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Executive Summary

Integrating Artificial Intelligence (AI) technology in electric vehicles (EV) introduces unique challenges
for safety assurance, particularly within the framework of ISO 26262, which governs functional safety
in the automotive domain. Traditional assessment methodologies are not geared toward evaluating Al-
based functions and require evolving standards and practices. This paper explores how an independent
assessment of an Al component in an EV can be achieved when combining ISO 26262 with the recently
released ISO/PAS 8800, whose scope is Al safety for road vehicles. The Al-driven State of Charge
(SOC) battery estimation exemplifies the process. Key features relevant to the independent assessment
of this extended evaluation approach are identified. As part of the evaluation, robustness testing of
the Al component is conducted using fault injection experiments, wherein perturbed sensor inputs are
systematically introduced to assess the component’s resilience to input variance.

1 Introduction

ISO 26262 [1] is the international standard for functional safety (FuSA) in road vehicles, focusing on
reducing risks from system malfunctions through structured processes and safety mechanisms. For au-
tomated driving/advanced driver assistance systems (AD/ADAS) there is also the complementary ISO
21448 safety of the intended functionality (SOTIF) standard [2l]. However, these lacks specific guid-
ance for addressing Al safety, particularly in managing AI’s black-box nature and data dependency. The
black-box nature of Al limits transparency and traceability in decision-making, while its data dependency
means that the quality and representativeness of training data significantly influence system behaviour.
These characteristics create gaps in traditional safety assessments, requiring new approaches to evaluate
and ensure the safety of Al-driven systems.

This paper explores expanding FuSA assessment evaluations using the new ISO/PAS 8800 [3]], which
discusses safety and artificial intelligence in road vehicles. This extension addresses gaps by identifying
and mitigating systematic faults and insufficiencies in Al systems to ensure safety during development
and beyond. To this end, one may conduct independent assessments on an assurance case on a heteroge-
neous set of evidence from various test environments that align with multi-pillar methodologies such as
those described in NATM (new assessment/test method for automated driving) [4] , which are relevant
for AD/ADAS systems.

The main challenges in assessing Al systems within a safety assurance framework include evaluating
performance robustness and identifying performance insufficiencies. Performance robustness refers to
the system’s ability to maintain safe operation under expected variations and disturbances within the
operating conditions. Performance insufficiency occurs when Al systems fail in unanticipated scenarios
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due to technical limitations. Addressing these issues is critical in FuSA and SOTIF to ensure that systems
meet essential performance standards, even in dynamic or unpredictable environments. Systematic faults
in Al design further complicate safety assessments. Al systems trained on operating data are prone to
subtle design flaws that may introduce hidden hazards, which may only become evident under specific
conditions. Clear guidance is therefore needed to manage these risks, ensuring that Al systems remain
robust throughout the design and deployment phases.

This work extends conventional FuSA assessment for Al-based state of charge (SOC) systems to address
Al-specific challenges, including training data quality and validity. It identifies safety cages as key
architectural elements aligned with ISO 26262 and proposes them as a natural interface for integrating
ISO/PAS 8800 to address core Al-related measures. Robustness evaluation is conducted using fault
injection experiments, where systematically perturbed sensor inputs are applied to investigate an Al
component’s failure characteristics. This can provide evidence of the Al components’ behavior under
abnormal and unforeseen conditions, thereby ac?dressing some inherent uncertainty in assessing Al-based
components.

2 Integrating Al in Safety Assurance

Several safety-related standards for electric/electronic (E/E) systems in road vehicles may apply to the
context of Al systems. The primary safety standard, ISO 26262, covers functional safety, including
systematic and random hardware faults for all E/E systems in road vehicles. For systems with complex
sensors, such as cameras, lidar, or radar, which is especially relevant for ADAS and AD functions,
ISO 21448 [2] additionally covers functional insufficiencies. These include performance limitations in
technical abilities (e.g., sensor performance) or insufficiencies in the specification, when either of these
insufficiencies can lead to hazardous behaviour under some relevant conditions (triggering conditions).
The safety of Al systems is covered in ISO/PAS 8800, which is developed to be used in conjunction
with the two aforementioned standards. Figure [I] illustrates how these standards are interrelated, i.e.,
depending on the function under development, using two or all three may be necessary. This paper and
the SOC case study focus on ISO 26262 and ISO/PAS 8800, which are sufficient for a system without
complex sensors. As mentioned above, a similar integration must include ISO 21448 for systems with

complex sensors.

1SO 26262 in conjunction with ISO 21448
Safety-related E/E functions where functional
insufficiencies are contributing causes of

ISO 26262 in conjunction with ISO/PAS 8800
Safety-related E/E functions with Al systems
(which are outside scope of ISO 21448)
hazardous events

1SO 21448 ISO/PAS 8800

1SO 21448 in conjunction with ISO/PAS 8800
Functions where functional insufficiencies are
contributing causes of hazardous events and

contains Al systems

Figure 1: Relationship between road vehicle safety standards ISO 26262, ISO 21448, and ISO/PAS 8800 for use
when developing functions with AI components.

A first step to integrate Al in safety assurance is to define for which parts ISO 26262 is still applicable
and when it needs to be tailored to use ISO/PAS 8800 [3]]. The latter defines an Al system as a top-
level abstraction for Al-based functionality, an element containing one or more Al components. An Al
component may be a pre- or post-processing component or an Al model, where the latter is a construct
making inferences based on some input, e.g., a trained deep neural network with its weights and hyper-
parameters. As illustrated in Figure [2] the overall Al system and AI models fall within the scope of

ISO/PAS 8800. In contrast, the full itenﬂ and all non-Al system elements as well as Al components that
are not Al models fall within the scope of ISO 26262. For instance, a pre-processing component that is
not Al-based will be assessed under ISO 26262, even if it is also part of an Al system.

Based on this division, ISO/PAS 8800 proposes an Al reference lifecycle shown in Figure It is based
on the ISO 26262 development cycle, where safety requirements from the item under development are
decomposed and allocated to the system during the system development phase. ISO/PAS 8800 tailors
the ISO 26262 development cycle by adding that Al-related safety requirements are allocated to the Al
system as illustrated on the left side of Figure 3] These requirements may also need to be adjusted during
development and continuous assurance activities during operation in cases where the Al system cannot

'Ttem is the ISO 26262 term for a function at vehicle level that falls within its scope, i.e., a function containing E/E elements.
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Figure 2: Tllustration of applicability of ISO 26262 respectively ISO/PAS 8800 (based on [3]).

meet its safety requirements and related properties. Some of the reasons for this could be (i) difficulties
in finding suitable training and testing data, (ii) limitations in the ability to generalize to new operating
conditions, or (iii) insufficient evidence to demonstrate confidence in compliance with safety standards.
These challenges require iterative feedback between the Al system and the encompassing system’s safety
concept and requirements.
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Figure 3: View of lifecycle for vehicle functions containing Al systems (based on [l 3} 3]]).

2.1 System-level design and verification

In the development lifecycle, ISO 26262 [1] would verify system-level artifacts such as technical safety
concepts, safety requirements, architectural design, and architectural measures.

System-level design can also be adapted to increase the feasibility of fulfilling requirements allocated
to Al systems. This can be achieved by, e.g., restricting the allowed operating conditions, incorporating
diverse processing algorithms or sensing modalities, or implementing redundancy.

2.2 Al system verification

A key challenge in verification for most types of Al systems, including the most common type of machine
learning (ML), is that the Al model is largely opaque, i.e., it is not possible to inspect the model or use
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formal methods to determine if it fulfills the safety requirements. An inherent limitation of ML models,
in particular, stems from their reliance on training data, where data quality issues or training method
issues can result in unpredictable behaviour, especially in edge cases or rare conditions that deviate from
the training data distribution. Addressing this issue necessitates appropriate verification methods but
typically also robust fallback safety mechanisms capable of mitigating the potential consequences of
such unexpected behaviour.

Thus, choosing appropriate combinations of test methods to address these challenges becomes important.
Preferably, traditional safety-related test methods should be complemented with test methods specifically
targeting Al systems. Some examples of such test methods are:

» Gradient-based search methods using analysis of the Al model to guide the generation of test cases.

e Statistical testing, i.e., evaluation of performance metrics measurable on the model under test, e.g.,
precision and recall, with the desired confidence interval.

 Test cases designed with expert domain knowledge or based on reviews of the used model and data
set.

* Robustness testing, e.g., applying noise patterns or other disturbances in the input to measure the
model’s resilience to input variance.

» Use of explainability techniques for making the model’s decisions semi-transparent. It can be used
to understand how a model works and identify potential weaknesses or biases.

¢ Cross-validation, i.e., dividing the available dataset into several training/verification tuples to test
if the model is robust for different training sets.

» Sampling-based methods that can guide testing to areas in the input space with higher error prob-
ability.

There may be challenges in the physical testing of Al systems operating in complex environments, par-
ticularly for achieving sufficient coverage of edge cases. In those cases, virtual testing can be used
to complement physical testing. Virtual test platforms may also facilitate the generation of synthetic
datasets to address the challenges of achieving adequate distribution and coverage of the inputs to Al
systems. However, this requires the entire generation workflow to be validated and correlation with real
data to be made.

2.3 Al system validation

In addition to field testing, virtual testing techniques used for verification may also be used for validation
once integrated into the encompassing system, where they can be used to explore relevant scenarios
systematically and identify corner cases or abnormal situations. Methods for detecting out-of-distribution
data, i.e., input data that is not similar to the training data, can aid the evaluation [5].

2.4 Al system safety analysis

For the safety analysis of Al systems, the aim is to provide confidence that the risk of violating the
Al safety requirements at the Al system level due to Al errors is sufficiently low. The safety analysis
techniques should adequately identify hazards and their potential causes. Some off-the-shelf techniques
may be reused or enhanced to analyse Al systems. Examples of such techniques include fault-tree
analysis (FTA) [6]], failure mode and effects analysis (FMEA) [7], and hazard and operability analysis
(HAZOP) [8]]. While these techniques analyse systems with certain underlying assumptions, other state-
of-the-art techniques have been introduced with stronger assumptions to model Al systems [9, 10, [11].
If Al errors are identified as a result of testing, analyses are performed to evaluate their impact. Typically,
the analysis activities include risk evaluation, root-cause analysis, and risk mitigation. Risk evaluation
involves assessing the risk of a failed test to estimate the impact on safety. Root-cause analysis involves
identifying the underlying issues for the AI errors, which may be related to Al safety requirements,
datasets, or AI model design. After the risk evaluation and root-cause analysis have been performed, the
risks are mitigated through the definition of prevention, detection, and control measures for the identified
root causes. Thus, depending on the root cause, the mitigations may involve changes to the Al safety
requirements, Al model, dataset, or the Al development process.
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Figure 4: SOC estimation methods: Traditional estimation li and Al-based estimation lb

3 Case study: Al-based SOC estimator for EV battery

The SOC (state of charge) measures the remaining charge in a battery, typically expressed as a per-
centage of its total capacity. In EVs, SOC provides critical information for range estimation and safety
functions, such as preventing overcharging and deep discharging in battery management systems (BMS).
Failure to accurately measure SOC can result in overcharging, potentially causing excessive heat gener-
ation, electrolyte decomposition, and, in extreme cases, thermal runaway. Estimating SOC in batteries
is challenging due to their nonlinear behavior and dependency on operating conditions such as temper-
ature, aging, and discharge rates [12]]. Figure 4a shows a traditional SOC estimation method that relies
on coulomb counting, which measures the charge entering and leaving the battery; open-circuit voltage
analysis, which maps the battery’s voltage at rest to its SOC; and physics-based electrochemical models.
Recently, however, Al-based SOC methods have gained traction due to their ability to model batteries’
complex and nonlinear behaviour; such an estimator is illustrated in Figure b]

3.1 Al-based SOC estimator with monitor

Additional Voltage Input
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Figure 5: Actuator/Monitor Architecture safety patterns: General where SIL = safety integrity level) and
applied to AI SOC estimation @I) from Figure

A well-known safety pattern is to encapsulate a more complex function, where ensuring safety is difficult,
by adding a simpler monitor to restrict the output of the complex function to safe ranges. The complex
component will, in normal operation, provide better performance. In comparison, the monitor intervenes
when the complex component fails but provides lower performance or keeps the system safe. Figure

illustrates this pattern. Input signals go to the complex component (actuator) and the monitor. There
are some variations of the pattern, but in this example, the monitor can inhibit the actuator’s output if
the output calculated by the actuator component is outside the safe range. The advantage of the pattern
is that the safety requirements can be allocated to simpler components that are feasible to develop with
a high safety integrity level (SIL). However, it is important to realize that the monitor must be able to
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intervene in all failure modes of the complex component. If not, there will be a shared responsibility
where the complex component will still be assigned some safety requirements.

In Al this pattern is sometimes called safety envelope or safety cage [13] and means there is a non-Al
component monitoring the Al component. Figure @] shows our case study SOC estimator using this
pattern to handle some of the fault modes; a monitor uses voltage and temperature to be able to inhibit
the SOC output such that thermal runway, the most critical consequence of erroneous SOC estimation,
can be avoided.

3.2 Al-Specific Safety Assessment Features for SOC

The SOC estimator functions as a sensor and is subject to the same typical failure modes as conventional
sensors. A detailed analysis is necessary to ensure its safety and proper functionality. As outlined in ISO
26262-5 Table D.9, the typical failure modes for sensors include out-of-range signals, offset errors,
signals remaining stuck within a valid range, and oscillatory behaviour.

In addition to these standard failure modes, Al-based SOC estimation systems introduce at least two
add(iitional assessment considerations due to their potential contribution to the abovementioned failure
modes.

Training Data Quality and Relevance: The performance of Al systems heavily depends on the quality
of their training data. The data must be relevant, sufficiently representative, and as complete and error-
free as possible. Inadequate or biased training data can lead to poor generalisation and incorrect SOC
estimates.

Validity of Training Data Over Time: Training data is inherently limited to the conditions under which
it was collected and cannot guarantee universal validity in future operational scenarios. To mitigate this,
in-service monitoring must continuously verify that the assumptions and assertions made during training
remain valid in the operational environment.

Given the fault modes and unique characteristics of Al systems, ensuring the safety of an Al-based SOC
estimation system requires a careful assessment to confirm the existence of appropriate safety measures
and evidence of their effectiveness, i.e., test results, that address both traditional and Al-specific chal-
lenges. The selection of test methods (Table [I)) for each safety mechanism is based on their specific
objectives in ensuring system safety. Methods for obtaining evidence of the correct implementation of
functional and technical safety requirements at the system level are selected from ISO 26262-4, Table 9.
Similarly, methods for validating correct functional performance, accuracy, failure mode coverage, and
the timing of safety mechanisms at the system level are chosen from ISO 26262-4, Table 10.

Table 1: Safety Mechanisms, traditional Test Methods, and Assessment Aims adapted from ISO 26262-5 Table
D.9 — Sensors

Measure Name | Test Methods Assessment Aim

Input compari- | Fault Injection Test, Error Guess-
son/voting ing Test

Assess ability to detect discrepancies across redundant
inputs or models, e.g., offset errors and signals stuck
within a valid range.

Sensor correla- | Performance Test, Fault Injection
tion Test

Assess ability to detect inconsistencies between sensors
and mitigate sensor drifts in SOC estimation, e.g., offset
errors and oscillatory behaviour.

Sensor rational- | Error Guessing Tests derived from
ity checks Field Experience

Assesses the ability to detect implausible outputs and
maintain SOC plausibility using diverse inputs, e.g., off-
set errors and out-of-range signals.

When mapping safety measures for an SOC sensor implemented according to the architectural pattern
depicted in Fig|5a, some responsibilities fall to the monitor component and can, therefore, be addressed
using traditional Tunctional safety measures and test techniques listed in Table [T However, as listed
below, certain sensor-related Al-concerns (AIC) pertain s%)eciﬁcally to the Al-based SOC estimation.

Thus, they require the integration of an ISO/PAS 8800 tai

ored process, depicted in Figure [6] and test

techniques selected from Section [2.2]to provide evidence of safety objectives fulfillment.

AIC1 Detecting failures through online monitoring, emphasizing evaluating the system’s ability to iden-
tify deviations in behaviour during normal operation and to manage anomalies in the Al model.
This includes detecting conditions such as signals remaining stuck within a valid range and

oscillatory behaviour.

AIC2 Assessing the Al model’s capability to detect static failures and deviations by employing test
patterns that compare the AI’s output against expected behaviours. Relevant fault modes include
signals remaining stuck within a valid range and offset errors.
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Figure 6: Hierarchical decomposition of the Al SOC estimator in Figure The green colour indicates elements
subject to the ISO/PAS 8800 tailored process.

AIC3 Validating sensor input ranges by verifying the system’s ability to detect and appropriately respond
to out-of-range signals, ensuring that SOC estimation remains reliable despite invalid sensor data.

The list of concerns was compiled through a systematic assignment of each measure specified in ISO
26262-5 Table D.9 to either the monitor or the actuator based on their functional relevance. It sub-
sequently identifies the measures and fault modes that the Al-based component of the sensor should
address. In this context, particular attention is given to fault modes that may result in underestimating
the state of charge. This condition is closely associated with the most severe hazard, battery outgassing
in the passenger compartment.

3.3 Experiments

Robustness testing, described in Section [2.2] such as applying noise patterns or other disturbances to the
inputs to evaluate the model’s resilience to input variance as described in constitutes an appropri-
ate approach to provide evidence for the mitigation of failures related to the underestimation hazard. An
example of such testing is investigated in the following Sections.

3.3.1 Experimental method

Fault injection test is a common method for evaluating safety measures, which involves accelerating
the occurrences of faults for evaluating the dependability and cybersecurity properties of systems [14].
Fault injection is performed by inserting artificial faults or errors into the system, often using simple
fault models such as stuck-at-0 and stuck-at-1 for permanent faults, which set the logic values to O or 1
respectively, and bit-flips which are typically used for transient faults, where the logic values are inverted.
The injected faults typically correspond to operational faults such as shortcuts, breaks, electromagnetic
disturbances, radiation particle strillzes, etc. Still, they may also correspond to development faults, such
as programmers’ mistakes or flaws in semiconductor devices. In the case of evaluating cybersecurity
properties of systems, fault injection may also be referred to as attack injection [[15]].

Fault injection may be performed at many different abstraction levels and design stages, depending on
the availability of system models or physical prototypes. Common fault injection techniques include
simulation-based and physical techniques. Simulation-based techniques are typically used at early devel-
opment stages where faults may be injected into hardware-, software- or system models, i.e., model-level
fault injection. Physical fault injection is used to inject faults at the hardware level at later development
stages when the actual physical system or prototype is available. Common physical techniques include
pin-level- and radiation-based fault injection and other methods, e.g., using debug/test logic, EMI, or
power supply disturbances. Additional software for injecting faults 1s typically referred to as software-
implemented fault injection (SWIFI). SWIFI is an attractive technique commonly used for its flexibility
and cost-effectiveness compared to other techniques. Two main approaches are used: Runtime injec-
tion, which injects faults during system operation, and pre-runtime injection, which injects faults before
system operation.

The stuck-at fault model is commonly used in fault injection experiments and is often applied on a single
logic value (or bit), which is permanently set to 0 (stuck-at-0) or 1 (stuck-at-1) in the target system for
each experiment. Apart from being a common fault model used for emulating the effects of permanent
hardware faults, stuck-at faults are also part of the failure modes for sensors outlined in ISO 26262-5
Table D.9. A survey of papers from five major conferences on dependability (DSN, ISSRE, SafeComp,
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PRDC and EDCC) published during the last 6 years (2019—2024 reveals that SWIFI is commonly used
for evaluating Al-based systems and that that the stuck-at fault model is often used, e.g., [16} 17, [18]].

Conducted experiment Following the above paragraph, we chose to perform our fault injection exper-
iments on the Al-driven SOC estimation system using pre-runtime SWIFI with the stuck-at-fault model
applied to multivariate input signals of an AI SOC estimation system. To detect aberrations, we compare
predictions for the SOC from original data with those from data corrupted via stuck-at fault injection
using absolute deviation and Root Mean Squared Error (RMSE).

3.3.2 System under test

The experiments investigate how pre-runtime injection of stuck-at faults into the test data affects the
model’s SOC estimations. The injected bits of the test data are part of Float 64 values representing
”Voltage,” ”Current,” or ”Temperature” inputs, which the model receives at each time instance (referred
to as “’steps”).
The specific model used for the experiments in this paper is a Recurrent Neural Network (RNN) with
Long Short-Term Memory (LSTM) cells, as presented in [[19]. This model generates a SOC percentage
prediction by processing the information from a fixed number (V) of preceding steps. Consequently, one
prediction is generated every Nth step, independent of other predictions made. Model parameter values
shown to provide good performance with uncorrupted data were selected for the experimental setup.
The modefperforms WeIII) with room-temperature data (25°C) and when trained to process 300 steps of
preceding information for each SOC prediction. A pre-trained model with these specifications, along
with a Python implementation for SOC estimation, is provided by the authors of [19] and utilised in this
gaper. The implementation normalises input (Voltage, Current, Temperature) values from the dataset to
e within the range of zero to one before the model receives them. Said model has been trained and
tested using the "LG 18650HG?2 Li-ion Battery” dataset, available at [20]. Although the training data
only consists of six mixed discharge cycles, we believe that the results obtained with the available dataset
are illustrative for cycles involving charging as well. In any event, incorrect SOC estimations may have
potential safety implications, e.g., if the estimated SOC is too low at the end of a discharge cycle when
the charge cycle begins.
Single stuck-at-0 or stuck-at-1 faults are injected at the start of the entire discharge cycle for each exper-
iment. The faults are systematically injected into bits 3 to 64 for each 64-bit floating point value of the
inputs (Voltage, Current, Temperature). The initial two bits are exempted, as the resulting value of the
injected float may be large enough to trigger exceptions in the programming code rather than affecting
the model’s SOC output.

3.3.3 Results

Effect of Stuck-At 0 per input type, prediction-level Effect of Stuck-At 1 per input type, prediction-level
0.8 | Exponent —— Voltage 0.8 4 Frponent Voltage
o Current o Current
0.6 plef e Temperature 0.6 plef e Temperature
£a) £a)
Z 041 < 041
~ ~
0.2 1 0.2 -
0.0 > 0.0
IRAARARL L LR AL L L T T LR L L LR T
3 12 64 3 12 64
Stuck Bit Position Stuck Bit Position
(@) (b)

Figure 7: RMSE between SOC predictions from original and corrupted data for stuck-at faults injected into bits
3-64 of input type sensor, which are in turn a series of F1oat 64. [7al stuck-at 0;[7b} stuck-at 1.

Figures[/a| (stuck-at-0) and [7b|(stuck-at-1) displays the results for each input type, where the experiment
consisted of injecting a stuck-at fault into a single bit in the very beginning of the discharge cycle, and
comparing the resulting SOC predictions with those from the uncorrupted data. Each point in the plot

The survey in question is not yet published.
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represents the RMSE value for the whole discharge cycle. Whether the flipped bit was in the exponent
or significand of the F1loat 64 is highlighted in this plot, since the former has a greater impact on the

floating point’s Valueﬂ In this experiment, it appears that the sensors differ in how much they affect the
model’s predictions, with fault injections in ’Voltage” causing the largest errors, followed by ”Current”
and finally Temperature”. Furthermore, bits in the significand have a starkly decreasing (with bit index)
influence on the results. As the data was normalised in [19] to the range [0; 1], bits 3 to 10 all have the
value ’1’ for all sensors and at every step. Thus, stuck-at 1 has no effect for these bits, and effects only
become visible for bits 11 and higher. For stuck-at 0, we see the reverse effect, as now making the first
bits in the exponent stuck at 0’ leads to significant RSME of the predictions.

Effect of Stuck-At 0 per input type, data-level Effect of Stuck-At 1 per input type, data-level
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Figure 8: RMSE between original and corrupted data for stuck-at faults injected into bits 3-64 of each input type,
which are in turn a series of Float 64. @ stuck-at O; @ stuck-at 1.

Figures [8a] and [8b| show the RSME deviations not on the level of the model’s predictions, but on the
level of deviations between the original data and the corrupted data. These results mirror those from the
predictions above and show that large deviations in the predictions are tied to large deviations in the data.
Furthermore, it appears that even though the effect of stuck-at-0 on temperature is the largest on a data
level, on a prediction level it is the smallest (see Figure [/a). This suggest that an internal (and opaque)
weigh(tiing of inputs by an Al model can make it difficult to predict behaviour from only looking at the
1nput data.

Figure [% illustrates the Absolute Deviation for each prediction of SOC throughout the discharge cycle
for stuck-at-1 faults. This visualisation enables the analysis of the model’s behaviour at various stages of
the discharge cycle. For clarity, the figure displays only the effects on exponent bits (bits 3 to 12).

As previously mentioned, bits 3 to 10 already have the value 1 at the start and are unaffected by the
injected stuck-at-1 faults; thus, no sensitivity is observed for these bits as a function of SOC Eercentage.
However, significant influences from the Voltage input begin at bit 11 and below 44% charge. For
Current, the influence of bit 11 is less pronounced but more spread out throughout the discharge cycle.
For Temperature, only bit 12 has an effgct.

Additionally, the largest zone of impact appears at different locations for each input type. For Voltage,
this occurs at bit 11 below approximately 44% charge. For Current, it occurs at bit 12 above roughly
72.6% charge, and for Temperature, at bit 12 below 32.9% charge.

The behaviour observed in Figure glaligns with the results presented earlier in Figure where the
RMSE value increases only when a high exponent bit (11 or 12) is stuck-at-1. The mechanism through
which this affects the model’s predictions is challenging to determine without a thorough understanding
of its inner workings. However, as previously stated, the different input types (Voltage, Current, Temper-
ature) may be subjected to various internal weighting. Both Figures and [0 demonstrate that significant
deviations from the original predictions can occur if the exponent bits of the model’s inputs are altered.
To understand the varying impact of stuck-at faults on the Absolute Deviation at different locations
for each input type in Figure 9] one needs to examine the changes in Float 64 values throughout the

discharge cycle. Although all model inputs are normalised within the range [0; 1], as stated earlier, they
can still differ in how much of this interval they utilise. For Float64 in the range (1;0), it is true
that bits 3-10 are all 1, while bits 11 and 12 are 10 for values in (1;0.5] and 012 for values in (0.5;0).

During our tests, we observed that Temperature remains relatively stable throughout the discharge cycle
with a value close to 1. In contrast, Voltage and Current fall from values close to 1 to values below

3The Float 64 standard is specified in IEEE 754: Bit 1 is the sign, bits 2-12 are the exponent, and the remaining bits
compose the significand or mantissa
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Figure 9: Absolute Deviation between SOC predictions from original and corrupted data throughout the discharge
cycle. Stuck-at 1 faults injected into bits 3-12 of each input type, which are in turn a series of Float 64.

0.5 during the discharge cycle. Thus, the sensitivity to stuck-at-1 faults changes depending on the data
value, explaining the patterns seen in Figure[9} Temperature is only sensitive in bit 12, while Voltage and

Current are sensitive even in bit 11 if their value falls in the interval (0.5, 0).

Summary The experiments underline that stuck-at faults can cause significant deviations from the Al
component’s original predictions, potentially resulting in undesired behaviour, such as markedly inaccu-
rate SOC predictions. These findings highlight the critical importance of detecting errors like stuck-at
faults in the input data using the monitor system proposed in Section[3.1]

4 Conclusions and future work

This work addresses the challenges of ensuring the safety of Al-based systems, focusing on SOC es-
timation. The main contribution, besides an introduction for integrating Al in the V-Model for safety
assessments, is the identification of the architectural element of the safety cage as a good candidate for
demarcation and interface between traditional, Al-independent measures aligned with ISO 26262 and
Al-dependent measures requiring alignment with emerging standards like ISO/PAS 8800. Our experi-
ments underline how sensitive an AI SOC prediction model can be to common faults such as stuck-at.

Future work will enhance the multi-concern assessment framework [21] by integrating new Al findings
and refining methods to address data quality, in-service monitoring, and fallback strategies for Al-based

systems. Furthermore, we will analyse the effects of additional failure modes from [AICT] [ATC2] [AIC3]

on Al SOC prediction, and investigate the quality and relevance of using training data with faults already
applied in order to improve the robustness of the Al-driven SOC estimations. Finally, it will evaluate the
effectiveness of the safety monitor itself.
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