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Executive Summary 

Battery electric vehicles (BEVs) require enhanced battery monitoring for optimal performance. AVL 

introduces data driven methods to analyze battery health using advanced machine learning techniques 

on centralized data platforms. This approach supports better decision-making across the development 

cycle, from reducing production waste to monitoring battery health in customer fleets. Effective data 

analytics help identify abnormalities, predict battery life, and improve development efficiency by 

processing data from simulations, tests, and real-world fleets, contributing to sustainable and high-

quality BEV solutions. 
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1 Introduction 

 
The landscape of mobility has changed significantly in recent years due to the increasing demand for 

environmentally friendly and sustainable transportation solutions. Battery electric vehicles (BEVs) have 

experienced notable growth as part of this shift, representing a step toward emission-free mobility. 

However, these advancements present new challenges that need to be addressed. 

One primary challenge in developing and using BEVs is preventing errors that could lead to problems in 

real-world applications. Traditional validation and error analysis methods are often insufficient because 

error susceptibility changes with actual vehicle usage. Effective error prevention requires advanced data 

analysis methods that evaluate and process data throughout the development process. 

This article discusses how combining data from the development process with field data and artificial 

intelligence can identify potential issues and find solutions to enhance the safety and performance of 

BEVs. The key challenges for such a data-driven approach include: 

• Data Integration: Integrating diverse data sources from various stages of the vehicle lifecycle—

design, production, and field use—is complex and requires sophisticated data management 

systems. 

• Real-Time Data Processing: Processing and analyzing data in real-time to make prompt 

decisions is essential for maintaining vehicle performance and safety, yet it remains a 

substantial technical challenge. 

• Error Prediction and Prevention: Advanced predictive analytics are necessary to anticipate 

potential issues before they occur in the field, but these tools are still evolving and require 

further refinement. 

• Scalability: Scaling data-driven solutions to support a growing fleet of BEVs while ensuring 

reliability and efficiency is a significant challenge. 
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• Security: Ensuring the security and privacy of the vast amounts of data generated by BEVs is 

critical, as any breaches could have serious consequences. 

By addressing these challenges through innovative data integration and real-time analytics, the BEV 

industry can improve error prediction and prevention, ensuring safe and efficient vehicle operation. This 

supports the broader goal of achieving sustainable and eco-friendly transportation solutions. 

 

2 Data Analytics for BEV Development 
2.1 Requirements 

To advance battery development through data-driven approaches and allow teams to uncover new 
insights using modern data analysis, the following prerequisites are essential: 

• Expertise in battery systems and vehicle integration 

• Adequate infrastructure and data platforms 

• Proficiency in advanced data analysis techniques 

For data-driven development to be effectively implemented, these capabilities must be well integrated 
to improve product development efficiency. 

The requirements for data collection include: 

• Feature Selection: Identify relevant features such as vehicle speed, engine load, fuel 
consumption, and ambient air temperature. 

• Sampling Rate: Maintain a minimum sampling rate of 1 Hz to capture detailed data. 

• Data Sources: Utilize multiple data sources, including CAN signals, telematics, and diagnostic 
trouble codes (DTCs). 

• Data Storage: Establish a structured and traceable storage system for easy access and analysis. 

• Environmental Conditions: Consider environmental factors like weather and traffic conditions 
in data analysis. 

• Integration Test-Bed: Use early integration test-beds to detect and resolve issues before 
hardware components are available. 

These prerequisites are crucial to the implementation of data-driven methodologies in the development 
of battery electric vehicles. 

 

2.2 Battery Systems and Vehicle Integration 

The development of battery systems involves contributions from various specialized fields, including 
mechanical engineering, thermal system design, and the programming and calibration of the Battery 
Management System (BMS). Each discipline requires specific data evaluations and must communicate 
these needs to those developing evaluation methods. Additionally, vehicle monitoring functions need to 
be considered during development. This process entails defining the data requirements for collection by 
the BMS. Typically, data aggregation involves basic statistical calculations such as identifying 
minimum, maximum, and average values, or generating histograms. The challenge is to balance 
reducing the volume of transmitted data while ensuring that all crucial damage-related measurements 
are captured. The objective is to gather enough data for thorough monitoring while maintaining efficient 
data collection (1). 
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2.3 Data Analytics Platform 

The centralized processing of data collected from simulations, test benches, and vehicles is essential for 
optimizing its value. This platform provides the necessary infrastructure for large-scale data capture, 
storage, and analysis. Typically, these processing pipelines are hosted in scalable cloud environments, 
enabling efficient data preprocessing, execution of analysis routines, monitoring functions, as well as 
visualization and reporting for engineering teams and after-sales quality and service departments. 

Vehicle development includes various environments such as simulation, component testing, system-
level testing, and on-road testing. The types of tests conducted vary based on the environment and stage 
of the development process. Additionally, as system complexity and dependencies increase, it is 
important to analyze data independently from the test cycle and the individual requesting the data. 

To achieve cross-test analytics, the platform's design enables standardized analytics to be performed 

irrespective of testing patterns. The core methodology follows three steps: 

Events of interest within a measurement are detected based on mathematical rules. These rules can 
involve any form of mathematical checks on raw data channels, such as boundary overshoots, stable 
measurement detections, or identification of set measurement flags. Examples include start events, load 
shifts, and charging/discharging (driving) events. 

Aggregates are calculated within the detected events and later provided to users for system analysis or 
correlation between test environments. The calculated aggregates can range from simple statistical 
values like min, max, mean, and standard deviation of a channel to more complex computations such as 
histograms, FFTs, or heatmaps. In the final step, boundaries are applied to the aggregates to classify 
them as warnings or errors. 

All this information is stored in a high-performance result store, enabling efficient querying for 
visualization or analytical purposes. For result analysis, a web-based solution offers visual ad hoc 
analytics. Various plot types, including trend, scatter, histograms, and heatmaps, help identify outliers 

Figure 1: Demonstrates how a Data Analytics Platform can standardize test 

comparisons regardless of the test environment. 

Figure 2:Illustrates the Data Analytics principle based on events and aggregates. 



4 EVS38 International Electric Vehicle Symposium and Exhibition  

or points of interest, facilitating further data examination. For ongoing result monitoring, dashboards 
with multiple pages can be defined, providing standardized data insights. These dashboards also support 
regular reporting and exports. 
Basic statistics and threshold-based monitoring functions can track development progress to some 

extent, but they fall short of maximizing the potential of the data collected. Considering the substantial 

amount of data and various influencing factors, employing advanced machine learning techniques is 

required to deeply analyze abnormal behaviors, accurately estimate the battery's State of Health (SOH), 

and perform predictive analysis on the remaining battery lifespan (4)(5). 

  

2.4 Analysis Methods 

The AVL Data Analytics™ platform utilizes a variety of analytics methodologies to process and 
interpret data. These include: 

• Descriptive Analytics: What has happened? 

• Diagnostic Analytics: Why has something happened? 

• Predictive Analytics: What could happen in the future? 

• Prescriptive Analytics: Which measures need to be taken? 

The platform focuses on event-based analytics, aggregating information to identify key events and 
trends. This methodology allows for an in-depth analysis of system behavior and helps in identifying 
anomalies and patterns. 
 

2.5 AI Methods 

AVL Data Analytics™ employs advanced AI and machine learning techniques to enhance predictive 
capabilities and automate decision-making processes. Key methods include: 

• Intelligent Anomaly Detection: Identifying outliers and unexpected events in the data streams. 

• Federated Learning: Training models across multiple datasets while keeping the data 

decentralized to ensure privacy. 

• Graph Neural Networks (GNN): Analyzing relationships and dependencies between different 

entities within the data to explain causalities. 

These AI methods are designed to offer robust, scalable, and efficient analytics solutions, enabling 
timely and accurate insights for engineering decisions. 

 

3 Application Fields 

In the following sections, we will describe specific application examples and analysis methods for 
various stages of development or various testing environments. 

 
3.1 Cell Aging Tests 

Cell Testing is a new challenging topic in the automotive industry. Cell Testing is done for 4 main 

topics: 

• Cell Selection to validate supplier data. 

• Model parameter estimation to parametrize simulation models. 

• Pack Hardware Design to understand and prevent aging. 

• BMS Software Design to control the battery for performance and thermal safety. 

Different to classical testing tasks cell testing is done in large scale and over long time. 4000 to 5000 

cells are assessed at the same time under different temperature and charging / discharging condition. 
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Especially for aging test testing takes months and even years. Data is delivered daily. 

Data analytics methods implemented facilitate the seamless and continuous monitoring of all tested 

channels simultaneously. From this data, cell characteristics are calculated based on well-defined cycle 

patterns, such as resting-charging-resting-discharging cycles or standardized cycles like the hybrid pulse 

power characterization (HPPC). 

Characteristics such as internal resistance, capacity decay, differential capacity, cell heat-up, and many 

others are computed for these cycles. 

 

Data analytics enables the simultaneous correlation of various measurements across multiple cells, 

allowing for the cross-comparison of new cells with earlier variants. Through continuous analysis 

during testing, it becomes feasible to terminate tests that will not yield additional insights or where a set 

of cells has reached their end of life. Additionally, the same analytics can be utilized in cell production 

for end-of-line tests to reduce rejects, lower production costs, and minimize waste. 

  

Figure 3: Automotive cell test cycles 

Figure 4: Characteristics calculated for a cell test 
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3.2 Module and Pack Testing 

After cell selection and pack design, the assembled module and packs are tested on the battery test 
system. The main development purpose is assessing the aging behavior and the parametrization of the 
BMS models.  

For aging and performance testing again similar test cycles as in fig. 3 are applied. To assess batteries 
in a more realistic scenario a method was developed to generate artificial real world aging cycles based 
on data information coming from Test Fleet and customer fleet data. Data analytics supports here in the 
calculation of usage space analysis out of measurement result from trips conducted in the real vehicle. 
Based on the usage space analysis artificial cycles can be build, to assess batteries more realistic and 
ensure testing in all critical areas of future operation.  

The test results are processed by the data analytics to again calculate characteristics of the battery for 
direct correlation and analysis. 

Additionally, the data is used to parametrize a semi physical battery model for usage in the BMS system 
as well on the testbed.  

 

Figure 5: Artificial real-world test based on usage space analysis 

Figure 6: Model structure for a semi-physical battery model 
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By continuous training of the model prediction of aging can be done in the early state of testing and later 
for parametrization of the aging part of the model. 

 

3.3 Test and Validation Fleet 

In the late stages of development, the focus is primarily on function validation and integration testing. 
More than 2000 test cases on vehicles are still conducted to confirm the robustness of functions.  

. 

However, it is often difficult to figure out from the flood of test data whether all operating conditions 
have been adequately tested. When data from customer fleets and data from validation fleets are 
processed in the same analysis platform, a "Blind Spot Analysis" can be performed to find states that 
need more testing (see fig. 7). 

The data analytics platform allows in addition to blind spot analysis, the possibility to build meta models 
based on characteristic values out of test fleet data, which allow to decide the main influencing factors 
for aging and performance of the battery. Based on these models BMS parameters can be optimized to 
extend lifetime and prevent thermal damage.  

Figure 7: Prediction of aging in early testing phases 

Figure 8: By comparing usage data and data from the validation fleet, a "Blind 

Spot Analysis" can be conducted to identify operating modes that have not yet 

been sufficiently tested 



8 EVS38 International Electric Vehicle Symposium and Exhibition  

 

One of the significant aspects of fleet testing operations for industrial vehicles is the ability to optimize 
test programs and enhance predictive maintenance. This involves leveraging AI-driven data analytics 
solutions to maximize engineering efficiency and minimize total cost of ownership (TCO). By adopting 
advanced machine learning algorithms, it is possible to predict and prevent failures, thereby reducing 
warranty costs and unplanned downtime. 

Data collection during test cycles and real customer usage is paramount. This data is processed to 
determine the extent of damage caused by different usage scenarios. The goal is to ensure that test cycles 
accurately reflect real-world conditions, and any discrepancies can be addressed to improve product 
quality. 

The integration of SiL (Software-in-the-Loop) and HiL (Hardware-in-the-Loop) methodologies further 
enhances the development process. Using these innovative approaches allows early detection and 
resolution of issues, even before all components are available in hardware. This proactive strategy 
ensures a smoother and more efficient development cycle. 

Furthermore, predictive maintenance benefits from utilizing real-time data from telematics, workshops, 
and dealer services. This data helps in creating accurate risk scores for individual vehicles, facilitating 
targeted preventive maintenance actions. Ultimately, this approach not only boosts customer satisfaction 
but also significantly enhances the longevity and reliability of the vehicle fleet. 

 

3.4 Battery Monitoring in the InUse Phase 
Once the production and sale of battery electric vehicles (BEVs) have begun, there is significant interest 

in monitoring the battery's health status (SOH) and detecting abnormal behavior of the battery system. 

Assessing the current state of a battery includes information about its performance, internal resistance, 

and remaining capacity. Through vehicle connectivity, this data is transmitted to the cloud environment. 

Data-driven models based on machine learning (ML) algorithms are executed in the data analysis 

platform, which can be used for the entire vehicle fleet. By employing trained neural networks (NN), it 

is possible to predict the remaining lifespan of individual batteries. Training these models typically 

requires a large amount of data. To improve analysis quality, data from the development phase, such as 

cell and pack tests, can also be used for training. It is essential for the results from the development 

process to be processed in the same data platform as the data from the customer fleet. This not only 

enables comparisons between test benches, pre-series vehicles, and customer vehicles but also modern 

machine learning techniques such as "Transfer Learning" (TL) (6).  

 

Figure 9: The response surface model describes the parameters 

which have the highest impact on battery aging. 
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Transferring knowledge from a test bench dataset to the customer fleet significantly reduces the required 

data volume in this use case. Through cloud-based monitoring and fleet-wide analysis, the behavior of an 

individual battery and its deviations from the typical and current behavior of all battery packs in the fleet 

can be quickly analyzed, and proper countermeasures can be taken, such as temperature control during 

the charging process. Based on the learned main influencing factors, the current State of Health (SoH) as 

well as a prediction of the remaining lifespan for each battery pack in the vehicle fleet are calculated, 

allowing for recommendations on efficient use and extension of durability to be derived. 

4 Conclusion 

Digitizing the development process and using data-driven methods are the keys to improving 
development efficiency. AVL supplies an analysis platform capable of processing data from the 
development process, whether it comes from a simulation environment, a test bench, or a test vehicle. 
Intelligent and scalable evaluation methods allow for the analysis of hundreds and thousands of 
measurements and their comparison against the corresponding requirements from the Design Validation 
Plan. The high degree of automation leads to a significant reduction in efforts in the field of data 
evaluation. Additionally, the ability to search for and reuse data results in a reduction in testing efforts, 
both on test benches and in test fleets. 

Furthermore, the data platform allows for the integration of development data and data from the 
customer fleet, enabling the realization of further innovative use cases. Monitoring battery health status 
and predicting remaining lifespan are just the first examples among a multitude of possibilities. 

Figure 11: Principle of transfer learning 

Figure 10: Prediction of SoH Model based on fleet data 
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By combining expertise and advanced analysis methods, integrated on a data platform, the potential for 
efficiency improvement in many development projects has already been proven (see fig. 10). 
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Figure 12: Saving potential by usage of the data analytics methods 


