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Executive Summary 

In this research, the DTs of the EV powertrain components were designed using a CFNN and then trained 

using a combination of Levenberg–Marquardt (LM) and scaled conjugate gradient (SCG) training 

algorithms. The powertrain components are represented by the actual hardware in a HiLS or using Hi-Fi 

multi-physics finite element models (FEM). The trained DTs are then used as a component in the improved 

simple optimization (iSOPT) algorithm, and supplied with the input scenario to evaluate various reference 

torque and temperature setpoints that will minimize the overall energy consumption of the bus. The 

optimization was repeated for numerous random scenarios, and a data-driven model is generated (in 

MATLAB) using system identification, which links the scenario conditions to the optimized output. 
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1 Introduction 
 

Electric buses have become a popular choice for cities looking to modernize their public transport systems 

towards zero emissions and carbon neutrality. Advances in battery technology, combined with growing 

environmental awareness and regulatory pressures, have accelerated the adoption of these vehicles. Unlike 

their diesel counterparts, electric buses produce zero tailpipe emissions, making them an attractive choice for 

reducing urban air pollution (NOx, CO, PM2.5), and greenhouse gas (GHG) emissions [1]. Stricter emissions 

regulations, improvements in battery and charging technology providing longer range and faster charging 

times, subsidies and incentives from governments and international bodies towards electrification of public 

transport research and development and increasing awareness of climate change and air quality issues among 

the public are some of the key driving factors behind the increased demand for electric buses for public 

transport. In addition to the reduction in GHG and improvement of air quality, electric buses are also cost 

efficient over their operational lifetime, compared to ICE-based buses, and contribute to reduction in vehicle 

noise in urban roads. However, there are challenges to adopting electric buses on a wider scale, including the 

need to invest in a comprehensive, but costly, charging infrastructure, the need to ensure that the electric grid 

can handle the increased load due to charging of large fleets of electric buses, and the need to ensure that the 

energy storage system (ESS) in the bus has sufficient capacity to handle the energy consumption requirements 

of the bus. 

 

While battery and charging technology has advanced, issues such as limited range and long charging still 

pose challenges. Research and development on new battery chemistry, module and pack optimization are 

crucial to improving energy density, reducing costs, and increasing the durability of batteries [2, 3]. 

Furthermore, innovative technologies including placing solar panels on the vehicle roof further improve the 

driving range by reducing the energy load placed on the battery during daytime and charging the battery 

when the vehicle is not in motion [4, 5]. However, reducing the power load on the battery is a key technique 
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to increase the driving range and the lifetime reliability of the battery; it also has additional benefits external 

to the vehicle, including reduction in charging infrastructure, reduction in the charging duration, and 

decreased load in the electric grid. Vehicle energy consumption can be reduced using various energy saving 

“eco” techniques, including eco-routing, eco-driving, and eco-comfort [6, 7]. Eco-driving offers the greatest 

reduction in vehicular energy requirements [6] compared to the other energy management features when the 

average route speed is greater. On the other hand, eco-comfort offers substantial energy savings for larger 

buses, such as articulated and double articulated buses, during adverse weather conditions, like very high or 

very low ambient temperatures [6]. 

 

1.1 Eco-driving 
 

Eco-driving is an energy management strategy that optimizes the operation of the traction system of the 

electric vehicle (EV) powertrain to reduce the vehicle’s traction energy expenditure. Traditionally eco-

driving followed a rules-based heuristic approach that modified the original driving velocity profile to an 

eco-friendlier profile having ramped acceleration, lower maximum acceleration, and lower average vehicle 

speeds. The lower speeds helped reduce energy loss due to aerodynamic drag, while the lower acceleration 

improved tractive and regenerative efficiency. More recently, the application of optimization techniques 

offered greater energy reduction compared to a purely heuristic approach [8]; in the optimization approach 

the emphasis is placed on finding the optimal torque reference profile that can be commanded to the electric 

motor, which would overall minimize the traction energy requirements of a given scenario. Optimization is 

effective because it considers the three major factors that affect the traction energy consumption, including 

the driving velocity profile, the vehicle’s load profile, and the route gradient profile.  

 

1.2 Eco-comfort 
 

Eco-comfort is a thermal management strategy that optimizes the climate control system of the vehicle to 

reduce the vehicle’s auxiliary energy consumption [9]; it relies on two pillars, the modification of the cabin 

temperature setpoints to minimize the energy required for temperature regulation, and thermal 

preconditioning of the various powertrain components, including the vehicle’s cabin and the energy storage 

system. Preconditioning refers to the strategy of utilizing those moments when the vehicle is connected to 

the charger to undergo the energy intensive process of temperature tracking from ambient conditions to the 

desired setpoints. A thermally preconditioned vehicle needs only to expend the minimal energy required for 

temperature regulation when the vehicle operates under battery power. The dynamic cabin temperature 

setpoint, estimated through optimization, aims to find a delicate balance between minimizing the energy 

expenditure of the heat pump for temperature regulation, as well as the discomfort level felt by the passengers. 

The temperature setpoints depend on the ambient temperature and the passenger quantity inside the bus. 

 

1.3 Problem statement 
 

The optimization process is time consuming; thus, it is not possible to deploy in real time to the vehicle 

control unit (VCU). A practical approach is to complete the optimization as an offline process for a given 

route, based on different driving scenarios, passenger load profiles, and climate conditions, along with the 

gradient profile of the route, which does not change. A neural network (NN) can then be trained using 

optimized torque and temperature references (output) to different scenario conditions (input). The trained NN 

once deployed offers real-time optimized torque and temperature references to dynamically changing input 

conditions. Another problem with the optimization process is that it generally uses low-fidelity (Lo-Fi) 

models to increase simulation speed and hence decrease the time required for optimization; however, Lo-Fi 

models have limits to the accuracy of the results they can provide. Methods that provide highly accurate 

results, including hardware-in-a-loop simulation (HiLS) using the actual powertrain or simulation using a 

high-fidelity (Hi-Fi) multi-physics-based finite element model (FEM) of the powertrain, are both 

prohibitively time-consuming and computationally expensive, and not suitable for real-time optimization. To 

solve this conundrum, an approach is required that not only gives accurate simulation results but is also faster 

to simulate for optimization, and the digital twin (DT) framework allows for the best of both worlds. 

 

Section 2 provides an overview of NN and other data driven approaches that allow for the training and tuning 

of the DTs. Section 3 provides the methodology used to set up the DT-based rapid optimization tool. Section 

4 provides the results, and section 5 concludes this article. 
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2 Digital Twin Framework 
 

A DT of a physical system can be trained in one of three ways: 1) a white-box modeling approach such as 

using an observer model, extended Kalman filter (EKF), or model predictive control (MPC), 2) a grey-box 

modeling approach such as model parameter tuning via optimization, and 3) a black-box modeling approach 

such as designing and training a NN representing the physical system [10]. Model parameters tuning is an 

example of grey-box modeling, since the user has knowledge of the parameter values that need to be tuned, 

but not the physics of the system. On the other hand, the control approach is an example of white-box 

modeling since accurate knowledge of complete system (i.e., the “plant”), including the physics of the system 

and the parameter values, is necessary to properly tune the virtual model. Finally, designing and training an 

NN is an example of black-box modeling since the trained NN matrix does not give the user any insight into 

the physical equations that represent the system, nor the values of the parametric variables in the equation. 

While it is advantageous to utilize white-box modeling, as the user has full control over the model allowing 

the user to develop control strategies using the model, add new functionalities into the model, and adapt and 

customize the model to various applications; however, the high level of fidelity required for white-box 

modeling raises the computational cost to simulate the model, both in terms of hardware resources and time 

needed. There is a reason Lo-Fi models have been utilized in this research, very fast simulation speeds are 

essential for an iterative process such as optimization, and with Hi-Fi models, it becomes prohibitively time 

consuming. Comparatively, the training of NN was a faster process, and as a bonus, GPU resources were 

leveraged to speed up the NN training significantly. As real-time training was required for the DT, the NN 

approach was determined to be the best one. 

 

Machine learning (ML), which is a branch of artificial intelligence (AI), is the process of training NNs using 

the measurement inputs to and the outputs from a real system, so behave as the real physical system over time; 

at its most basic ML uses algorithms to find patterns and then apply the patterns moving forward. To recognize 

such patterns, the ML algorithm first needs to be trained using a known pattern and then applies the trained 

algorithm to recognize patterns of similar nature but for which it has not been trained. The main goals of ML 

are to classify data based on models that have been developed and then make predictions regarding some future 

outcome based on such models. According to [11], there are a sequence of steps that the ML algorithm needs 

to follow: collection of raw data, data preparation to a format that the ML algorithm can understand, choosing 

a suitable NN architecture, model optimization (i.e., the actual training process), model evaluation using new 

dataset, and model deployment where the trained model can now make accurate predictions. Furthermore, ML 

ensures that the NN can learn and adapt to new patterns over time. 

 

2.1 Proposed neural network architecture 
 

 
Figure 1: Design of a Cascaded Feedforward Neural Network, with 4 hidden layers, and 16 neurons per layer 

 

NNs are computational models that mimic the neurons in the human nervous system in how they process 

information [12]. NNs consists of layers of nodes that transform input data into meaningful outputs through a 

series of mathematical operations. Each node (or neuron) can affect multiple other nodes later in the chain, 

while at the same time each node itself can be affected by multiple nodes earlier in the chain. The layers itself 

act as gateways that directs signals (information) through specific ‘learned’ pathways to give the required 
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output. There are various categories of NNs, designed according to the type of data that the NN is required to 

handle, e.g., densely connected NNs such as feedforward neural networks (FNN) are used to process tabular 

data, convolutional neural networks (CNNs) are used to process spatial data such as images, and recurrent 

neural networks (RNNs) and their different variants, including LSTM and GRU, are used for their ability to 

preserve time series information (i.e., memory) so they are used to process sequential data. The NN topology 

that has been utilized in this research is the cascaded feedforward neural network (CFNN), where the output 

of each layer is cascaded to all subsequent layers coming after it; thus, the complexity of a layer increases 

linearly down the chain from input to output as shown in Figure 1. Equation (1) represents the output of each 

hidden layer using a symmetric tan sigmoid function, and (2) represents the output of the output layer using a 

linear transfer function. 

 

 
 

Where A is the weight for each neuron in a hidden layer (1 x 16 matrix), B is the weight for each input coming 

to the hidden layer (16 x (2 + layer number - 1) matrix), X is the number of inputs input to a layer ((2 + layer 

number -1) x 1 matrix), b1 is the bias of each neuron in the layer (16 x 1 matrix), and b2 is the output bias of 

the layer itself (scalar value), the subscript ‘i’ denotes a hidden layer, while the subscript ‘o’ denotes the output 

layer. CFNNs are examples of densely connected NNs, composed of an input layer, multiple hidden layers, 

and an output layer, and the nodes in each layer are maximally connected to the nodes of the neighboring 

layers. The cascading nature of CFNNs allows the NN to detect changes in the sequential data, as new data 

which are cascaded forward from the input layer can be compared with processed older data in the hidden 

layers, thus keeping track of some form of sequential memory. The length of the memory that can be tracked 

by CFNN depends on the number of hidden layers used in the network. This ability is important since CFNNs 

are lightweight networks that allow time series data to be processed rapidly, but without the computational 

costs associated with RNNs. 

 

2.2 Proposed training strategy 
 

Two training strategies are used to train the NN. The first is using Levenberg-Marquardt (LM) algorithm, 

which is uniquely suited to function fitting approximation problems (i.e., problems that can be solved using 

regression), because it is very fast to converge to a solution (i.e., using the minimum number of iterations or 

‘epochs’) and it results in the most accurate approximation compared to other training algorithms for function 

approximation problems. LM can be used to solve least squares curve fitting for non-linear least squares 

problems, using gradient descent method or the Gauss-Newton method; the LM algorithm adaptively switches 

between these two methods starting with gradient descent to achieve iterative steps with lesser computational 

cost initially and then switching over to GNA for better accuracy towards the end, at the cost of a much higher 

computation in each iterative step [13]. The disadvantages of the LM algorithm are that the speed advantage 

disappears for large NNs, and the algorithm requires a great deal of memory and processing power; thus, 

making the LM algorithm unsuitable as a real-time implementation. A second major issue is the inability to 

use GPU cores due to the Jacobian training required in the LM algorithm; thus, the speed boost achievable 

from hyper-parallel processing possible inside a GPU is negated. Finally, LM suffers from the local minima 

problem, when there is a non-convex least square solution space with multiple local minima; thus, a NN needs 

to be trained multiple times with the LM algorithm with different initial configurations of the NN weights. 

 
To overcome the limitations of the LM algorithm, the scaled conjugate gradient (SCG) was utilized as the 

second training strategy. SCG is one of many conjugate gradient algorithms that are used to minimize non-

linear functions. It was developed to avoid the high computation cost of Newton’s method (as it does not need 

to calculate the Hessian matrix and its inverse) and accelerate the convergence rate of steepest descent (as the 

theoretical number of iterations needed to reach the closest approximation to a solution is determined by the 

number of eigenvalues of a matrix, which is ‘n’ for a n-by-n matrix) [14]. The calculation of the conjugate 

direction, used to point to the next location of the solution, involves mainly calculation of scalar values through 

mainly matrix multiplication operations. There are no matrix divisions or matrix inverse operations needed, 

which makes the computation load increase linearly in proportion to the size of the matrix. Finally, unlike the 

LM algorithm, the SCG algorithm can make full use of the GPU resources of a PC. 

𝑦𝑖 = 𝐴𝑖 ∗  
2

1+𝑒
−2∗ 𝐵𝑖∗𝑋 𝑖  + 𝑏1_𝑖 

− 1  + 𝑏2_𝑖 , where i = 1…4  (1) 

𝑦𝑜 = 𝐴𝑜 ∗  𝐵𝑜 ∗ 𝑋𝑜 + 𝑏1_𝑜 + 𝑏2_𝑜      (2) 
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3 Proposed Optimization Methodology 
 

DTs are digital models of the intended real-world physical product, system, or process that serve as a digital 

counterpart of it for purposes such as simulation, integration, testing, monitoring, and maintenance [15]. The 

underlying framework of the DTs used in this research are NNs trained using ML strategies to offer a compact 

simulation model that are not only lightweight and capable of rapid simulation but also produces output that 

closely corresponds to reality. NNs representing the DTs of the EV powertrain can be trained either from the 

measurement output from the HiLS of a powertrain component, or from the simulation output of a Hi-Fi 

multi-physics-based FEM of powertrain component. Optimization simulation on the trained NN can then be 

run at a faster speed. This combined method decreases the time needed from prototype simulations to 

deployment and improves the optimization accuracy in estimating the EV energy requirements resembling 

that of the actual vehicle. Figure 2 shows the proposed strategy to develop the optimization framework using 

DTs of physical systems to provide realistic and real-time estimates of vehicular energy requirements to 

determine the optimal control setpoints for torque and cabin reference temperature that minimizes traction 

and auxiliary energy use. 

 

 
Figure 2: The proposed optimization framework to provide fast but realistic usage for vehicle energy usage 

 

3.1 HiLS setup of the traction system 
 

The vehicle powertrain provides the testbed framework where any component of the EV powertrain can be 

tested utilizing HiLS. The device under test (DuT) can either be individual powertrain components, including 

converters, inverters, EMs, and batteries, or they can be subsystems such as the electric drive system consisting 
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of the inverter, EM, and the associated cooling system. For this research, the part of the EV powertrain that 

was the DuT was the in-wheel motor system (IWMS) from Elaphe. The system consists of the high-power 

inverter and an in-wheel EM with a rated continuous power of 50kW, and peak power of 75kW. The motor 

has a rated speed of 1200 rpm (125 rad/s), a maximum speed of 1500 rpm (157 rad/s), a maximum continuous 

torque of 400 Nm, and a peak torque of 700 Nm. The inverter can operate under a range of DC-link voltages 

from 250V to 375V and can handle currents up to 200A in both directions. In addition, the IWMS features a 

liquid cooling system that is used to keep the inverter MOSFETs, and the EM coils cool. The EM and inverter 

are rated to operate up to 150oC; however, for safety purposes, the control logic in the vehicle control unit 

(VCU) is programmed to not allow the motor coil temperature to exceed 70oC and the inverter temperature to 

exceed 85oC. The inverter can directly be commanded by the VCU with the desired motor speed and torque at 

a rate of 500Hz via CAN communication; the inverter supplies the VCU with motor speed and inverter output 

current (IQ) measurements at a rate of 500Hz, the DC-link current and voltage measurement at a rate of 100Hz, 

and the motor and inverter temperature measurements at a rate of 10Hz. The vehicle powertrain platform acts 

as a HiLS platform for the DuT because the dSPACETM real-time control prototyping (RCP) module that is 

programmed as the VCU has all the other components of the EV powertrain model in its simulation, except 

for the EM and inverter. Instead, the EM and inverter are represented as hardware in the form of the IWMS 

and is commanded with the torque and angular speed reference by the VCU, while its electrical input, 

mechanical output, and the temperature of the EM and inverter are monitored by the VCU. For the training of 

the DT of the IWMS, there are two inputs, including the torque and angular speed commands sent to the 

inverter from the VCU, and three outputs, including the actual torque response of the motor, the actual angular 

speed response motor, and the DC-link current consumed by the inverter. The DT of the traction system is 

used for eco-driving optimization. 

 

3.2 Hi-Fi FEM of the cabin thermal system 
 

In [16] the cabin’s thermal model was simulated using a full 3D computational fluid dynamics (CFD) 

simulation. CFD is a numerical technique that solves fluid flow based on the Navier-Stokes equations, which 

are partial differential equations (PDE) that do not have analytic solutions in most real-life flow cases. 

Therefore, the equations are solved using numerical methods after discretization. The computational mesh for 

the simulations was produced using ANSYS Fluent and a FEM-based open-source C++ library, OpenFOAM, 

was used for all CFD simulations. The main benefit of CFD simulations is that they provide insights into the 

details of the fluid dynamic flow structures in the cabin. The CFD simulations were performed with a simplified 

geometry of the bus; with the computational domain consisting of the bus and a large air space to allow for the 

simulation of atmospheric flows, since the simulation of atmospheric flows requires special attention due to 

the hydrostatic pressure of air. The bus cabin was simulated with a full 3D conjugate heat transfer (CHT) 

approach, which accounts for the heat transfer in the solid regions as well as the fluid regions simultaneously. 

The simulations were performed with a Detached Eddy Simulation (DES) turbulence modelling method [17]. 

The benefit of such a turbulence model is that it allows lightweight simulation to be performed for unwanted 

regions and extensive simulation for the regions of interest, saving computational resources while giving 

accurate results in the areas of interest. For the time integration, a second order accurate backward scheme was 

used, while a total variation diminishing (TVD) scheme was used for the discretization of the convection terms. 

 

The interior bus was modeled as separate regions, each of which represents a solid object with specified thermal 

properties of the solid material. The thermal properties of the windows and doors are represented using the 

properties of plexiglass, while the bus walls, accordion and the seats are represented using the properties of 

polyurethane. The passengers of the bus are modelled as volumetric heat sources to account for the heat flow 

from the human body. The buoyancy generated from the thermal load from the human body is considered 

significant in indoor air flows. Simulations were performed for different scenarios, including when the bus was 

driving at different speeds, when the bus was at a stop with doors open, and with different climate conditions 

such as different wind speeds and ambient temperatures to build a complete picture of the cabin temperature 

variation and their evolution over time. In this research, the inputs to and output from the extensive simulations 

carried out in [18] using the functional mock-up (FMU) of the CFD model developed in [16], i.e., the Hi-Fi 

dataset from that project, are used to train the DT of the cabin’s thermal model for use with eco-comfort 

optimization. The DT inputs are the passenger profile, the ambient temperature profile, the waste heat profile 

of the various powertrain components, the bus doors opening and closing profile, the cabin setpoint 

temperature profile, and the constant inputs of solar irradiation and ambient humidity. The outputs from the 

DT are the actual cabin temperature and the heat pump and the PTC heater power profile. 
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4 Results and Analysis 
 

One of the approaches of DT design is that the twin is trained only once, using whatever necessary algorithm, 

and then deployed. Once deployed, the twin is used to make predictions based on incoming measurement 

data from the field. Strong emphasis was placed on the design architecture of the underlying NN and the 

training method so that the DT can make accurate predictions using new data as much as it could using the 

data it trained on. Therefore, the training method needed to ensure that there was no ‘overfitting’ of the data 

during training. Another approach of DT design is that the underlying NN is required to continually evolve 

with incoming data, in real time, even as it is using the incoming data to make predictions. The added value 

of this research is the following: 

 

1. Using a NN, find the best approximation to system dynamics of a powertrain component using 

limited training data. This does not have to be in real time and needs to be done only once.  

2. Continually evolve and tune the NN, using incoming data. This training must be in real-time. 

3. Once the confidence level of the NN rises above 95%, it can be used to make predictions; however, 

the training will be continued indefinitely. 

 

Experimentally, four sets of measurement data were taken, two from an urban driving scenario with lots of 

traffic lights and vehicles on the road, and two from highways. The measurement data was sampled at a rate 

of 10k samples per second. The initial training data that is presented in Table 1 is from an urban context. For 

the LM algorithm, the data was down sampled to 500Hz, as the algorithm takes a long time to execute, and 

it was not desirable to spend an inordinate amount of time to train using a very large data set. The urban 

scenario consisted of a little more than 10 minutes of driving data. 

 
Table 1: The execution characteristic of different training algorithms for 10 minutes of driving data 

 Number of 

iterations 

Root means 

squared error  

R2 value of 

regression 

Time required 

LM algorithm, down 

sampled to 500 Hz 

Torque: 901 

Idc: 1000 

Speed: 793 

Torque: 7.308 

Idc: 0.874 

Speed: 17.664 

Torque: 0.976 

Idc: 0.982 

Speed: 0.994 

7.25h with 1-

core (3h with 

12-core) 

SCG algorithm, down 

sampled to 500 Hz 

Torque: 290 

Idc: 371 

Speed: 187 

Torque: 9.583 

Idc: 1.540 

Speed: 38.910 

Torque: 0.960 

Idc: 0.943 

Speed: 0.976 

2.5 minutes with 

1-core 

SCG algorithm, 

original 10kHz sample 

Torque: 1000 

Idc: 1000 

Speed: 1000 

Torque: 9.165 

Idc: 1.449 

Speed: 35.355 

Torque: 0.964 

Idc: 0.949 

Speed: 0.980 

3h with 1-core 

(0.5h with 12-

core & GPU) 

SCG algorithm to re-

train a LM trained NN, 

original 10kHz sample 

Torque: 134 

Idc: 288 

Speed: 163 

Torque: 7.457 

Idc: 0.892 

Speed: 18.028 

Torque: 0.976 

Idc: 0.980 

Speed: 0.994 

4.5 minutes to 

7.5 minutes with 

12-core & GPU 

 

The result shows that the approximations of the SCG algorithm are much worse compared to the 

approximations of the LM algorithm, when both algorithms start from the same initial starting point. 

However, the data also shows that if the starting point of the SCG algorithm is first determined using the LM 

algorithm, then the SCG algorithm can approximate as well as the LM algorithm but at a fraction of the time. 

The following can be determined from the data presented in Table 1: a) LM is very accurate but slow and 

takes a long time to converge, 2) SCG is orders of magnitude faster than LM, but the accuracy is twice as 

bad as the LM algorithm. 3) It is determined that with the starting points of the NN configuration optimally 

selected prior to the training, the SCG will achieve high accuracy during training. This is achieved by taking 

the pre-trained NN using LM, and then re-training using SCG; this allows the SCG algorithm to keep the 

accuracy of the LM, but at a real-time processing rate. As can be seen from the table, the training of a 10-

minute data at the full sampling rate takes less than 7.5 minutes, so one batch of data can be processed before 

the next batch of data is ready for processing. Figure 3 shows the outputs of the trained NN to the original 

data set; two observations are noticed from the results – 1) the simulated estimates have a very good fit to 

measured data, 2) the simulated estimates are able to suppress somewhat the high frequency noise in the 

measurement data, and 3) the simulated estimates sometimes output a very short duration spike/pulse that is 

not present in the measurement data, easily removed using a moving median filter. 

 



8 EVS38 International Electric Vehicle Symposium and Exhibition  

 
Figure 3: Output of the trained CFNN using urban driving cycle 

 

 
Figure 4: Output of the CFNN trained with urban driving scenario to a highway driving cycle, and then with the 

NN retrained to the highway scenario. 

 

Figure 4 shows the output of the NN to a different scenario, namely the highway scenario. From the figure, it 

is noticed that there is a huge mismatch between the simulated estimates and the actual output; thus, there is a 

need to retrain the NN with the new data. The result of the retraining is also shown in the figure, and it is seen 

that the simulated estimates again closely match the measurement data. Furthermore, in subsequent tests it was 

verified from the output of the retrained NN to the original urban scenario that the retraining of the NN to adapt 

to the highway scenario did not remove the ability of the NN to also recognize and simulate the original urban 

scenario. Finally, the retrained NN was subjected to a different urban and highway scenario, and it was noticed 

that there was decent ability of the NN to recognize and output the proper estimate of the IWMS mechanical 

and electrical behavior to these new scenarios. It was also significant that the number of iterations required 

during the retraining process decreased by a factor of 3 because the NN weights are already configured to their 

optimal values from previous training and only slight tuning takes place during retraining. 
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5 Conclusion 
 

The open vehicle powertrain platform (OVPP) was design and development for the purpose of vehicle 

powertrain testing and characterization. Towards this end, the OVPP consists of a driving simulator that allows 

a driver to provide realistic and real-time driving data to the vehicle powertrain platform, where the HiLS of 

the powertrain component (i.e., the DuT) is conducted. The measurement data from the HiLS using the IoT 

system is then utilized to train a DT that represents the DuT using a CFNN, that is first accurately trained using 

the LM algorithm, and then subsequently adapted to new data using the SCG algorithm. This provides 

continuous real-time training of the DT and results show that a pre-trained NN is more easily and quickly 

retrained to newer data. The added value of this research in comparison to past DT research was that previously 

the research focused on developing and then deploying a DT for various applications, but the DT only 

underwent training once before deployment. Thus, various techniques including regularization, cross-

validation, early stopping, training with ever larger datasets, and reducing the network complexity are 

attempted to ensure that there was no overfitting during the training process to allow the NN to handle new 

(unseen) or different data scenarios [19]. All such techniques were unnecessary in this research since, unlike 

the first training process, the re-training process happened in real-time and applied continuously to the NN 

allowing the NN to quickly adapt to new scenarios while the network still retained the characterization of prior 

scenarios. Using this approach is the ideal training scenario for the NN as it now has access to unlimited 

training data. The trained DT was used to output the motor response in terms of its angular speed and torque, 

based on the input angular speed and torque command sent to the inverter. Furthermore, the DT was also used 

to generate the output of the DC-link current that was required by the motor. From these data, the dynamic 

power consumption of the motor was analyzed in real time. This real-time simulation ability of the DT allows 

it to be a component of various optimization algorithms.  
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