∆Time: to reflect differences in calendar periods (in days).

• FEC0 and Time0: initial values of FEC and time in days (to consider non-linearity of capacity
fade over these variables)

• Tcyc: the average temperature during the cycling period in ºC.

The rest of the input features for the model represent the cycling conditions and depend on the character-
ization method employed (statistical, boxplot or histogram-based). Three models are built considering
entire feature blocks for each characterization method. However due to the large number of features, a
feature selection procedure is also applied.

Pearson and Spearman correlation coefficients are used as ranking criteria during feature selection to
ensure that the most relevant features with respect to the target variable are retained for modeling. The
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Figure 5: Graphical representation of the degradation model input/output.

Pearson correlation measures the strength of a linear relationship between each feature and the target,
making it suitable for detecting proportional associations. In contrast, the Spearman correlation assesses
the strength of a monotonic relationship, regardless of whether it is linear or not, by ranking the values
and measuring correlation between the ranks.

The feature selection procedure first ranks the features by their absolute correlation (Pearson or Spear-
man) with the target variable (∆SoH), then selects the top ten features. To reduce redundancy, pair-
wise correlations among the selected features are computed, and features with an inter-correlation above
0.75 are filtered out by discarding the ones with the lower correlation to the target. The resulting non-
redundant feature subsets are used to train the models. Thus, 6 more models are built considering the
two correlation coefficients and the 3 characterization methods.

Once the input features are defined, Gradient Boost Regression (GBR) is selected to build the base degra-
dation model for this study due to its robustness and flexibility, particularly when working with small
datasets. GBR is an ensemble learning method that builds a series of decision trees in a sequential man-
ner, where each tree attempts to correct the errors of its predecessor. This iterative correction process
makes GBR particularly well-suited for capturing complex relationships in the data, even when the avail-
able sample size is limited. Other regression models, such as linear regression, support vector machines,
and random forests, were also tested, but generally underperformed GBR.

For each feature set, different combinations of hyperparameters are selected to find the most accurate
one. In particular the number of estimators (N ) tested are [10, 15, 20, 25], the maximum depth [3, 4, 5]
and learning rates [0.1, 0.2, 0.25]. Among all models built, the one with the lowest Root Mean Square
Error (RMSE) is selected as the tuned base model and is used as a reference for further comparison.

2.4 Data reduction methods
To minimize the amount of historical data that needs to be stored while maintaining acceptable model
performance, different data reduction strategies were applied. The objective is to explore the tradeoff
between data compression and the accuracy of the SoH predictions.

One approach is granularity reduction, which consists of decreasing the resolution of the original time
series data. The baseline time series, recorded at 1-second intervals, was resampled to intervals of 3, 5,
and 10 seconds. This reduction in data granularity significantly decreases the volume of stored informa-
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tion. However, it may also lead to the loss of relevant high-frequency features, such as current or voltage
spikes, which can be informative for degradation analysis.

A second strategy involves reducing data volume by characterizing each individual driving cycle using
the same feature extraction methods applied to full time series. Instead of retaining raw data, only the
resulting features per cycle are stored. To represent the entire period between two RPTs, these per-cycle
features are aggregated. A weighted mean is applied to features where it makes sense to account for dif-
ferences in driving cycle durations—giving more importance to longer cycles (e.g. µ or histogram-based
features). However, not all features are suitable for weighted averaging: for some, such as minimum
or maximum values, the global min/max is used, and for others, such as the boxplot quartiles, a simple
arithmetic mean is applied.

To compare the different data reduction strategies two approaches can be considered:

• The first approach compares the accuracy of models retrained from scratch using the reduced
datasets (3, 5, 10s granularity and aggregation). The goal of this approach is to evaluate whether 1s
data is truly necessary during the model training stage in the laboratory, or if reduced datasets can
be sufficient. For this, the same methodology used to train the baseline model is also applied to the
new models. This includes the selection of features based on correlations, hyperparameter tuning,
and other key steps in the model training pipeline. By applying this consistent methodology, the
performance of models trained with reduced datasets can be fairly compared to the baseline model,
ensuring that any observed differences in accuracy are due to the granularity changes rather than
inconsistencies in the training process.

• The second approach is to assume that the existing degradation model has been built with the most
descriptive data (1s granularity) but that the available data, where the predictions need to be made,
has been reduced following the different strategys (3, 5, 10s granularity and aggregation). The goal
of this comparison is to assesses how well a model trained on highly descriptive data generalizes
and maintains accuracy when presented with less detailed data.

In both cases, the results are assesed from the perspective of the error increase (Eq. 1) and from the data
compression ratio (Eq. 2).

Error Difference (%) =
RMSEreduced − RMSEbaseline

RMSEbaseline
· 100 (1)

Compression Ratio =
Data sizereduced

Data sizebaseline
(2)

3 Results
First, the results of the correlation analysis between the features and the target variable ∆SoH are shown.
The features are grouped by variable (Voltage, charge current during regeneration Ich, discharge current
Idis, and SoC) and the three characterization methods. A summary of the Pearson and Spearman corre-
lation results are provided in Table 2 and 3, respectively.

Averaging across all signals, boxplot-based features tended to yield the highest mean correlation values,
indicating that they effectively capture the underlying degradation signals. Histogram-based features

Table 2: Mean and Maximum Pearson correlation coefficients by variable and characterization method

Method Metric Voltage SoC Ich Idis

All features
Mean 0.112 0.096 0.045 0.034
Max 0.223 (H4V ) 0.189 (KS) 0.095(Q1Ich) 0.051 (Q3Idis)

Basic Statistics
Mean 0.097 0.112 0.037 0.032
Max 0.223 (MaxV ) 0.189 (KS) -0.063 (σIch) -0.041 (σIdis)

Boxplot
Mean 0.117 0.091 0.037 0.039
Max 0.223 (MaxV ) 0.140 (MaxS) 0.095 (Q1Ich) 0.051 (Q3Idis)

Histogram
Mean 0.145 0.083 0.055 0.031
Max 0.223 (H4V ) 0.124 (H3S) -0.092 (H4Ich) -0.045 (H4Idis)
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Table 3: Mean and Maximum Spearman correlation coefficients by variable and characterization method

Method Metric Voltage SoC Ich Idis

All features
Mean 0.107 0.059 0.072 0.038
Max 0.228 (MaxV ) 0.105 (H1S) 0.140 (γ1Ich) -0.120 (KIdis)

Basic Statistics
Mean 0.092 0.061 0.102 0.067
Max 0.228 (MaxV ) -0.098 (γ1S) 0.140 (γ1Ich) -0.120 (KIdis)

Boxplot
Mean 0.119 0.064 0.062 0.030
Max 0.228 (MaxV ) 0.089 (MinS) 0.086 (MaxIch) -0.064 (Q3Idis)

Histogram
Mean 0.130 0.059 0.057 0.020
Max -0.181 (H1V ) -0.105 (H1S) 0.079 (H1Ich) -0.028 (H4Idis)

followed closely, particularly for current signals, while basic statistical descriptors are generally less in-
formative.

In general, features derived from voltage signals exhibit the highest levels of correlation, particularly
when using histogram-based descriptors. SoC-related features also show moderate correlation, espe-
cially under boxplot and statistical methods. Current-based features, both for charge and discharge, tend
to have lower correlation values across all characterization techniques. This indicates that voltage and
SoC capture more relevant information for degradation trends compared to current-based features.

Table 4 summarizes the performance of the different models trained with various feature sets and selec-
tion strategies, ordered by increasing RMSE. Overall, using all available features tends to yield poorer
results compared to selective approaches, likely due to redundancy and the inclusion of non-informative
variables. Feature selection based on correlation, particularly using the Spearman method, improves
model performance significantly. Among the characterization methods, boxplot-based features consis-
tently achieve the lowest RMSE and highest R2 values.

3.1 Tuned base model
Based on the results from Table 4, the model selected is the boxplot- and Spearman-based one. Fig-
ure 6 shows the correlation matrix among all features included in the model. As anticipated, the basic
features initially considered, exhibit high correlations to the target, with the highest being ∆FEC and
∆Time, followed by Tcyc and FEC0. The only basic feature that is not included is Time0 which
showed excessively high correlation with FEC0, indicating redundant information. Regarding the char-
acterization features, the retained ones after the selection procedure are, in order of correlation, MaxV ,
UWV , UWIch, MaxS , Q3Idis and Q2Idis.

The scatter plot in Figure 7a visualizes the relationship between the ground truth values and the predicted
∆SoH values. Each point represents a single observation in the test dataset, with its x-coordinate indi-

Table 4: Model performance for different characterization and feature selection strategies, ordered by accuracy.

Characterization method Feature selection N Max depth Learning rate RMSE R2

Boxplot-based Based on Spearman 20 3 0.20 0.00132 0.759
Boxplot-based Based on Pearson 20 4 0.25 0.00136 0.745
Basic statistical features Based on Spearman 10 3 0.25 0.00142 0.721
Histogram-based Based on Pearson 20 3 0.20 0.00148 0.697
Boxplot-based All features 25 4 0.25 0.00159 0.650
Histogram-based Based on Spearman 25 3 0.25 0.00158 0.653
Basic statistical features Based on Pearson 25 3 0.20 0.00160 0.646
Basic statistical features All features 20 3 0.25 0.00169 0.603
Histogram-based All features 25 4 0.20 0.00184 0.532
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Figure 6: Spearman correlation matrix for the base model.

cating the actual value and its y-coordinate representing the corresponding prediction. A dashed red line
representing the 45-degree line (where predicted values equal the ground truth) is included as a reference
for ideal predictions. In this case, most points appear relatively close to the 45-degree line, suggesting
a reasonable level of agreement between the predictions and the actual values, as also indicated by the
model RMSE and R2 values.

The density plot in Figure 7b indicates that the predicted values generally follow a similar distribution
to the actual values, with the most frequent values occurring in the same range. This suggests that the
degradation model captures the general distribution of the dataset. However, the degradation model
underestimates the probability of observing degradation values in the higher range (above 0.010).
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Figure 7: Results of the degradation base model.
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3.2 Model accuracy versus data size trade-off
Table 5 presents the results of retraining the model using different downsampling strategies while keeping
the same model training pipeline as the baseline. As the time granularity decreases, model performance
generally declines, evident in lower R2 values and higher errors. When the granularity is reduced to
3 seconds or lower, the error starts becoming more significant. This is because simple downsampling
discards part of the signal’s variability, resulting in the loss of important details that affect the model’s
accuracy.

The aggregated model, however, follows a different strategy. Instead of uniformly reducing the sample
rate, it processes the full-resolution data (1s) within each driving cycle and extracts relevant features.
This method preserves vital information, allowing the aggregated model to achieve performance similar
to the baseline model while significantly reducing the dataset size. The error in the aggregated model is
slightly higher because some features, particularly those based on boxplots or statistical metrics, cannot
be aggregated in the same way. These features require access to the entire timeseries, and the error
arises from the assumption made when averaging cycle-based features. The data compression for the
aggregated case depends on the specific driving cycle duration, with the reported value representing the
average for the employed dataset.

Table 5: Model performance comparison of different data reduction methods

Method Error difference Data compression

Baseline (1s granularity) 0% 1
3s granularity +0.61% 1/3
5s granularity +11.60% 1/5
10s granularity +14.33% 1/10
Aggregated +0.38% ∼1/1000

3.3 Model robustness to reduced data
Table 6 presents the results of the different data reduction methods but only when applied to the test
dataset, meaning that the model employed in all cases is the base model using 1s data. It can be observed
that there is a relevant error increase as the granularity decreases reaching close to a 20% error increase
at 10s. The aggregation method also show a high error increase, making it an unsuitable approach to
store real data when the available model is the one built with 1s timeseries.

However, the baseline model was trained using boxplot-based features. As mentioned, some of informa-
tion required to obtain these features is lost when storing only cycle data instead of the entire timeseries.
Instead, if histogram-based features are employed to build the base degradation model, the aggregated
method would generate the same predictions as the baseline, since no information is lost when aggre-
gating these features. Thus, considering the nature of histogram-based aggregation, which preserves the
full distribution of the data without depending on the temporal resolution, this approach stands out as a
highly efficient solution to reduce data size while maintaining high predictive accuracy.

Table 6: Prediction accuracy when reducing test dataset

Method Error difference Data compression

Baseline (1s granularity) 0% 1
3s granularity +7.58% 1/3
5s granularity +9.11% 1/5
10s granularity +19.30% 1/10
Aggregated +21.25% ∼1/1000

4 Discussion
Compared to most existing degradation models, which typically rely on static laboratory-generated
datasets with fixed cycling conditions, the methods proposed in this work are designed to better accom-
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modate the variability inherent in real-world driving profiles. Recent studies have begun to recognize the
need for models that can generalize beyond constant operating conditions, reflecting the diverse usage
patterns encountered in electric vehicles [9, 10]. In addition, a significant contribution of this study has
been dedicated to minimizing the amount of data that must be stored while preserving model accuracy.
This aspect is increasingly critical, both from an economic perspective, due to the growing scale of bat-
tery testing and monitoring, and from an environmental standpoint, aligning with the interest in reducing
the digital carbon footprint associated with large-scale data management.

Considering the broader context of battery circularity, the outcomes of this research offer several key
contributions. By identifying the most informative features for assessing battery health and predicting
degradation, this work provides essential data points that can be incorporated into a Battery Passport.
This standardized record of a battery’s history and condition is crucial for facilitating informed decisions
regarding second-life applications, remanufacturing, and recycling. Accurate degradation models, built
upon the characterized driving profiles, help estimate the RUL of a battery, enabling its transition into
second-life applications and the development of innovative concepts such as dynamic warranties. This
optimized lifespan management directly supports the principles of a circular economy by maximizing
the value and minimizing the waste associated with EV batteries.

Despite the valuable insights gained, the dataset utilized in this study presents certain limitations. The
absence of data encompassing calendar aging periods and the maintenance of a constant temperature
throughout the experiments restrict the scope of the findings to cycle-related degradation under specific
conditions. Furthermore, the analysis focuses on six distinct use cases, and the results obtained may vary
for different battery cell chemistries and formats.

Thus, different possibilities for future research emerge from this study. Expanding the analysis to en-
compass larger and more diverse datasets, including data with varying cell chemistries, temperatures and
calendar aging effects, can help reach a more comprehensive understanding of battery degradation under
real-world conditions. Furthermore, exploring the efficacy of different machine learning models beyond
those employed in this study could potentially lead to even more accurate degradation predictions. Fi-
nally, since this work has focused on characterizing degradation related factors, an important direction
for future work lies in developing robust characterization methods specifically tailored for the prediction
of SoF, a critical parameter for evaluating a battery’s ability to perform its intended tasks over time.

5 Conclusions
This work proposes and evaluates different methods to characterize driving cycles for battery degradation
modeling in order to reduce the amount of data required for SoH prediction. Among the various signals
analyzed, voltage and SoC appear as the most sensitive to degradation, consistently showing stronger
correlations with capacity fade compared to current-based features.

Boxplot-based modeling, coupled with feature selection methods, provides the best overall performance,
achieving the lowest prediction errors when estimating degradation from driving cycle data. In addition
to model accuracy, the impact of data resolution is explored by reducing the granularity of the timeseries
or storing only aggregated information per driving cycle. Results show that when models are trained
aggregating the features per cycle the model is as accurate as when training with the entire timeseries at
1s granularity, offering a viable alternative for efficient data storage without sacrificing prediction quality.

Model robustness to reduced data is further assessed by applying the base model trained on 1s timeseries
to test datasets of lower resolution. In this case, a notable loss of accuracy is observed, particularly
when simple downsampling is applied. However, the use of aggregated data once again emerges as the
most reliable approach to preserve model performance, provided that histogram-based features are used.
Histogram-based modeling not only maintains predictive accuracy under data reduction but also offers
an intuitive interpretation of cycle behavior, making it an attractive strategy for practical implementation.

This work provides insights for several practical applications. The proposed characterization methods
can contribute to the development of more accurate degradation models, particularly under dynamic
operating conditions. Additionally, the ability to reduce the volume of laboratory testing data with-
out compromising prediction accuracy supports more efficient data storage and management practices.
Finally, by facilitating compact yet informative data representations, this approach can enhance the im-
plementation of initiatives such as dynamic warranties and provide inputs for the Battery Passport.
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