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Abstract 

The primary objective of this study is to propose an error compensation method for millimeter-wave 

(mmWave) radar aimed at improving the accuracy of obstacle distance detection in road environments. The 

proposed approach enhances the reliability of braking decisions by generating high-confidence data, thereby 

contributing to the safety of passengers and other road users. By employing a straightforward yet effective 

compensation strategy, sensor-induced errors can be significantly reduced. Moreover, within the framework 

of the Sustainable Development Goals (SDGs), the advancement of autonomous vehicle radar sensing 

technologies aligns with SDG 9: Industry, Innovation, and Infrastructure. In particular, improvements in 

sensing capabilities support the development of more advanced traffic monitoring and control systems. 

Experimental results validate that the proposed method enables the implementation of a simple, robust, and 

effective navigation strategy. 
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1 Introductions 

Millimeter-wave (mmWave) radar plays a pivotal role in autonomous driving by enabling the accurate 

detection of moving objects and obstacles in the surrounding environment, thereby ensuring vehicle 

operational safety [1]. However, measurement errors in distance estimation significantly impact radar 

accuracy, particularly at short ranges, where their effects become more pronounced [2]. Traditional radar 

metrology often assumes ideal far-field conditions. However, in near-field scenarios, the radar beam 

illuminates only a limited portion of the target, and the received echo signals are influenced by local 

geometric variations, leading to unstable measurement results [3]. 

Moreover, measurement errors in mmWave radar are strongly correlated with beam characteristics, Radar 

Cross-Section (RCS) fluctuations, and multiple reflection effects. In near-field conditions, the radar beam 

propagates as a spherical wave, causing the incident angle to vary with distance, thereby affecting the 

accuracy of RCS measurements [4,5]. Due to the constrained spatial coverage of the radar beam in near-field 

environments, multiple reflections and diffraction effects are more pronounced, leading to amplified RCS 

fluctuations and exacerbated measurement errors. Notably, at very short measurement distances, the polar 

plot of the reflection coefficient exhibits a distorted spiral pattern with a shifting center, introducing nonlinear 

phase-to-distance errors that necessitate additional compensation to improve measurement precision [6]. As 

the measurement distance increases, the spherical wave gradually transitions to a plane wave [7], resulting 
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in broader beam coverage, stabilized target echoes, and enhanced reliability in distance measurements [8].  

To mitigate measurement errors in mmWave radar, extensive research has explored multi-sensor fusion 

techniques, which substantially improve measurement accuracy. For instance, integrating optical cameras 

with mmWave radar compensates for the radar’s inherent limitations in angular resolution [9], while LiDAR 

technology enhances depth perception and target localization capabilities [10]. Kalman filtering (KF) is 

widely employed in multi-sensor data fusion to enhance environmental perception accuracy and suppress 

measurement noise [11]. The fusion of radar and optical image data further strengthens mmWave radar’s 

object detection capabilities, particularly under adverse weather conditions [12]. 

Given the critical role of accurate obstacle distance estimation in near-field conditions for preventing 

potential collisions, this study proposes an error compensation method for mmWave radar to enhance the 

precision of obstacle distance detection in autonomous driving applications. 

 

2 Integrated Sensor Architecture for Accurate Distance Measurement 

This study presents an efficient error compensation method aimed at mitigating distance measurement 

inaccuracies in sensor-based autonomous driving systems, thereby enhancing environmental perception 

precision. The proposed approach integrates a real-time correction mechanism to refine distance estimations 

relative to the vehicle’s position, facilitating more precise detection of surrounding vehicles, pedestrians, and 

obstacles. In addition to assessing the efficacy of the compensation mechanism in improving measurement 

accuracy, this study also examines its impact on the robustness of autonomous driving decision-making and 

control systems. 

The primary sensing component within the proposed framework is the Continental ARS408-21 long-range 

mmWave radar, which is utilized for detecting obstacles along the vehicle's driving trajectory. Data 

transmission between the radar and the embedded system is managed via the VP230 chip, functioning as a 

Controller Area Network (CAN) bus transceiver. To further enhance data reliability, the system incorporates 

an MTI-G-710 Xsens Inertial Measurement Unit (IMU), which provides vehicle speed and heading angle 

information. 

Object classification is performed using a ZED stereo camera, while data fusion between the radar and 

camera enhances the accuracy of object detection and localization, ensuring seamless data integration. 

Additionally, the system supports integration with a Velodyne VLP-32 LiDAR, which provides high-

resolution spatial data that can be visually rendered on the display interface. 

For computational processing, this study employs the NVIDIA Jetson AGX as the core computing platform, 

responsible for receiving sensor data and executing the error compensation algorithm to optimize 

measurement accuracy. Upon completion of the compensation process, the system outputs the refined data 

in real time and visualizes all detected objects on the display. The overall experimental framework is 

illustrated in Figure 1. 

 

 

     Figure 1: Experimental Framework Configuration 

  



3 EVS38 International Electric Vehicle Symposium and Exhibition  

3 Error Compensation Method and Impact Analysis 

3.1 Analysis of Radar Error Sources 

Millimeter-wave (mmWave) radar is utilized to detect moving objects or obstacles in the surrounding 

environment, ensuring the safety of the area in front of the vehicle and thereby enhancing the safety of 

both the vehicle and its occupants. However, the presence of distance measurement errors can affect the 

radar’s accuracy, particularly at short ranges, where these errors become more pronounced. These 

inaccuracies primarily stem from the radar’s beam characteristics, which can introduce significant 

distance measurement deviations when detecting nearby objects, as illustrated in Figure 2. To mitigate 

these errors, data fusion and error compensation techniques can significantly improve the accuracy of 

distance sensing. 

 

 

Figure 2: Radiation pattern of a unidirectional antenna 

 

To evaluate and correct these errors, laser rangefinders are typically used in conjunction with 

mmWave radar to provide accurate data for long-range measurements. Both devices are 

installed at the same reference point and tested in an open area to minimize environmental 

interference and ensure measurement accuracy. The testing range typically spans from 5 meters 

to 70 meters, with measurements taken at intervals of 5 meters. Common road objects, such as 

pedestrians, motorcycles, and cars, are used as test targets to simulate obstacles encountered 

in real driving scenarios, further facilitating the analysis and compensation of measurement 

errors. 

The beam characteristics of millimeter-wave radar are the primary cause of significant errors in short-range 

measurements. According to the radar equation in Eq. (1). 

 

 𝑃𝑟 =
𝑃𝑡𝐺𝑡𝐺𝑟𝜆2𝜎

(4𝜋)3𝑅4  (1) 

 

where 𝑃𝑟  is the received power, 𝑃𝑡 is the transmitted power, 𝐺𝑡  and 𝐺𝑟  are the transmit and receive antenna 

gains, respectively, 𝜆 is the radar wavelength, 𝜎 is the radar cross-section, 𝑅 is the target distance. 

From Eq. (1), it can be observed that as the target distance decreases, the received power increases, and 

signals from different reflection paths may become stronger. This can affect the interpretation of the echo 

signal, leading to erroneous calculations of the target distance. Thus, a critical factor influencing the radar 

measurement accuracy is the antenna's beamwidth and angular resolution. 

The angular resolution of a mmWave radar is given by Eq. (2), 

 

 𝜃res =
𝜆

𝐷
 (2) 

 

Where 𝐷 is the antenna aperture. A larger antenna aperture can reduce the beamwidth, thereby improving 

angular resolution. As the target approaches, the received power increases; however, this also leads to an 
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increase in measurement errors. To achieve better angular resolution, a narrower beamwidth is typically 

required. However, at short distances, the beam spreads more rapidly, and some of the echo signals may not 

be effectively captured by the receiving antenna, further impacting measurement accuracy. Consequently, 

mmWave radar operating at short ranges typically exhibits larger distance measurement errors. 

 

3.2  Impact of RCS Measurement on Target Identification Accuracy 

During mmWave radar measurements, different targets may introduce varying degrees of error. Therefore, 

to classify targets, the RCS is commonly used as an indicator. RCS serves as a measure of the target's ability 

to reflect radar waves, reflecting the target's shape, size, material, and surface characteristics. However, RCS 

exhibits varying performance at different measurement distances, particularly at short ranges, which can 

affect the accuracy of target classification. 

There is a significant difference in the RCS between the near-field and far-field regions. In the near-field, the 

radar beam only covers a small portion of the target, and the reflection signals fluctuate due to local geometric 

variations. Since the incident wave is a spherical wave (rather than a plane wave), the curvature of the 

wavefront introduces phase differences, which affect the accuracy of RCS measurements. Additionally, due 

to the limited coverage of the beam, multiple reflections and diffraction effects may occur, further amplifying 

the RCS fluctuations. As the target distance increases, the spherical wave gradually approximates a plane 

wave, the radar beam's coverage expands, and reflections from multiple regions of the target are allowed. 

This broader coverage reduces the impact of local geometric features and diffraction effects, resulting in 

more stable RCS measurements. 

 

 

Figure 3: Near-Field Diffraction Effects in Radar Measurements 

 

The beamwidth and its corresponding coverage area play a crucial role in RCS behavior. The beam coverage 

area can be described by the Eq. (3). 

 

 𝑅𝑏 = 2𝑅 ⋅ tan (
𝜃𝑏

2
) (3) 

 

Where 𝑅 represents the distance between the radar and the target, and 𝜃𝑏 is the beamwidth of the radar 

antenna. As 𝑅 increases, the beam coverage expands, leading to more stable RCS variations. However, if the 

beamwidth is excessively large, the radar may lose its ability to distinguish between closely spaced targets, 

thereby affecting resolution and classification accuracy. 

 

 

Figure 4: Far-Field Radar Beam Covering a Vehicle 

The intensity of the RCS can be determined using a simplified formula based on the received power and transmitted 
power, as shown in equation (4). 
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 𝜎 =
𝑃𝑖

𝑃𝑟
⋅ 𝑅2 (4) 

 

Where 𝑃𝑖 is the transmitted power, 𝑃𝑟 is the received power, and 𝑅 is the distance between the radar and the 

target. This formula highlights the relationship between RCS, radar-target distance, and the ratio of 

transmitted to received power. 

To facilitate comparisons between different targets, the RCS is typically expressed in decibels relative to one 

square meter (dBsm). The conversion formula is provided in Eq. (5). 

 

 𝑅𝐶𝑆𝑑𝐵𝑠𝑚 = 10 log10(𝜎) (5) 

 

By analyzing the size of the RCS and its relationship with variations in observation angle and frequency 

response, different types of targets can be classified. This information also contributes to identifying the 

shape and structural characteristics of moving objects, thereby enhancing radar-based classification and 

target recognition capabilities. 

 

3.3 Enhancing Measurement Accuracy and System Stability 

To further reduce uncertainties caused by noise or measurement errors, a Kalman filter was incorporated into 

the compensation process to filter the measurement data, thereby minimizing errors and effectively predicting 

the future position of the target. The fundamental principle of the Kalman filter lies in state estimation, where 

the estimated position of the target is dynamically updated by combining the system's dynamic model with 

the measurement model.  

The Kalman filter formula can be expressed as Eq. (6) and (7), 

 

 𝑥𝑘
− = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘−1 (6) 

 𝑃𝑘
− = 𝐴𝑃𝑘−1𝐴𝑇 + 𝑄 (7) 

 

Where 𝑥𝑘 is the current state estimate, 𝐴 is the state transition matrix, 𝐵 is the control matrix, 𝑢 is the control 

vector, 𝑃𝑘 is the covariance matrix, 𝑄 is the process noise covariance matrix. 

The Kalman filter comprises two primary stages: prediction and correction. In the prediction stage, the 

current state and its associated uncertainty are estimated based on the previous state and the system's dynamic 

model. However, due to idealized assumptions, external disturbances, and sensor noise, the predicted results 

may deviate significantly from the actual values. To address this issue, the correction stage incorporates real 

measurement data to adjust the predicted state. By calculating the Kalman gain, the filter dynamically 

balances the reliability between the prediction and the measurement, enabling the fusion of both sources of 

information to refine the state estimate and update its uncertainty. This mechanism effectively reduces 

estimation errors in real time and enhances accuracy, allowing the system to maintain stable and reliable 

performance even in noisy and dynamically changing environments. The correction equations are given in 

Eq. (8)~(10). 

 

 𝐾 =
𝑃𝑘

−𝐻𝑇

𝐻𝑃𝑘
−𝐻𝑇+𝑅

 (8) 

 𝑥𝑘 = 𝑥𝑘
− + 𝐾(𝑧𝑘 − 𝐻𝑥𝑘

−) (9) 

 𝑃𝑘 = 𝑃𝑘
−(𝐼 − 𝐾𝐻) (10) 
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Where 𝐾 is the Kalman gain, 𝐻 is the measurement matrix, 𝑅 is the measurement noise covariance matrix, 

𝑧𝑘 is the actual measurement value, 𝐼 is the identity matrix. 

By incorporating a Kalman filter, accurate target position estimation can be achieved even in the near-field 

region, where the influence of the target's geometric shape on the measurements is more pronounced. The 

filter effectively mitigates interference and performs error compensation based on previous estimations and 

current measurements. This not only enhances the overall measurement accuracy but also improves the 

reliability of the system. As a result, the system can maintain stability and precision in dynamic environments. 

The simulation results are shown in Figure 5. 

 

 

Figure 5: Simulation Results of Kalman Filter-Based Error Compensation 

 

4 Experimental Results 

Based on the results of on-road object measurements using the minibus shown in Figure 4, an error of 

approximately 0.2 meters was detected. This error served as the basis for determining the compensation value 

required to correct the measurement inaccuracy. The observed measurement errors are closely related to the 

radar's performance in both the near-field and far-field regions, as illustrated in Figure 6. 

 

 

Figure 6: Experimental Results of on-load Driving 

 

In the near-field region, the radar beam covers a relatively smaller area, making the reflected signals more 

susceptible to the local geometric features of the target. This results in reduced recognition accuracy and 

increased measurement errors. Under such conditions, precise error detection techniques can be employed to 

quantify the specific measurement deviation. For instance, in the case of pedestrian detection, an error of 0.2 

meters was identified. By subtracting this error from the measured results, the detection accuracy of the 

system can be significantly improved. 
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As the target distance increases and the radar transitions into the far-field region, the beam coverage expands 

and the reflected signals originate from a broader area of the target. This reduces the influence of local 

geometrical variations and stabilizes the radar cross-section (RCS), thereby greatly enhancing the reliability 

of target identification in the far-field. 

To further improve measurement accuracy, image-based detection techniques were employed in the near-

field during the experimental process (as shown in Figure 7), enabling more precise identification of object 

contours and features. In contrast, RCS-based classification and recognition were applied in the far-field. By 

integrating these two approaches, the system demonstrates robust recognition capability across varying 

distance ranges. 

 

(a) Side View                                              (b) Front View  

Figure 7: Sensor Fusion with Camera 

 

5 Conclusions 

In this study, a simple distance compensation method was implemented, resulting in a 2.68% reduction in 

the average error rate. The most significant improvements were observed in the detection accuracy of 

pedestrians and motorcycles. Although the compensation technique effectively mitigates measurement errors, 

near-field effects such as radar beam divergence and variations in the target scattering mechanisms—can still 

lead to increased measurement inaccuracies, particularly for highly scattering targets like pedestrians or non-

rigid bodies. 

Furthermore, in the near-field region, the curvature of the spherical wavefront induces phase variations, 

which further exacerbate ranging errors. These errors remain difficult to fully compensate. 

As the target distance increases, the radar beam gradually converges, reducing the beam cross-section and 

enhancing the quality of the reflected signals, thereby improving detection accuracy. Additionally, as the 

wavefront transitions from spherical to planar with increasing distance, phase variations become more stable, 

further decreasing ranging errors. Nevertheless, at close range, the divergence of the radar beam continues to 

impact measurement stability, leading to larger deviations. A comparison of pre- and post-compensation data 

indicates a marked improvement in longitudinal distance measurement stability at greater ranges. 

In addition to optimizing the radar system, integrating LiDAR through sensor fusion presents a promising 

direction for future development. LiDAR provides high-resolution three-dimensional spatial data, and when 

fused with radar measurements, it significantly enhances the perception capabilities of autonomous vehicles. 

This sensor fusion not only improves distance measurement accuracy but also strengthens object recognition 

reliability, particularly in complex environments with dynamic obstacles. 
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