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Executive Summary

Accurate perception of the surrounding environment is fundamental for ensuring the safety of autonomous
driving systems, as it directly affects behavior and trajectory planning. Although considerable advance-
ments have been made in object detection and tracking using sensors such as cameras and LiDAR, most
existing sensor fusion research remains confined to the detection level, limiting the exchange of se-
quential information. In this paper, we propose a track-level sensor fusion methodology that integrates
temporal information by associating object tracks from independent camera-based and LiDAR-based
tracking systems. Evaluation on the nuScenes dataset demonstrates that the proposed approach out-
performs single-sensor tracking systems, highlighting its effectiveness in improving the robustness and
accuracy of object tracking for autonomous driving applications.

Keywords: Autonomous xEV, Intelligent Transportation System for EVs, AI - Artificial Intelligence for
EVs

1 Introduction
To ensure the safety of autonomous driving systems, it is essential to accurately perceive the surrounding
environment and use this information to plan the vehicle’s future behavior and trajectory. In other words,
accurately detecting and predicting the surrounding environment is a core task for safe autonomous
driving. Various studies have been conducted to improve the accuracy of the perception, and the most
commonly used sensors are cameras and LiDAR.
In the field of computer vision, extensive research has been carried out to recognize and track objects
from images acquired by cameras. CNN-based object detection models such as YOLO [1] have been
widely used due to their fast real-time performance and decent accuracy. More recently, models like
DETR [2], which leverage Transformers originally developed for natural language processing, have also
been introduced. Similarly, object recognition using LiDAR has seen the application of methodologies
from image-based object detection, with notable examples including 3D object detection models such as
PointPillars [3].
As object detection technologies for each sensor have advanced, research on fusing data from both sen-
sors has also been actively conducted. Sensor fusion methods that utilize the geometric transformation
relationships between the two sensor modalities [4] have been commonly explored. More recently, deep
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learning-based sensor fusion approaches, such as TransFusion [5] and BEVFusion [6], have also been
proposed and studied. In addition, research on object tracking has also been actively conducted for each
type of sensor. In image-based object tracking, a representative algorithm is SORT [7], which combines
the Kalman filter and the Hungarian algorithm. In the field of 3D object tracking, various studies such as
AB3DMOT [8] have been conducted based on similar principles.
While object tracking technologies have continued to advance, most existing sensor fusion research
has focused on the detection level. Therefore, this paper proposes a sensor fusion methodology by
adopting an association between tracks, which are estimated from tracking systems. In order to integrate
the temporal information from both sensors, the track-level association algorithm was designed. The
performance of the proposed method was validated using the nuScenes dataset [9], and it was confirmed
that the performance of the proposed system achieves higher performance compared to single-sensor-
based tracking systems.

2 Methods

2.1 Overall Architecture

Figure 1: Overall architecture of the proposed system

Figure 1 above describes the overall object detection and tracking system, and the target class of this
paper is Car. Following [10] and [11], the proposed design consists of multiple associations. However,
unlike the previous studies, the system proposed in this paper performs association at the track level.
A separate object tracking system for each detection system tracks the objects detected from the sensor
data. The tracks estimated by the object tracker are first associated within each modality. After a single
modality association, the cross-modality association algorithm filters the final object tracks.
In addition, multiple detection methods were applied to the system. First, two detection systems are ap-
plied to the LiDAR data. The deep learning-based detection system detects the position, orientation, and
size of objects, while the rule-based detection system identifies object clusters within the road bound-
ary. After passing through separate object tracking systems, the final LiDAR track is estimated through
association.
Next, to detect objects from the multi-view images, the deep learning-based detection system was applied
to an image batch with a size of the number of cameras. The detected bounding boxes are tracked
individually for each image, and the tracks from the multi-view images are then integrated. The final
camera tracks obtained are associated with the final LiDAR tracks to estimate the final 3D track.
In addition, a sensor fusion algorithm was designed to facilitate data fusion between two sensors. Since
the LiDAR rule-based detection system cannot classify the object’s class, false negative detections and
non-vehicle class results were filtered by comparing them with the camera detection results. Furthermore,
false negative detections in the camera data were addressed by projecting the final LiDAR track onto the
image and using it as input for the camera tracking system.
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2.2 Object Detection and Tracking Systems

2.2.1 LiDAR Object Detection and Tracking
To detect 3D objects from LiDAR point clouds, both deep learning-based and rule-based object detection
algorithms were employed simultaneously. First, for deep learning-based object detection, the PointPil-
lars [3] model was used, which outputs the position, orientation, and size of objects. Next, similar to
[12], the rule-based object detection system detects objects’ points from LiDAR raw data. It filters point
clouds within the road boundary areas defined on map data and then identifies clusters corresponding to
objects based on differences in the z-coordinate. As a result, the average x, y, and z coordinates of each
cluster can be obtained. Following Figure 2, Figure 3 describes the rule-based detection result and deep
learning-based detection result, respectively.

Figure 2: Rule-based detection result Figure 3: PointPillars detection result

To deal with the differences in the output formats of the two detection systems, a separate Kalman filter
was applied to perform object tracking. Since the deep learning-based detection results provide both the
position and orientation of objects, a linear Kalman filter with a constant velocity motion model in the
global BEV (Bird’s Eye View) coordinate system was used. The following describes the state vector of
the tracking system of deep learning-based detection and the Kalman filter’s prediction step.

Tdeep = [x, y, z, θ, ẋ, ẏ, θ̇]T (1)
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Next, since the rule-based detection results do not provide the object’s orientation, a nonlinear term was
added to estimate the orientation based on the velocity in the global BEV (Bird’s Eye View) coordinate
system predicted by the Kalman filter. As a result, an Extended Kalman Filter was designed for the
tracking. The following describes the state vector of the tracking system of rule-based detection and the
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Kalman filter’s nonlinear term for orientation estimation. Since the target class of the system is Car, we
assumed the size of the object as the average size of the Car class of the nuScenes dataset.

Trule = [x, y, z, θ, ẋ, ẏ, θ̇]T (3)

θk = tan−1(
ẏk−1

ẋk−1
) + θ̇k−1 × dt (4)

Predicted states of each tracking system are associated with the detection results from the corresponding
detection system, using the Hungarian algorithm. For a cost metric of the Hungarian algorithm, an
Euclidean distance on the global BEV coordinate system between each track and detection was used.
The detection result matched with a specific track is used as the input for the correction step of the
Kalman filter for that track, and it updates the track’s state.

2.2.2 Camera Object Detection and Tracking
For real-time image object detection, a CNN-based YOLOv5 model was used, which predicts the class
and bounding box of each object. To accurately track the detected bounding boxes even at low frame
rates, this study designed an object tracking algorithm based on DeepSORT [13]. A deep learning net-
work extracts an appearance vector using a deep neural network and uses the cosine distance between
these vectors.
In this study, we incorporated spatial relationships into the cost metric to account for vehicles with similar
appearances. Accordingly, in addition to the cosine distance between appearance vectors, the Euclidean
distance in the image coordinate system and the ratio of bounding box areas were also included. The
network for appearance feature extraction is the same as that of DeepSORT [13]. The following is the
architecture of the camera object tracking algorithm. In addition, Kalman filter for the tracking is the
same as that of SORT [7].

Figure 4: Camera object tracking algorithm

First, the cost metric based on the cosine distance between appearance vectors is defined as follows.
dcos(i, j) represents a cosine distance between the appearance vector of the i-th track and the j-th detec-
tion.

C1(i, j) =

{
dcos(i, j), if dcos < t1

λ1dcos(i, j), if dcos ≥ t1
(5)

Next, the cost metric based on the Euclidean distance is as follows: deuc(i, j) represents a normalized
Euclidean distance between the center of the i-th track and the j-th detection. The normalization term is
the Euclidean distance between the farthest corners of the image.
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C2(i, j) =

{
deuc(i, j), if deuc < t2

λ2deuc(i, j), if deuc ≥ t2
(6)

Similarly, the following equation describes the cost metric based on the ratio of bounding box areas.
r(i, j) represents the box area ratio between the i-th track and the j-th detection.

C3(i, j) =

{
r(i, j), if r < t3

λ3r(i, j), if r ≥ t3
(7)

Lastly, the final cost value between i-th track and j-th detection is defined as follows.

C(i, j) = C1(i, j) + C2(i, j) + C3(i, j) (8)

With this cost metric, the Hungarian algorithm associates the existing tracks and the detections. After the
matching, the update step of the Kalman filter is the same as that of the LiDAR object tracking system.

2.3 Track Association

2.3.1 Multi-View Image Track Association

Figure 5: Multi-view image association algorithm

The tracks obtained from different images through single-image object tracking must be integrated and
managed within a unified system. To associate the tracks between different images, this paper utilizes
the appearance features extracted in the single image object tracking. Specifically, the cosine distance
is computed between the appearance features of tracks located at the left and right edges of each image.
The association is performed for the tracks obtained from the adjacent images as shown in Figure 5.
With this approach, a global ID is assigned to each track, and the system enables matched tracks with
the multi-view image association to share the same global ID. The figure below describes the results of
multi-view image association. Red bounding boxes indicate tracks matched based on appearance features
and thus sharing the same global ID.
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Figure 6: Left front image association result Figure 7: Front image association result

2.3.2 LiDAR Track Association
Tracks obtained from deep learning-based LiDAR object detection and rule-based LiDAR object detec-
tion must also be managed within a unified system. To associate LiDAR tracks generated from different
filters, this study performs matching based on a cost matrix by calculating the Euclidean distance between
tracks from different detection systems. A matching algorithm is then performed using the Hungarian
algorithm. Among the matched tracks, the track originating from deep learning-based detection is se-
lected as the final LiDAR track. Unmatched tracks are added to the final LiDAR track set if their Kalman
filter states have been updated with observations within the past Tage frames. The following describes
the results of deep learning-based detection, rule-based detection, and the subsequent track association.

Figure 8: Object tracking result of
deep learning-based detections

Figure 9: Object tracking result of
rule-based detections

Figure 10: LiDAR track associa-
tion result

2.3.3 Camera-LiDAR Track Association
Camera and LiDAR tracks, estimated from each modality’s object tracking system, exist in different
domains. To compare tracks from the different domain, LiDAR tracks are projected onto the image
plane for association. Specifically, 2D bounding boxes are generated by projecting the LiDAR tracks
onto the image plane, and a cost matrix is constructed based on the negative Intersection over Union (IoU)
between the projected LiDAR tracks and the camera tracks. The matching algorithm is then performed
using the Hungarian algorithm, and LiDAR tracks that successfully match with camera tracks are selected
as final tracks.
LiDAR tracks that do not match with any camera track are used as observations of camera tracker, if
a track has been updated with Kalman filter observations within the past Tage frames, Using the pro-
jected tracks as observations for the image-based object tracking Kalman filter, the system is able to
continuously track the corresponding objects by leveraging semantic information available in the image
domain.
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3 Experiments

3.1 Dataset and Evaluation Metrics
In this study, deep learning model training and object tracking performance evaluation were conducted
using the nuScenes dataset. The nuScenes dataset employs a comprehensive set of 3D object tracking
metrics to evaluate tracking performance. The primary metric, Average Multi-Object Tracking Accu-
racy (AMOTA), provides an integrated assessment by averaging MOTAR over various recall thresholds,
instead of the traditional metric, the Multi-Object Tracking Accuracy (MOTA) proposed in [14]. In addi-
tion, Average Multi-Object Tracking Precision (AMOTP) measures the localization precision of matched
objects, averaged across different recall levels. MOTAR is defined as:

MOTAR = max(0, 1− FN + FP + IDS − (1− r) ∗ P
r ∗ P

) (9)

where FN denotes the number of false negatives (missed detections), FP denotes the number of false
positives, IDS is the number of identity switches, P represents the total number of ground truth positives
for the current class, and r is means recall. Multi-Object Tracking Precision (MOTP), which was also
proposed in [14], quantifies the alignment accuracy between predicted and ground truth object positions
for matched pairs, and is defined as:

MOTP =

∑
i,t di,t∑
t TPt

(10)

where di,t is the position error of track i at time t, between the predicted and ground truth objects for
match i at time t, and TPt indicates the number of matches at t.

3.1.1 Quantitative Analysis

Using these metrics, the proposed method was compared with AB3DMOT[8], which was provided as a
baseline algorithm for 3D multi-object tracking in the nuScenes dataset. The performance was evaluated
for the Car class, and the evaluation range threshold for the class was set as 50m. Following Table 1 is
the evaluation result for the nuScenes validation set. As described in the table, our proposed methods
achieved higher performance than the baseline method.

Table 1: 3D object tracking results on the nuScenes validation set with range threshold 50m

AMOTA AMOTP IDS
AB3DMOT [8] 0.1339 1.3225 2308

Ours 0.2294 1.2314 130

In addition, the effect of each association system on the overall performance was analyzed. The Table
2 represents the performance evaluation results obtained by progressively adding each association algo-
rithm to the baseline system. The baseline system consists of a single PointPillars [3] model and a single
LiDAR object tracker. As shown in the Table 2, object tracking performance was improved through
LiDAR track association, and a significant reduction in ID switches was achieved through fusion with
the camera by leveraging semantic information from the image domain for association.

Table 2: 3D object tracking results using different association algorithm

AMOTA AMOTP IDS
PointPillars [3] with single tracker 0.1559 1.6933 527

+LiDAR track association 0.1908 1.6438 401
+Camera track association 0.2294 1.2314 130

EVS38 International Electric Vehicle Symposium and Exhibition 7



Lastly, in order to analyze the effect of detection on the tracking performance, we evaluated our system
by changing the range threshold. The following Table 3 represents a tracking performance for various
range thresholds. As described in the Table 3, as the range threshold decreases, the tracking performance
of the system increases. From this result, it was analyzed that the performance of long-range object
detection significantly affects object tracking performance.

Table 3: 3D object tracking results with different range threshold

range threshold AMOTA AMOTP IDS
50m 0.2294 1.2314 130
40m 0.3271 1.2153 124
30m 0.386 1.1089 107

3.2 Qualitative Analysis
In addition to the quantitative evaluation, a qualitative analysis was conducted to evaluate the effect of
each functional module on object tracking performance.

3.2.1 Appearance-based Camera Object Tracking
First, the influence of appearance features in image-based object tracking was analyzed. The Figure 11,
12 below represents the sequential image frames when the occlusion occurs. It was observed that IoU-
based object tracking algorithms failed to perform accurate association, and the track ID was changed
due to occlusion, as shown in Figure 13. In contrast, as described in Figure 14, robust association is
achieved by adopting an appearance-based cost function, even under occlusion.

Figure 11: Object tracking result of (t−1)-th frame Figure 12: Object tracking result of t-th frame

Figure 13: Object tracking result of (t+1)-th frame
using IoU

Figure 14: Object tracking result of (t+1)-th frame
using appearance
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3.2.2 Camera-LiDAR Sensor Fusion
Furthermore, an analysis of camera-LiDAR track association was also performed. In the Figure 15,
16 below, it was confirmed that objects missed by the camera due to occlusion or other factors can be
compensated for by incorporating LiDAR tracks. In addition, by extracting appearance features from the
projected bounding boxes, semantic information from the image domain could be combined to further
enhance object tracking performance.

Figure 15: Left front image association result Figure 16: Front image association result

4 Conclusion
This paper proposed a multi-object tracking algorithm based on track-level association. To integrate and
manage information obtained from various perception systems, a hierarchical system was designed. First,
association is performed among tracks from the same sensor. For camera tracks, the association is con-
ducted based on appearance features, position, and size of the bounding boxes, whereas LiDAR tracks
are matched based on their distance in the global coordinate system. Subsequently, a fusion between
camera tracks and LiDAR tracks is performed through association on the image plane via projection.
The proposed methodology was validated using the nuScenes dataset, and performance evaluation was
conducted on the Car class within the validation set. The quantitative evaluation demonstrated improve-
ments in AMOTA, AMOTP, and IDS metrics compared to the baseline model. Moreover, the impact
of the hierarchical association algorithms and long-range detection on tracking performance was quan-
titatively analyzed. Furthermore, qualitative analysis confirmed the effectiveness of image-based object
tracking using appearance features and track association through camera-LiDAR sensor fusion. How-
ever, a limitation of this study is that the evaluation was conducted solely on the Car class. Therefore,
the generalizability of the proposed system to other object classes has not been verified. Future work will
extend the proposed method to a broader range of object classes and the research for the box prediction
for the LiDAR object cluster point should be conducted.
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