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Abstract 

With the rapid advancement of science and technology, there is an increasing consensus that efforts should 

be aligned with the Sustainable Development Goals (SDGs). In this study, we construct a comprehensive 

campus-wide map using LiDAR (Light Detection and Ranging) and IMU (Inertial Measurement Unit) 

sensors. This approach aims to enhance the scientific and technological capabilities of enterprises across 

various countries through applied research. The objective of this paper is to explore methods for improving 

the performance and reliability of autonomous vehicles and their sensor technologies. Ultimately, through 

our experimental approach, we achieved a LiDAR map accuracy of less than 30 cm. 
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1 Introductions 

In this paper, the sensor system is integrated to address the specific problem at hand. LiDAR (Light Detection 

and Ranging) is initially employed to gather environmental information. Before constructing the autonomous 

driving system, all features of the driving environment, such as buildings, sidewalks, safety islands, trees,  

etc., are mapped using LiDAR. This approach eliminates the need for continuous data acquisition and 

processing during autonomous driving, thereby enhancing computational efficiency and prioritizing the 

acquisition of relevant environmental data. 

 

2 System Configuration 

2.1 System communication architecture 

The communication architecture of the system is illustrated in Figure 1, highlighting the interactions between 

the NVIDIA Jetson AGX Orin, the 32-beam LiDAR, an IMU (Inertial Measurement Unit), and a millimeter-

wave radar. The LiDAR transmits data via an Ethernet cable to the LiDAR control box through UART 

(Universal Asynchronous Receiver-Transmitter) communication, which is then forwarded to the NVIDIA 

Jetson AGX Orin for processing via a second Ethernet connection. The IMU is connected to the USB 

interface of the NVIDIA Jetson AGX Orin using an RS232-to-USB transmission line. 

 

 



2 EVS38 International Electric Vehicle Symposium and Exhibition  

 
Figure 1: System Communication Diagram 

 

2.2 Robot Operating System 

ROS (Robot Operating System) is a software framework designed for robotic system development, which 

can be broadly divided into three layers: the community layer, the computational graph layer, and the file 

system layer. The computational graph layer plays a crucial role in data processing and program execution 

within ROS. This layer primarily includes four key concepts: node manager, node, message, and topic. These 

concepts, along with other important components, are essential for the communication system. A diagram 

illustrating the communication system operation is shown in Figure 2. 

 

  
Figure 2: ROS Communication System Operation 

 

2.3 Coordinate Transform Tree 

In a robotic system, the TF (Transform) Tree is a fundamental concept used to represent the relationships 

between coordinate transformations within the robot or system, as illustrated in Figure 3. It describes the 

relationship between various coordinate frames in the system, typically represented as a Directed Acyclic 

Graph (DAG). In this graph, each node corresponds to a coordinate frame, and the edges represent the 

transformation relationships between them. The primary purpose of the TF Tree is to provide a mechanism 

for coordinate transformations, enabling different parts of the system to describe positions and orientations 

in various coordinate frames, and facilitating the coordination and merging of data across these frames. 
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Figure 3: TF Coordinates 

 

2.4 Simultaneous localization and mapping 

Simultaneous Localization and Mapping (SLAM) refers to the process by which a robot, starting from an 

unknown location in an unfamiliar environment, continuously detects features of objects in its 

surroundings—such as curbs, traffic lights, roadside signs, and other landmarks—using sensors while in 

motion. In the context of autonomous vehicles, SLAM allows the vehicle to simultaneously determine its 

position and orientation while incrementally constructing a map based on its current location, thereby 

achieving both localization and mapping in real time. 

 

3 Lidar-Inertial Odometry via Smoothing and Mapping 

3.1 LIO-SAM framework 

LIO-SAM (Lidar-Inertial Odometry via Smoothing and Mapping) is a SLAM method that integrates LiDAR 

and an IMU to facilitate robot localization and environmental mapping. This approach enables the generation 

of high-precision three-dimensional point cloud maps. The overall framework of LIO-SAM is illustrated in 

Figure 4 below. 

• Point cloud distortion: If the lidar is moving, then the point cloud becomes inaccurate due to the 
movement of the lidar, so it needs to be corrected for motion distortion. 

• Feature extraction: Feature points are extracted by the smoothness of each point. 

• IMU pre-integration: The high-frequency data released by the IMU is used to correct the attitude of 
the vehicle, so that the LiDAR odometer can achieve higher accuracy. 

• Mapping optimization: Mapping optimization is to iteratively update the image data through the 
Gauss-Newton Method (GNM).  
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Figure 4: LIO-SAM Overall Framework 

 

3.2 LIO-SAM process 

As shown in Figure 5, Matches are made using keyframes, and the frames between keyframes are discarded. 

(thresholds set at 1m and 10 degrees), there are four factors in total: 

• Orange: IMU pre-integration factor. 

• Green: LiDAR odometer factor, laser "key frame" and "voxel map composed of the previous N key 
frames" are matched. 

• Yellow: Global Positioning System (GPS) factor is added when the variation of the estimated pose is 
greater than the variation of the GPS position. 

• Black: Loopback detection factor, which is obtained by matching 2m+1 key grid diagram adjacent to 
both the key grid and the candidate key grid. 

 

 
Figure 5: LIO-SAM Overall Process 

 

3.3 Point cloud distortion 

Since LiDAR captures a frame of point clouds by emitting laser beams in a 360-degree circle, the points 

within a given frame are detected at different times. If the LiDAR is moving during the emission of the laser 

beams, the point cloud becomes distorted due to the movement of the sensor. Therefore, it is necessary to 

correct for this motion distortion. 

As illustrated in Figure 6, based on the timestamp of each point in the point cloud for each frame, the 

rotational and translational transformations from each point to the starting point of the frame are calculated. 

Subsequently, each point is transformed into the coordinate system of the starting point. 
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Figure 6: Movement Deformation 

 

3.4 Feature extraction 

Before extracting the feature points, clustering is performed on the point cloud. Point cloud clusters 

containing fewer than 30 data points are considered noise, while the remaining points represent relatively 

static objects. Feature points are then extracted based on the smoothness of each point. Points with 

smoothness above a certain threshold are classified as edge points, while points with smoothness below the 

threshold are considered planar points. The smoothness of each point is estimated based on the average 

distance to neighboring points before and after the laser line is imaged. 

To ensure a more uniform distribution of feature points, the entire image is divided into six horizontal sub-

images, and feature points are extracted from each sub-image. For each laser beam in each sub-image, the 

number of edge points is limited to 20, while there is no restriction on the number of planar points. The 

smoothness of a point can be calculated using the following formula: 

 

𝑐 =
1

|𝑆|˙‖𝑟𝑖‖
‖∑ (𝑟𝑗 − 𝑟𝑖)𝑗∈𝑆,𝑗≠𝑖 ‖     (1) 

S A collection of point clouds of the same harness 

r The coordinate distance from a point cloud to the origin 

 

3.5 GTSAM 

• Variables: Each vertex in the factor graph is a substitute variable. Suppose we only need to solve the 

robot pose at each moment, then each vertex is the robot pose at that moment, as shown in Figure 7, 

X1,  X2,  X3. 

• Values: The values are the values for each variable. When calling the optimizer to optimize the factor 

graph, we need to set the initial value for each variable first, and then take out the optimized value of 

each variable from the optimizer after the optimization is completed. 

• Factors: Factors are edges in a graph of factors, and each factor can be treated as a constraint. For 

example, between two consecutive poses, the IMU can calculate the transformation of two poses, which 

is connected by adding a factor graph as an edge (binary factor). Or at some point there is a GPS data 

input, the GPS data is an observation, or it can be added to the factor plot as a factor, and only one end 

of the GPS edge is connected to the variable (unary factor). 

 

 
Figure 7: Factor Plots 
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3.6 IMU pre-integration 

The IMU can output three-axis acceleration, three-axis angular velocity, and three-axis geomagnetometer 

data (nine-axis IMU) in the vehicle coordinate system. It is known that the integral of acceleration provides 

velocity, the integral of velocity gives distance, the integral of angular velocity gives the angle, and the 

geomagnetometer can calculate the declination angle relative to the geomagnetic north pole. However, 

regardless of the precision of the IMU, it is challenging to maintain high accuracy over extended periods, as 

integration accumulates errors. This limits the IMU's odometry to short-term pose corrections. 

In contrast, the frequency of LiDAR data output is approximately 10 Hz, which is much lower than the IMU's 

frequency. Therefore, for every LiDAR data release, the IMU may output data up to 10 times. As shown in 

Figure 8, the high-frequency data from the IMU is used to correct the vehicle’s attitude, thereby enhancing 

the accuracy of the LiDAR odometry. 

 

 
Figure 8: IMU Pre-Integrated Squad 

 

3.7 Mapping optimization 

The point cloud matching of the LiDAR odometer is based on point-to-line and point-to-surface distances, 

and most of them are solved using the least squares method. The GNM also updates the algorithm through 

iterative updates, and the focus of each step of the algorithm is to find the update direction and step size of 

the unknown quantity, and each step superimposes the updated vector on the unknown quantity, so that the 

objective function gradually converges. As shown by the following formula: 

 

𝐹𝑖
𝑚 = 𝑅𝑖𝐹𝑖 + 𝑡𝑖      (2) 

𝑇𝑖 = [𝑡𝑥,𝑡𝑦 , 𝑡𝑧 , 𝛼, 𝛽, 𝛾] = [𝑅, 𝑡]     (3) 

𝐹𝑖
𝑚 Map point cloud coordinate system  

𝐹𝑖 Lidar point cloud coordinate system 

R Rotation matrix 

t translate vector 

After obtaining the lidar odometer, it will give priority to judging whether there is a set IMU pre-integration 

data in the received message, and if so, the data will be used as the initial value of the point cloud, otherwise 

the IMU angle increment will be used as the initial value, and not all radar frames will be regarded as 

keyframes, and only if the pose difference from the previous keyframe is large enough will it be adopted as 

keyframes; Once the keyframes are found, loopback detection can be performed. 
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3.8 Loopback detection 

By checking whether the current position is already the position that has been reached, and matching the 

poses of the repeated positions. As shown in Figure 9, X5 and X2 form a loop, and through the constraints 

between the loops, it provides strong information to the factor graph optimizer, so that the overall pose 

estimation reaches the global optimal state. However, the distance between X5 and X2 needs to be less than 

or equal to 15 meters to achieve the loopback condition; Loopback detection uses the Iterative Closest Point 

(ICP) algorithm to calculate the latest keyframe to match the point cloud at the location where the loop may 

form a loop, and the loopback result is only accepted if the match score is very good. 

 

 
Figure 9: Loopback Detection 

 

Loopback detection steps 

Step 1: Find the historical pose and find the point cloud that is closest to the current pose and has a long 

interval from the current pose. 

Step 2: Take the historical pose as a candidate, iterate with the ICP algorithm, correct the pose, compared 

with the Cartographer, Lightweight and Ground Optimized LiDAR Odometry and Mapping (Lego-LOAM) 

algorithm, its default offset is smaller, if the offset is larger, it cannot be corrected, the distance of the offset 

needs to be less than or equal to 15 meters, and the loop detection does not have the function of repositioning, 

because the premise of this algorithm is that you need to know your approximate position, and match the 

nearby position in history, and then correct the pose. 

 

3.9 Iterative Closest Point 

The basic concept of this algorithm is to continuously adjust the pose of one-point cloud or model in an 

iterative manner so that it is as aligned as possible with another point cloud or model. In each iteration, the 

ICP algorithm makes them closer together by finding the most matching pairs of points in two-point clouds 

and then calculating the transformations between them (usually translation and rotation). This process 

continues to iterate until a stop condition is met, such as reaching the maximum number of iterations or 

reaching a small enough error. 

 

IPC- Euclidean distance formula 

𝑒𝑖𝑗 = ‖𝑇0𝑝𝑖 − 𝑞𝑖‖     (4) 

𝑇0 = [𝑡𝑥,𝑡𝑦 , 𝑡𝑧 , 𝛼, 𝛽, 𝛾] = [𝑅, 𝑡]     (5) 

R Rotation matrix 

t translate vector 

𝑝𝑖 Previous point cloud 

𝑝𝑗 Behind point cloud 
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3.10 CloudCompare Point cloud processing software 

CloudCompare is a 3D point cloud (mesh) editing and processing software that utilizes a specialized octree 

structure. It is capable of handling large-scale point clouds, often exceeding 10 million points. Additionally, 

CloudCompare offers display enhancement tools (such as custom color gradients, color and normal 

processing, calibrated image processing, Open Graphics Library (OpenGL) shaders, and plug-ins) and 

filtering algorithms (including low-pass filtering, pass-through filtering, bilateral filtering, Gaussian filtering, 

statistical filtering, and cloth simulation filtering). In this paper, CloudCompare is used to remove noise and 

align the map data from different areas of the campus by matching and superimposing point clouds, enabling 

the detection of errors when map data overlap. 

 

4 Experimental results 

4.1 LiDAR range test 

In this study, a range test of LiDAR is performed to evaluate its measurement accuracy and error 

characteristics. By placing the test object at different distances, the test starts at 1 meter and ends at 15 meters, 

measuring every 1 meter. The test results show that the actual distance and the average distance measured by 

the LiDAR are 2.91 cm, and the maximum error distance is 4.77 cm, both of which are within the ±3 cm of 

the average value of the LiDAR measurement, so there is no need to make accuracy correction. The 

measurement result is shown in Figure 10, and the error distance is shown in Figure 11. 

 

 
Figure 10: Actual distance and Lidar distance 

 

 
Figure 11: Measure distance error 
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4.2 Static testing of IMU 

In this study, the acceleration, angular velocity and vector values of the IMU were analyzed by performing a 

static test of the IMU. The measured analysis data is imported into the LIO-SAM algorithm, because the 

IMU is a high-frequency published message, which can improve the accuracy and reliability of the algorithm. 

As shown in Figure 12 and Figure 13 and Figure 14, the acceleration, angular velocity, and vector values for 

the three axes, respectively. 

 

 
Figure 12: Static Measurement of Acceleration 

 

 
Figure 13: Static Measurement of Angular Velocity 

 

 
Figure 14: Static Measurement of Vector 

 



10 EVS38 International Electric Vehicle Symposium and Exhibition  

4.3 Overlapping images 

In this study, the CloudCompare point cloud processing software is used to extract and match the LiDAR 

point cloud map of each region, and compare the LiDAR point cloud map of each region with the actual 

navigation map, as shown in Figure 15. In the matching process, the root mean square (RMS) value of the 

overlapping of the map data is 0.151257 meters. According to the classification standards of the cited map 

data, the error of high-precision map data should be within 0.3 meters. As shown in Figure 16, six zones 

exceeded the overall mean error, with three zones (zones 5, 13 and 14) exceeding the 0.3 m specification. 
 

 
Figure 15: Top View and Map 

 

 
Figure 16: Root Mean Square Error Value 

 

5 Conclusion 

During the course of the project, we utilized two types of sensors and, through program development and 

implementation, obtained physical layer information of both the map and objects. We validated the accuracy 

of the sensing methods and algorithms through repeated experimental measurements, reducing the average 

error of the generated map to below 30 cm. Finally, by employing sensor fusion techniques, we integrated 

and aligned data from multiple sensors with the vehicle's coordinate system. 

At present, the overall error of the image data produced by this method is 15 centimeters on average, and it 

is necessary to further increase the accuracy of the map data and improve the factors that may affect the 

accuracy of the map data, such as: vibration of the vehicle when the map is established, the correction 

problem of the sensor itself, filtering of the unfiltered sensor when the sensor data output, and the time 

accuracy of the sensor fusion. In the future, these problems can be improved or solved, for the time being, 

the vibration of the vehicle can be solved by improving the tires or chassis to solve the vibration problem 

during mapping; In the future, the time of the sensor time alignment problem can be used to align the time 

of the data release of the two data through the method of time stamping, so as to improve the output result. 
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