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Executive Summary
Forecasting the energy consumption of a battery electric vehicle (BEV) is crucial for both customers and sales

teams in selecting the optimal configuration of the vehicle, as well as for route planning and charging strategy

development. A dedicated physics-based model has been developed for propulsion systems at Volvo for years.

However, the usage of vehicles, especially heavy-duty (HD) trucks, is not always dependent upon propulsion sys-

tems but also upon other auxiliary systems. The auxiliary energy consumption in an HD truck can normally be

more than 10% of the total energy consumption or even more than 20% in some extreme conditions. Develop-

ing effective data-driven models to enhance energy forecasting accuracy would greatly improve the planning of

operations for HD vehicles. This paper investigates the use of machine learning models, trained on historical op-

erational data from commercial HD BEVs, to forecast the auxiliary energy consumption. A variety of data-driven

approaches have been evaluated and compared based on forecasting accuracy and computational efficiency. We

explore the trade-offs between these factors to identify optimal solutions for practical deployment.

Keywords: Electric Vehicles, Heavy Duty electric Vehicles & Buses, AI - Artificial Intelligence for EVs, Auxil-

iary Components & Sensors.

1 Introduction
The electric truck market is expanding and the size is projected to reach 1,067,985 units by 2030 [1]. Electric vehi-
cles (EVs) quickly gain traction, enabling rapid acceleration and delivering a highly responsive driving experience.
Take into account their zero tailpipe emissions, making them an efficient and environmentally friendly alternative
to internal combustion engine (ICE) vehicles [2]. However, one of the key challenges facing electric trucks is their
limited driving range compared to ICE trucks. For example, many electric trucks have ranges around 200-300
miles per charge, whereas diesel trucks can often travel over 1,000 miles on a single tank [3]. Therefore, heavy-
duty (HD) truck drivers may experience ”range anxiety” when transitioning from ICE trucks to electric ones, due
to the shorter range of fully electric vehicles compared to their ICE counterparts. The “range anxiety” (i.e., user’s
concern about the insufficient all-electric range of an EV to reach a destination or charging point) is considered a
major barrier that limits the wide adoption of HD electric trucks [5]. To mitigate this problem, not only does an
effective route planning mechanism need to be deployed (making sure the electric truck will reach a destination or
a charging station), but also evidence showing energy sufficiency for the given task is needed [6]. In both cases,
reliable and accurate prediction of energy consumption is essential. Therefore, a key feature for both sales teams
and customers is the ability to forecast energy consumption for HD battery electric vehicles (BEV) to choose the
optimal configuration, route planning, and charging activities.

The energy consumption of HD BEVs can generally be divided into two parts: propulsion energy and energy
consumed by auxiliary components. The propulsion energy consumption is modeled using a dedicated physics-
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based simulation framework that has been extensively developed and validated for decades at Volvo. The other
part, the auxiliary energy consumption in an HD BEV can normally be more than 10% of the total energy con-
sumption or even more than 20% in some extreme conditions. A baseline approach for forecasting auxiliary energy
consumption via basic statistics, e.g., mean and median values, yields an mean squared error (MSE) of around 16
kW, and results in approximately 50% error in forecasting the consumption. A data-driven model, empowered
by machine learning algorithms, for auxiliary energy consumption, is expected to significantly improve the ac-
curacy of predicting energy consumption for HD trucks, strengthening and speeding up the electrification in the
transportation system. In this study, a comprehensive evaluation is conducted to benchmark the performance of a
variety of well-known machine learning methods for forecasting auxiliary energy consumption of HD BEVs. Most
energy consumption forecasting studies for vehicles focuses on personal/passenger cars[7] [8], electric buses[9]
and commercial vehicles running on fossil fuel. To the authors’ best knowledge, a comprehensive evaluation on
data-driven approaches for HD electric truck fleets with real-world operation data are not available.

2 Challenge
The challenges encountered in this study on forecasting auxiliary energy consumption are three-fold. First and
foremost, it is very costly to build dedicated forecasting methods, using physics-based models and expert knowl-
edge, for each auxiliary system – the traditional approach is not cost-effective, and difficult to scale, as the auxiliary
systems include multiple components, e.g., heaters, compressors, and power electronic converters. Moreover, these
components are of different consumption characteristics and related to many signals, resembling a complex multi-
variate system. In addition, commercial vehicles operate in many different situations and perform many different
tasks. As transportation tasks, ambient conditions, and drivers vary, so do the specifics of internal processes of
the driveline, as well as auxiliary components. The possible circumstances that affect all the essential subsystems
are too numerous to account for explicitly. Therefore, an AI-driven system for energy consumption forecasting
that is capable of handling heterogeneous population, adapting to different types of transportation tasks, ambient
condition etc., is needed.

The main strength of a data-driven approach is its capacity to model even highly complex and partially or fully
unknown systems, provided that a sufficient amount of data is available. Chen et al., in their work [4], summarized
that the data-driven methods have been the preferred choice for predicting BEV energy consumption, which is
most likely because of the complexity in a system with many stochastic parameters, for example, driver behaviour
and external conditions such as weather, road, traffic, etc., where a data-driven approach can uncover patterns
and the complex relationships without the need to understand the inner system. In addition to providing more
accurate and reliable energy consumption forecasts, these models can adapt to new data, continuously improving
their predictions over time.

Even though huge amounts of data of HD trucks is available, it is heterogeneity which presents a significant
challenge for data-driven models because it involves a vast array of variables that are highly variable and often
interdependent. This heterogeneity arises from several factors, including diverse routes and terrains, varying driver
behaviors, external conditions, different vehicle configurations, and various mission types. Because of these di-
verse and fluctuating factors, data-driven models struggle to accurately predict auxiliary energy consumption of
electric trucks. The models must account for complex interactions between variables, which is challenging with
heterogeneous data.

3 Methodology

3.1 Data Description
The dataset consists of signals transmitted via the CAN bus in the vehicle, including parameters such as speed,
acceleration, road inclination and other vehicle operating signals. This multivariate time-series data was collected
from a CAN logger installed in HD vehicles. The data spans 100 vehicles operating across more than 20 countries.
The majority of the HD trucks in the dataset are equipped with 4x2 and 6x2 axle configurations, with a tractor
type design. The battery capacity of each truck is 540 kWh (6 battery packs) by Lithium Nickel-Cobalt-Aluminum
Oxide (NCA) technology. The dataset comprises over 200k data instances collected over more than 12 months.

The segmented trips refer to a single trip that is broken into distinct sections, either due to stops, changes in
routes, or data collection intervals. For example, if a truck makes several deliveries or pauses during a longer
trip in a day, each portion between stops is considered a segmented trip. Furthermore, the segmented trips are
filtered to include only the periods when the vehicle is in driving mode, characterized by the key being on and the
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vehicle not connected to a charger. In addition, a subset is extracted, including 13k segmented trips collected from
a homogeneous fleet of 19 vehicles, operating in the same area, and undertaking similar transportation missions.

3.2 Data Processing
The features are aggregated for each segmented trip. Subsequently, the data preprocessing involves cleaning
outliers and null values, followed by feature selection using a correlation matrix. Finally, the data is normalized
for training the ML models. It is worth mentioning that the auxiliary energy consumption is closely related to
the elapsed time. Hence, auxiliary power consumption is used as a relevant metric. The power consumption of
individual auxiliary components is summed to obtain the total auxiliary energy consumption.

The distribution of four features is depicted in Figure 1 and Figure 2. The distributions are illustrated using
probability density functions, which are normalized histograms. The x-labels show the minimum and maximum
range of the features. The ambient temperature follows a Gaussian distribution, whereas the vehicle speed and
energy consumption present exponential distributions. It is notable that the weight distribution exhibits a bi-modal
pattern, suggesting the presence of both loaded and unloaded trips. The left peak of the distribution corresponds to
the truck’s body weight, which ranges from 10 to 13 tonnes, depending on the configuration.

Figure 1: Distribution of vehicle speed and weight in the dataset

Figure 2: Distribution of total auxiliary energy consumption and ambient temperature in the dataset

3.3 Modelling
3.3.1 Expert Model
Since the auxiliary power consumption, to a very large extent, depends on the ambient temperature [10], an expert
model has been developed based on aggregated trip segment data to capture this relationship, as depicted in Figure
3. The figure illustrates the dependency of auxiliary power on ambient temperature displaying an asymmetrical ’U’
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shape, as noted by Want et al.[10]. The auxiliary power consumption of the HD BEVs tends to be minimal within
mid-range of ambient temperature, slightly skewed towards warmer temperatures. On the contrary, auxiliary power
consumption increases largely at temperature extremes, particularly under lower ambient temperature conditions.
This indicates the critical impact of heating and cooling systems on auxiliary power demands, especially for electric
trucks.

Figure 3: Auxiliary power consumption versus ambient temperature

3.3.2 Machine Learning Models
While auxiliary power consumption clearly depends significantly on ambient temperature, employing ML mod-
els can further enhance the analysis by integrating additional features and discovering more accurate correlations
between these features and auxiliary power consumption. Therefore, classic ML models implemented in scikit-
learn [11] were employed to identify and model these complex relations: i) Classic regression: Linear Regression
and Polynomial Regression; ii) Regularized regression: Ridge, BayesianRidge and ElasticNet; iii) Instance-based
learning: K-Nearest Neighbors (KNN); iv) Support Vector Regression (SVR); v) Tree-based Regression Algo-
rithms: DecisionTree, RandomForest, Light Gradient Boosting Machine (LightGBM), Extreme Gradient Boost-
ing(XGBoost); vi) Artificial Neural Network(ANN): Multilayer Perceptron(MLP).

A grid search approach was employed to identify the optimal hyperparameters for each ML model, utilizing
five-fold cross-validation to ensure robustness and better generalization. Furthermore, feature selection was refined
by ranking feature importance scores and retaining only those features with an importance greater than 0.05.
Additional, all ML models were trained on each dataset.

A segmented trip can be further divided into smaller parts, referred to as micro-segments. The data of a
segmented trip exhibits a sequential structure as it carries temporal information. Consequently, it is natural to
think that power consumption in each micro-segment depends not only on the input signals of that micro-segment
but also on the information from micro-segments that have come before it. Recurrent neural networks (RNN) are
efficient in finding sequential relationships between time-series data instances [12]. Thus, an architecture with
a long short-term memory (LSTM) [13] layer, followed by two fully connected layers, was used. In addition,
a simpler recurrent architecture was also used for the sequential data. For example, gated recurrent units (GRU)
combine the forget and input gates into a single update gate, reducing computational complexity while maintaining
performance in sequence modeling [14].

The configuration of the LSTM model contains two hidden layers with size of 64 units on each, followed by
two full connected layers also with size of 64 units based on pytorch library [15]. The GRU model follows a
similar architecture, i.e. two GRU layers with 64 units each and two full connected layers. In addition, the MSE
loss function was utilized, and the models were optimized using the Adam optimizer. During training, the best-
performing model was selected and saved based on the lowest validation error criterion. A ReduceLROnPlateau
scheduler was employed to dynamically adjust the learning rate according to the validation loss, using a patience
parameter of 15 epochs.

3.3.3 Evaluation Metrics
In this study, mean absolute error (MAE), MSE, and a proposed accuracy measure (based on the sum of absolute
errors for each forecast divided by the total consumption of each segmented trip) were selected to quantify the
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performance of forecasting methods. Mathematically MAE is defined as in equation (1), where n represents the
total number of segmented trips, yi is the actual value for the i-th segmented trip, ŷi is the predicted value for the
i-th segmented trip, and | · | denotes the absolute value.

MAE =
1
n

n

∑
i=1

|yi − ŷi| (1)

MSE is defined as in equation (2), where n represents the total number of segmented trips, yi is the actual value
for the i-th segmented trip, and ŷi is the predicted value for the i-th segmented trip.

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (2)

The proposed accuracy metric evaluates the forecasting performance by normalized the sum of absolute errors
with the total consumption. This measure is similar to mean absolute percentage error (MAPE) and mean abso-
lute range normalized error (MARNE) mentioned in the review [16], but with a different scaling factor. MAPE
penalizes forecasting errors at low consumption more than errors at high consumption, which is unsuitable for
this application, given that low energy consumption periods are less critical to the operation of BEVs than high
consumption periods. Additionally, MARNE normalizes the error by the maximum forecasting value, which may
lead to misleading results as well.

Thus, we have chosen to scale the error based on the mean consumption. It is calculated in equation (3), where
n represents the total number of segmented trips, yi is the actual value for the i-th segmented trip, and ŷi is the
predicted value for the i-th segmented trip.

Accuray = (1− ∑
n
i=1 |yi − ŷi|
∑

n
i=1 yi

)×100 (3)

3.4 Experimental Settings
Table 1 summarizes the dataset characteristics and forecasting methodologies in 9 experiment scenarios. The
first three scenarios utilize aggregated data from segmented trips, where the models predict the average power
consumption for each segmented trip in the test dataset. Scenario 4 replicates the methodologies of the first three
scenarios using a subset of data from a fleet of 19 vehicles. Scenarios 5 to 7 operate at a higher temporal resolution
using micro-segments, which are multivariate time series data of each trip segment. Scenario 5 (Mean of a sliding
window) employs a conventional energy forecasting strategy assuming future consumption is consistent with the
past [17]. We use the mean consumption value of the last segment as the forecast for the subsequent segment. Trip
segments shorter than the required sliding window length plus the prediction horizon are excluded. The sliding
window moves along the time axis with a stride equal to the prediction horizon, continuing until the remaining data
at the end of a trip is shorter than the horizon. In such cases, the final forecast values are set to the last value from
the most recent prediction. For each sliding window, the model forecasts the next set of values within the defined
prediction horizon (scenario 6 and 7), of which the inputs are always based on ground truth. This setup reflects
multi-step direct forecasting with clean, non-recursive inputs. The last two scenarios (8 and 9) simulate a more
practical forecasting scenario, where only the initial portion of the time series is available. Scenario 8 uses the
mean of this initial window as the forecast for the rest of the trip, while Scenario 9 employs recursive forecasting
using RNN/LSTM models, in which predictions from each step are fed back as inputs for subsequent forecasts.
This approach reflects real-world conditions better, where only partial trip data may be available at a prediction
time. A 5-fold cross-validation strategy is employed to ensure robust model evaluation and to provide a reliable
estimate of the models’ generalization performance. The dataset is split into 80% training and 20% testing.

4 Results and Discussion

4.1 Expert and ML Models
The metrics in the result tables are calculated based on normalized data, and the proposed accuracy measure is
determined by applying the inverse transformation of the scalar in relation to the mean value of auxiliary energy
consumption. In addition, the time column in the table indicates the duration for training a model.
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Table 1: Experimental settings.

Scenario Dataset Method
1 Segmented trip aggregation Global mean
2 Segmented trip aggregation Expert model
3 Segmented trip aggregation Classic ML models
4 A subset of segmented trip aggregation Scenario 1 - 3
5 Time series data Mean of a sliding window
6 Time series data RandomForest model prediction of a sliding window
7 Time series data RNN/LSTM models
8 Initial period of time series data Mean of the initial window
9 Initial period of time series data Recursive forecasting of RNN/LSTM models

As expected, the first scenario yields the largest prediction error. Due to the complexity and multivariate nature
of the auxiliary system consumption, using the global mean of all segmented trips, as a baseline, yields an accuracy
of approximately 55%.

Performance metrics for the Expert and various ML models for Scenarios 2 and 3, as shown in Table 1, are
outlined in Table 2. The Expert model, illustrated in Figure 3, achieves slightly improved accuracy (64%) by clus-
tering auxiliary power consumption based on ambient temperature. In addition, classic regression and regularized
regression models present performance similar to the expert model, reflecting the nonlinear and complicated nature
of auxiliary power consumption. The KNN model performs marginally better than classic regression, while the
MLP, SVR and tree-based regression algorithms draw the highest accuracy, reaching approximately 82%.

Additional evaluations conducted on the previously described sub-dataset are presented in Table 3. The results
show that accuracy improves when using the sub-dataset, which possesses better homogeneity. Especially, the
expert model, classic regression and regularized regression models demonstrate an approximate 8% increase in
accuracy. Furthermore, the highest accuracy achieved by the same models when applied to the full dataset with a
larger number of vehicles reaches 84%, as shown in 2. Therefore, these models are capable of more effectively
capturing the average auxiliary power consumption of each segmented trip.

However, these predictions apply to entire segmented trips where aggregated data simplifies model training,
reducing complexity and noise, with training times generally under one hour. Furthermore, training on granular
time-series data can result in more accurate predictions, as the model is able to capture the nuances of the data.
The performances of these RNN models for Scenarios 5 and 7 are compared in Table 4.

Table 2: Performance metrics for the Scenario 1-3.

Model MAE MSE Accuracy Time
Global mean 0.6950 ± 0.0020 1.0000 ± 0.0050 0.5579 ± 0.0011 <1 second
Expert model 0.6802 ± 0.0050 0.9670 ± 0.0095 0.6377 ± 0.0065 <1 second

LinearRegression 0.5206 ± 0.0020 0.4742 ± 0.0062 0.6689 ± 0.0013 <10 seconds
Polynomial Regression 0.3392 ± 0.0036 0.2514 ± 0.0057 0.7843 ± 0.0023 <16 minutes

Ridge 0.5206 ± 0.0020 0.4742 ± 0.0062 0.6689 ± 0.0013 <10 seconds
BayesianRegression 0.5206 ± 0.0020 0.4742 ± 0.0062 0.6689 ± 0.0013 <10 seconds

ElasticNet 0.5337 ± 0.0025 0.5068 ± 0.0083 0.6614 ± 0.0025 <3 minutes
KNN 0.3228 ± 0.0025 0.2512 ± 0.0056 0.7946 ± 0.0016 <2 minutes
SVR 0.3310 ± 0.0018 0.2221 ± 0.0032 0.8128 ± 0.0017 <40 minutes

DecisionTree 0.3312 ± 0.0025 0.2510 ± 0.0055 0.7894 ± 0.0016 <2 seconds
RandomForest 0.3156 ± 0.0018 0.2188 ± 0.0042 0.7993 ± 0.0010 <3 minutes

LightGBM 0.2890 ± 0.0019 0.1899 ± 0.0041 0.8162 ± 0.0012 <14 seconds
XGBoost 0.3515 ± 0.0023 0.2572 ± 0.0045 0.7764 ± 0.0014 <6 seconds

MLP 0.2961 ± 0.0029 0.1997 ± 0.0044 0.8115 ± 0.0017 <1 minute

4.2 Forecast Models with a Sliding Window
Two model configurations for time-series forecasting are summarized in Table 4. In the first configuration, a
sliding window of 10 samples was used with a forecasting horizon of 10 samples, which generates over 700k
distinct sequences with no overlap between trips or vehicles. In the second configuration, the sliding window
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Table 3: Performance metrics for the Scenario 4.

Model MAE MSE Accuracy Time
Global mean 0.7395 ± 0.0110 1.0000 ± 0.0740 0.5911 ± 0.0063 <1 second
Expert model 0.7365 ± 0.0131 0.9925 ± 0.0407 0.7224 ± 0.0133 <1 second

LinearRegression 0.4609 ± 0.0056 0.3717 ± 0.0072 0.7430 ± 0.0031 <4 seconds
Polynomial Regression 0.3157 ± 0.0050 0.2520 ± 0.0899 0.8240 ± 0.0028 <2 minutes

Ridge 0.4609 ± 0.0056 0.3717 ± 0.0072 0.7430 ± 0.0031 <5 seconds
BayesianRegression 0.4610 ± 0.0056 0.3717 ± 0.0072 0.7430 ± 0.0031 <5 seconds

ElasticNet 0.4714 ± 0.0052 0.3892 ± 0.0072 0.7376 ± 0.0030 <3 minutes
KNN 0.3319 ± 0.0057 0.2056 ± 0.0074 0.8150 ± 0.0032 <8 seconds
SVR 0.3155 ± 0.0023 0.1735 ± 0.0034 0.8407 ± 0.0011 <1 minute

DecisionTree 0.3348 ± 0.0034 0.2171 ± 0.0074 0.8133 ± 0.0020 <1 second
RandomForest 0.3062 ± 0.0033 0.1743 ± 0.0042 0.8292 ± 0.0018 <30 seconds

LightGBM 0.2864 ± 0.0039 0.1552 ± 0.0044 0.8404 ± 0.0021 < 8 seconds
XGBoost 0.3160 ± 0.0041 0.1872 ± 0.0056 0.8238 ± 0.0022 < 3 seconds

MLP 0.2936 ± 0.0020 0.1607 ± 0.0034 0.8370 ± 0.0023 < 30 seconds

was extended to 30 samples with a forecasting horizon of 5 samples, resulting in approximately 550k distinct
non-overlapping sequences. For each sequence, forecasts were made within the trip by sliding the window, and
predictions were averaged to represent the trip-level auxiliary power consumption. These predictions were then
compared to the ground truth mean values to compute performance metrics.

In the first configuration, the RandomForest model achieves an accuracy of 87%, outperforming the best model
with aggregation data of each segmented trips by 3%. Additionally, the conventional method of forecasting the
next segment by applying the mean consumption value from the last segment yields results comparable to those of
the RandomForest model.

When applying RNN models such as LSTM or GRU, performance further improves due to the model’s ability
to capture temporal dependencies in the data. The LSTM model with the second configuration accomplishes the
highest accuracy of over 95%, effectively forecasting the next 5 samples from a window of 30 samples. Since
the GRU model exhibits approximately 1% lower performance and 2 additional hours of training time compared
to the LSTM model, its results are not reported, and it was not selected for subsequent tasks. Despite the high
accuracy of RNN models, these models requires the longest training time which exceeds 5 hours using GPUs.
For larger datasets, training time could increase significantly. Additionally, it’s important to note that the training
process requires access to ground truth input features at each step of sliding window, which may not be available
in real-world deployment.

Table 4: Performance metrics for Scenarios 5-7. SW and PH correspond to the length of the sliding window and
the size of the prediction horizon

Model{SW,PH} MAE MSE Accuracy Time
Mean{10,10} 0.2145 ± 0.0080 0.2469 ± 0.0199 0.8742 ± 0.0047 <1 second

RandomForest{10,10} 0.1970 ± 0.0073 0.4438 ± 0.0269 0.8712 ± 0.0046 <10 minutes
LSTM{10,10} 0.0985 ± 0.0028 0.0301 ± 0.0031 0.9422 ± 0.0016 >6 hours
Mean{30,5} 0.1326 ± 0.0042 0.0641 ± 0.0062 0.9223 ± 0.0024 <1 second
LSTM{30,5} 0.0808 ± 0.0011 0.0209 ± 0.0015 0.9526 ± 0.0006 >5 hours

4.3 Forecasting with a Initial Window
Considering limited computation resources on the edge devices, consumption forecasts are likely made less fre-
quently and rely primarily on the data from the initial period of a trip. Results from such a deployment scenario
are shown in Table 5. The accuracy of forecasting the rest of the trip based on the first window of data varies sig-
nificantly with window size. A 30-sample window achieves 77% accuracy using the window’s mean value, while
the LSTM model obtains 88% accuracy by learning the time-series patterns in the initial window and recursively
predicting future values.

It is worth mentioning that the LSTM architecture remained consistent with that used in the sliding window
forecasting experiments. Model tuning could potentially yield even better performance.
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In summary, to effectively forecast future auxiliary power consumption during vehicle operation, clustering
vehicles by configuration, mission, and geographical location into homogeneous groups/sub-fleets, and conducting
modeling on individual groups is expected to improve performance. Using the global mean consumption yields
59% accuracy. For representing the remaining of the trip with the mean of the first 30-sample window achieves
77%. Furthermore, deploying an LSTM model can raise performance to 88%, in the pursuit of a higher accuracy.

Table 5: Performance metrics for Scenarios 8 and 9. IW corresponds to the length of the initial window while RW
corresponds to the length of the recursive window for LSTM models.

Model{IW,RW} MAE MSE Accuracy Time
Mean{10,−} 0.8986 ± 0.0179 1.7347 ± 0.0615 0.4731 ± 0.0105 <1 second
LSTM{10,10} 0.2322 ± 0.0075 0.1289 ± 0.0074 0.8638 ± 0.0044 >6 hours
Mean{30,−} 0.3817 ± 0.0070 0.3334 ± 0.0175 0.7762 ± 0.0041 <1 second
LSTM{30,5} 0.1989 ± 0.0060 0.0993 ± 0.0062 0.8834 ± 0.0035 >5 hours

4.4 Model Trade-offs
Figure 4 illustrates the trade-off between model performance and resource requirements, including training time
and model size. In the bottom-left region of the figure, models based on aggregations of segmented trip data are
presented. These models generally achieve training times below 100 seconds, although their model sizes vary
significantly. In particular, the RandomForest models require the most memory, exceeding 2 MB, whereas most
other models remain around 1 MB.

Figure 4: Model trade-offs between performance and resources, training time and memory, required

When high-resolution time-series data is utilized, better forecasting accuracy can be achieved. For example, the
top-right region of Figure 4 highlights models such as LSTM{30,5}, which deliver the highest accuracy but require
significantly longer training times. Although these models maintain moderate sizes (around 1 MB), the computa-
tional cost during training is substantial. When models with lower training computational cost and small model
sizes are preferred, approaches such as using the mean of samples with a sliding window (e.g., the Mean{30,5}
model) offer an effective alternative. The models achieve relatively high accuracy, between 87% and 92%, while
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keeping the model compact. However, they are limited to forecasting very short time horizons, such as five sam-
ples. When attempting to forecast the entire remaining segment of a trip, the performance falls below that of the
classic ML models in Scenario 6 or the expert model, which uses only ambient temperature as the input feature
for auxiliary power consumption prediction. On the contrary, LSTM models trained under Scenario 7, which em-
ploys sliding windows and fresh ground truth inputs, show strong performance. Taking the first 30 samples as the
input, the LSTM model can forecast the remaining duration of the trip with 88% accuracy. Therefore, if suffi-
cient resources are available for training, LSTM models are recommended for edge deployment to achieve high
forecasting accuracy.

5 Conclusion
This study presents a comprehensive analysis of 100 HD BEVs operating over more than 12 months in more than
20 countries. It explores data-driven modeling approaches for forecasting auxiliary energy consumption, which
can account for up to 20% of total vehicle energy use. Both aggregated segmented trip data and high-resolution
time-series data are used for forecasting. To determine the most suitable modeling approach, a extensive evaluation
is conducted to benchmark the performance of various well-known ML models.

The simplest forecasting approach, based on the global mean consumption value, yields the lowest accuracy,
around 50%. Incorporating an expert model that correlates auxiliary energy consumption with ambient temperature
improves accuracy by approximately 10%. Among classical ML models, SVR, MLP, and tree-based regression
algorithms obtain the highest accuracy, reaching around 82% with the aggregation data of each segmented trip.

Model performance further improves when training on subsets consisting of homogeneous fleets of vehicles,
selected according to configuration, mission profile, and geographical location. This approach generates more
consistent datasets and improves forecast accuracy up to 84%. The LSTM model, particularly when using high-
temporal-resolution data, achieves the best overall performance, exceeding 95% accuracy, albeit with a higher
computational cost. However, even simpler models, such as using the mean of samples within a sliding window
(e.g., the Mean{10,10} and Mean{30,5} models), can achieve satisfying accuracy levels between 87% and 92% when
taking advantage of high-resolution time-series data. This performance is about 8% higher than the best models
based on aggregated segmented trip data.

For edge deployment scenarios, i.e., where only data from the initial period of a trip is available, forecasting the
remaining consumption of the trips based on the mean consumption from a 30-sample window achieves an accu-
racy of 77% accuracy. When leveraging LSTM models with the same setting, accuracy improves to 88%, with the
models training under Scenario 7, which requires considerable computational cost. Thus, if sufficient resources are
available for training, LSTM models are recommended for edge deployment to achieve high forecasting accuracy.

In conclusion, this work outlines a practical framework for predicting and forecasting auxiliary energy con-
sumption using data-driven models, with a thorough investigation on the trade-off between model accuracy, size,
and computational efforts. The findings offer a solid foundation for evaluating and structuring forecasting meth-
ods while highlighting the limitations of primitive approaches, e.g., with constant values such as global mean
consumption. This balance between accuracy and deployment feasibility is crucial for real-world applications.
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