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Abstract 

Battery-electric vehicles (BEVs) are the most likely solution for the rapid and effective decarbonization of 

road transport to limit global warming. Yet, their continued adoption critically depends on the availability 

and usage of charging infrastructure, with inadequate coverage consistently cited as one key barrier. This 

study analyzes usage patterns of over N=7,500 public fast-charging stations in Germany over a two-year 

period, with an emphasis on utilization metrics, usage intensity, and charging patterns through data 

visualizations and statistical methods. The analysis confirms distinct day-night and weekday-weekend usage 

patterns and reveals slightly increasing utilization over time. Moreover, the study highlights how the ratio of 

energetic to temporal utilization differs across power classes, from one-to-five to one-to-two, and finds that 

station performance is more closely linked to the frequency of charging events than to rated power, charging 

duration, or charged energy per event. These empirical insights offer valuable guidance for optimizing the 

expansion and operation of a comprehensive and functional fast-charging network. 
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1 Introduction 
 

Electric vehicles (EVs) are transforming the automotive industry as the most likely solution for the rapid and 

effective decarbonization of road transport to limit global warming, keeping touch with the Paris Climate 

Agreement and reaching climate neutrality by mid-century [1, 2]. In both Germany and Europe, passenger cars 

were responsible for about 12% of their total annual greenhouse gas (GHG) emissions by the early 2020s [3].  

While global EV sales are increasing thanks to technological innovation, policy development, and investments, 

they remain substantially concentrated in just a few major markets [4]. At the beginning of 2025, EV sales shares 

reached around 20-25% in both Germany and Europe, while European CO₂ emission performance standards for 

new cars and vans set a 100% zero-emission vehicle (ZEV) target from 2035 onwards (Regulation (EU) 

2023/851). Central to this ZEV transition are battery electric vehicles (BEVs), particularly when powered by 

low-carbon electricity [1].  

However, the continued adoption of BEVs critically depends on the availability and usage of charging 

infrastructure, with inadequate coverage consistently cited as one key barrier [5, 6]. Beyond home charging, 

widespread BEV adoption requires reliable public charging infrastructure networks to enable day-to-day and, in 

particular, long-distance operations. At the beginning of 2025, Europe hosts about 150,000 public DC (direct 

current) fast charging points (Germany: 38,000) and about 780,000 public AC (alternating current) charging 

points (Germany: 131,000) [7].  
 

In this paper, we provide a timely and comprehensive analysis of how and when public charging points (CPs) 

are used to improve understanding of charging behavior amid a heterogeneous market. The goal is to inform 

infrastructure planners and policymakers through empirical insights to improve user-centered charging 

infrastructure deployment strategies (site selection and sizing) and prevent systemic bottlenecks (grid stability 

and underutilization). Here, we address two research questions, taking Germany as our case and using long-term 

usage data:  
 

Q1: What are typical occupancy durations of CPs, how much energy is charged per event, and how usage 

characteristics vary across CPs? 
 

Q2: How to determine the attractiveness of CPs and what relation exists between their temporal and energetic 

utilization? 
 

The remainder of this paper is organized as follows: The next subsection reviews relevant literature and 

summarizes key findings; Section 2 starts with introducing the dataset and data processing, and concludes with 

outlining the methodology; Section 3 presents the results; Section 4 discusses the findings and their implications 

as well as limitations of this study; and Section 5 concludes the paper. 
 

Literature review 
 

Several studies have already examined charging behavior and infrastructure utilization, varying in focus, 

approach, data source and available information, country or regional coverage, and amount of data. Among these, 

we highlight the following studies in chronological order: 

Gnann et al. [5] analyzed usage data of N=224 fast charging stations in Sweden and Norway. The authors paired 

the empirical insights with statistical analysis, queing models, energy simulation, and driving data to create 

synthetic BEV fleets for Germany and Sweden and then simulated charging times, arrival-departure slots, and 

seasonal charging demand. They indentified right-skewed distributions (charged energy and duration) and 

distinct day-night charging patterns with peak usage around 11 AM to 5 PM, and highlighted seasonal variations 

(summer-winter and vacation-working periods).  

Yang et al. [8] examined real-world data from N=130 BEVs in Beijing over seven months, finding that most fast 

charging events occurred after 10 AM, with peak usage between 1–4  PM. A regression analysis indicated that 

vehicle-related factors (e.g., State-of-Charge, expected trip duration and distance, or driving speed) significantly 

influenced the likelihood and duration of fast charging events. However, this information is usually not available 

for charger-derived data. 

Hecht et al. [9] collected usage data of N=22,200 charging stations across Germany (2019-2021) to analyze usage 

behaviors through visualization. Their findings revealed clear differences by area type (urban, suburban, 

industrial) and power level, with distinct day-night and weekday-weekend patterns that are refined around typical 

commuting-to-business hours.  

Borlaug et al. [10] analyzed usage data of N=3,705 charging stations in the United States (2019-2022) to identify 
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temporal utilization patterns and assess dependencies among the energetic utilization (kWh/port/hour) and 

contextual factors (such as charging price, venue type, population density, or  local EV adoption and charger 

networks). Regarding temporal patterns, their findings revealed clear differences by venue type and charger type 

(DC fast chargers vs. Level-2) with distinct day-night and weekday-weekend patterns. However, the utilization 

is very heterogeneous, with a few chargers accounting for a large proportion of the total energy (highly inflected 

Lorenz curve). The regression results (R² = 0.14–0.18) showed utilization positively associated with local EV 

adoption and free charging, but negatively with network density; venue type had no significant effect. 

Jonas et al. [11] evaluated usage data of N=6,700 chargers in Canada, comparing residential and public Level-2 

and DC fast charger usage. Similar temporal trends (day-night and weekday-weekend) were observed for public 

charging, with peaks around 7:30–8:30 AM and 4–5 PM, both aligning with commuting hours. 

Capeletti et al. [12] investigated usage data of N=10 fast charging stations in Brazil (Aug 2023-Jun 2024), 

confirming recurring usage patterns across area types and time (day-night and weekday-weekend), consistent 

with prior findings in other regions.  

 

To summarize, real-world usage data across multiple countries consistently reveal heterogeneous but recurring 

EV fast charging patterns, with distinct day-night and weekday-weekend cycles and minor seasonal trends, peak 

usage during commuting hours, high utilization often concentrated at a small number of stations, and strong 

influences from location type, charger type, and local EV adoption. However, an updated analysis based on a 

long-term dataset, which expands on Hecht et al. [9], is still valuable to capture emerging trends in this rapidly 

evolving EV market. Plus, current literature lacks a detailed differentiation of station utilization across usage 

tiers (from low to high performers, and possible reasons) but focus on average considerations, and an assessment 

of different utilization metrices such as session counts, plug-in duration, and charged energy. 

 

2 Data and Methods 
 

Raw data 
 

The data provided by the German National Center for Charging Infrastructure [13] comprise high-resolution 

usage data from all publicly funded fast charging stations in Germany (above 22 kW) over a two-year period 

(January 2022–December 2023). The data were split into four datasets and provided via the online reporting 

platform for charging infrastructure (called OBELIS), each representing six months of usage data. Each dataset 

covers millions of charging events (2,66-2,96 million) from around N=7,500 stations, with individual identifiers 

for each charging station (CS) and its charging points (CP). The data capture plug-in and unplug times, the 

charged energy (in Wh), and the rated power (in kW) per charging point and event. Furthermore, each station is 

characterized by one of seven general location types (i.e., parking_public, parking_garage, parking_customer, 

parking_park&ride, fuelingStation, fuelingStation_highway, or others), one of three general regional types (i.e., 

urban, rural, or undefined), and one of four predefined use cases (i.e., charging_street, charging_customer, 

charging_hub_corridor, or charging_hub_city). However, the dataset does not include geographical coordinates 
due to anonymization, vehicle-specific information (e.g., battery type, plug type, or State-of-Charge), the 

maximum/total power of the whole charging station, information on the charger technology (AC or DC), nor 

information on the total number of charging stations on site, and identifiers vary between the datasets so that 

station-related analyses are limited to six months. 

 

In total, the data capture about 11.4 million charging events that are related to 211.1 GWh of charged energy and 

28.5 million hours of charging duration, splitted among N= 59,545 CPs and N=30,095 CSs. Table 1 provides a 

summary of the dataset. Note that the data also include auxiliary charging points in addition to regular ones, such 

as a 3.7 kW AC charging point for emergencies that supplements one or two regular charging points at a DC fast-

charging station.  Further information on use case and location definitions is available at [13, 14]. 
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Table 1: Key elements of the dataset 

Data Field Description Data Type 

CP ID Unique identifier per charging point (equal to plugs per station) Char 

CS ID Unique identifier per charging station Char 

Timestamp Start time (plug-in) and end time (unplug) of the charging event Timestamptz 

Charged energy Amount of energy charged per event (in Wh) Float 

Rated power Maximum charging power per charging point (in kW) Float 

Location One of seven location types Categorical 

Use case One of four predefined use cases Categorical 

Region One of three regional types  Categorical 
 

Data processing 
 

Several filtering steps and assumptions were required to prepare the data for the subsequent analyses and 

visualizations:   

• The rated power of each charging station (in kW) is defined as the maximum rated power among its 

associated charging points.  

• All CPs and associated events in which the rated power of the CP does not align with that of the 

corresponding CS were classified as irregular events, and, thus, excluded from the analysis. 

• The charging duration (in seconds) follows from plug-in and unplug times and thus corresponds to the 

occupation period. However, the occupation time may exceed actual charging duration due to delayed 

unplugging. 

• Charging points were classified into six categories based on rated power to distinguish various 

levels of AC chargers and DC fast chargers. AC categories include: low-power (Prated < 11 kW), 

medium-power (11 kW ≤ Prated < 22 kW), and high-power (22 kW ≤ Prated <50  kW). DC categories 

include: low-power (50 kW ≤ Prated < 100 kW), high-power (100 kW ≤ Prated < 200 kW), and ultra-

fast chargers (Prated ≥ 200 kW). 

• All incomplete or erroneous charging events – primarily due to missing or invalid data – and charging 

points in undefined regions were excluded from the analysis. 

• To exclude malfunctioning or inactive chargers, a minimum threshold of ten charging events across at 

least four distinct weeks per six-month period was required for each CP. 
 

As a result, 11% of all CPs and 4% of all CSs were excluded from the analysis, representing 4-6% of the total 

information on duration, energy, and events. Table 2 shows the composition of the processed data by splitting 

the charging events, energy and duration among power classes. Accordingly, DC chargers account for about 

12% of all CPs and 16% of all CSs, contributing about 27% of all charging events, 38% of the total charged 

energy and 6% of the total charging duration.  
 

Table 2: Sample composition by power class 

Type Power class # CP # CS # Events 
Charged 

energy 

Charging 

duration 

AC 

[0,11 kW) 0.04% 0.05% 0.01% 0.00% 0.01% 

[11 kW, 22 kW) 5.19% 4.88% 2.21% 1.91% 4.10% 

[22 kW, 50 kW) 82.56% 79.55% 70.96% 60.23% 89.47% 

DC 

[50 kW, 100 kW) 7.17% 9.75% 11.76% 13.79% 3.43% 

[100 kW, 199 kW) 3.38% 4.30% 7.64% 11.98% 1.66% 

≥200kW 1.67% 1.48% 7.42% 12.09% 1.32% 

Total 53,021 28,956 10,702,557 202.26 GWh 27,344,621 h 
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Further, note that this will focus on fast charging infrastructure so that low- and medium-power AC chargers 

were excluded from the analysis, while high-power AC chargers were retained due to their market relevance and 

presence. 

 

Further data integration 
 

To account for contextual factors, monthly registration data for electric vehicles (BEVs and plug-in hybrids) in 

Germany for January 2022 to December 2023, as well as monthly average temperatures for Germany, were 

incorporated from different sources. Due to the anonymized nature of the OBELIS dataset, finer spatial resolution 

within Germany was not feasible.  

 

Methods 
 

To analyze the results, both visual and statistical methods are employed. Visualizations are stratified by key 

parameters, while statistical analyses include contingency tables, correlation matrices, and regression modeling 

to assess effect strengths and the significance of contextual factors and recognize patterns. In this context, 

utilization rates and usage tiers were defined. 
 

Concerning utilization rates per time period and CP, the following assumptions were applied. Note that time 

periods may be days, weeks, months, or half-years:  

• Temporal utilization, denoted as 𝜆𝑇, follows from the total occupation period (in seconds) in relation to 

the total time per period (in seconds). 

• Energetic utilization, denoted as 𝜆𝐸, follows from the actual charged energy (in Wh) in relation to the 

theoretically charged energy (in Wh), which is calculated from the rated power and total time per period. 
At the same time, the average charging power, denoted as 𝑃𝑚𝑒𝑎𝑛, is calculated for each charging event 

based on charged energy and occupation period, and evaluated in relation to the rated power. 
 

Concerning usage tiers, three tiers were defined that either use the number of charging events, total energy, or 

total charging time as the respective reference:  

• Low performers, denoted as bottom20, are defined as those falling within the lowest 20% of the 

distribution, corresponding to values below the 20% quantile of the specified reference. 

• Average performers, denoted as mid50, are categorized as chargers situated within the middle 20% of 

the distribution, corresponding to values between the 40% quantile and the 60% quantile of the specified 

reference. 

• Top performers, denoted as top20, are defined as those exceeding the highest 20% of the distribution, 

corresponding to values above the 80% quantile of the specified reference. 
 

3 Results 
 

Usage intensity of public fast chargers 
 

Usage intensity to evaluate the attractiveness can be measured in various ways, each with limitations. While 

simple metrics like charge events per time period ignore energy charged and session duration, time-based 

measures (occupation as percent of time plugged-in or actual charging time) risk either over- or underestimating 

actual usage. Thus, charging point operators typically prefer energy-related considerations [10], which also eases 

the incorporating infrastructure costs into the pricing of charging services via the levelized cost of infrastructure. 
However, energy-related information is usually more difficult to obtain. 

 

Figure 2 visualizes the relation among these different metrics. Each point represents a CP and its normalized 

ranking (with the respective minimum and maximum) when comparing events-to-energy (upper, blue) or time-

to-energy (bottom, red). The diagonal provides orientation, with points below as energetically more attractive 

CPs (high total charged energy) despite having relatively fewer charging events or shorter charging times 

compared to other CPs in the sample, and vice versa for points above the diagonal. The scatters also confirms 

that high usage intensity often concentrates on a small number of CPs. 

Concerning AC chargers, it becomes evident that charging time is a less effective metric for assessing usage 

intensity or attractiveness. This is likely attributed to the fact that CPs with high utilization do not necessarily 

correlate with a substantial number of charging events or high energy throughput. Such patterns may indicate 

prolonged occupation periods without active charging, particularly during overnight periods. The number of 
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charging events demonstrates a better alignment with the energetic perspective, indicating a more consistent but 

still imperfect relationship.  

Concerning DC chargers, an analysis of charging events, time, and energy yields similar classifications, 

particularly for ultra-fast chargers. Similarly, the number of charging events demonstrates a better alignment with 

the energetic perspective than charging duration. 

 

 

 
Figure 1: Usage intensity across different metrics by power class. 

 

Utilization of public fast chargers 
 

Figure 3 visualizes the relationship among the energetic and temporal utilization as a scatter plot across various 

power classes, where each point represents one CP in the stated the observation period. All plots reveal that the 

resulting ratios exhibit a remarkable consistency, largely independent of the observation period. Notably, AC 

chargers tend to exhibit the highest temporal utilization, albeit accompanied by the highest spread among all CPs, 

reflected by moderate R² values (0.67 to 0.79). However, energetic utilization is usually well below 10%. In 

contrast, ultra-fast DC chargers demonstrate the lowest low spread and most robust ratio, reflected by high 

R² values (~0.94). Utilization peaks are particularly noticeable for weekly scatters and are smoothed over an 

extended period. Specifically, high-power AC chargers demonstrate an energy-to-time utilization ratio of about 

1:5, low-power DC chargers present a ratio near 1:2, high-power DC chargers present a ratio of about 1:3, and 

ultra-fast DC chargers exhibit a ratio of about 1:4.  

 

 

 
Figure 2: Charger utilization by power class. 
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Detailed examination of DC chargers 
 

Figure 3 visualizes the mean charged energy (in kWh) and duration (in min) per charging event as histograms 

with kernel density estimators. The analysis reveals distinct variations across different power classes, while 

demonstrating large discrepancies for low-power DC chargers between location types but very low discrepancies 

for ultrafast DC chargers. Particularly, low-power chargers show shorter charging times with less charged energy 

at fueling stations (likely dedicated interim stops) than for parking situations for longer charging times yet similar 

energy levels.  

 

 

 
Figure 3: Evaluation of DC chargers by power class and location. 

 

Figure 4 visualizes the average charged energy, average charging duration and average number of daily events 

among the three usage tiers (color-coded) and power classes as boxplots. The analysis indicates that top 

performers are primarily characterized by the frequency of charging events across all power classes, rather than 

by metrics such as charging power, charging duration, or the resultant energy throughput per event.  

 

 

 

 
Figure 4: Evaluation of DC chargers by power class and usage tiers 
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Ultrafast DC chargers: Usage and occupancy patterns 
 

The following section provides a detailed examination of ultrafast DC chargers only. Table 3 shows the 

contingency table of all ultrafast chargers, and the relationship between usage tiers and contextual factors 

(location, use case, and region). Values in brackets indicate the correlation among the variables. In addition, 

Cramér’s V test are conducted to evaluate the strength of association between the categorical variables. Given 

the moderate to strong association of location, use case and usage tier, top performers benefit from being located 

at transport corridors (likely highways), supporting high energy throughput or transit-oriented charging behavior. 

Low performers cluster around customer parking spots. 

 
Table 3: Contingency table with correlation values for ultrafast DC chargers 

Location Fueling station 
Highway fueling 

station 
others 

Parking 

customer 
Parking public 

bottom20 1% (-0.202) 0% (-0.189) 0% (-0.059) 23% (0.615) 9% (-0.194) 

mid50 10% (0.148) 2% (-0.064) 1% (0.064) 2% (-0.346) 18% (0.195) 

top20 5% (-0.056) 14% (0.383) 0% (-0.034) 0% (-0.254) 15% (-0.012) 

Location - Cramér's V = 0.600 

Use case 
Customer 

charging 

City charging 

hub 

Corridor 

charging hub 
Street charging  

bottom20 24% (0.452) 0% (-0.026) 4% (-0.463) 5% (0.079)  

mid50 7% (-0.232) 1% (-0.024) 22% (0.215) 4% (0.014)  

top20 2% (-0.278) 0% (-0.068) 29% (0.304) 2% (-0.044)  

Use case - Cramér's V = 0.472 

Region city rural    

bottom20 26% (0.033) 7% (-0.033)    

mid50 23% (-0.07) 10% (0.07)    

top20 29% (0.145) 4% (0.145)    

Region - Cramér's V = 0.184    

 
Figure 5 presents the development of temporal (left) and energetic (right) utilization over time, differentiated by 

usage tier, with monthly trends (top) and comparisons to the growth of the EV stock in Germany (bottom). The 

analysis reveals a moderate positive correlation between utilization and the expanding EV stock, although 

substantial variance and distinct patterns across usage tiers are evident. Seasonal fluctuations between summer 

and winter appear relatively minor. With respect to energetic utilization, each additional percentage point 

increase in EV stock is associated with a 0.6 percentage point increase for average-performing stations (mid50) 

and a 1.1 percentage point increase for top-performing stations (top20). For temporal utilization, the effects are 

more pronounced, with each additional percentage point in EV stock corresponding to a 2.46 percentage point 

increase for mid50 and a 4.46 percentage point increase for top20 stations. 
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Figure 5: Evaluation of ultrafast DC chargers by usage tiers 

 

Figure 6 illustrates the occupancy probability over a representative week, shown in 15-minute intervals, and 

differentiated between average-performing charging points (CPs) (upper, gray) and top-performing CPs (lower, 

red). Each thin line represents an individual CP, while the black line indicates the mean occupancy at each time 

step. A pronounced day-night cycle is observed, with peak occupancy during typical commuting hours, and only 

a marginal increase in utilization during weekends. Average-performing stations exhibit daily occupancy rates 

between 10–15%, whereas top-performing stations reach 20–25% on average. The most-frequented CPs achieve 

maximum weekly occupancy rates of approximately 30–35%, compared to peak values of only around 20% for 

average-performing stations. These patterns highlight the concentration of demand among a few high-frequented 

stations and the strong temporal patterns of charging activity. 

 

 

 
Figure 6: Evaluation of ultra-fast DC chargers by usage tiers 
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4 Discussion 
 

The present study analyzed the usage patterns of public fast-charging stations in Germany, based on a two-year 

dataset covering more than N=7,500 charging stations. Particular emphasis was placed on a differentiated 

assessment of utilization metrics, considering both energy throughput and time-based occupancy, alongside 

measures of usage intensity and patterns. While the results are broadly in line with findings from existing 

literature, they also reveal new nuances specific to the German market and the dataset’s characteristics. 

Nevertheless, several limitations must be acknowledged, which may influence the generalizability of the 

conclusions and point to important directions for future research.  

First, we acknowledge a potential sampling bias as our sample covers only a fraction of the German market, and 

only subsidized stations. Usage patterns and performance measures from purely commercial stations may differ, 

because their selected locations are more attractive so that no funding was requested. This could supported by 

the fact that many of the low-performing stations are hardly used, which could make them difficult to operate 

economically.  

Second, there are technical challenges in matching charging points to charging stations. Although a CP might 

have a nominal rated power (e.g., 150 kW), the actual available power during a session often depends on the 

station and the number of simultaneous charging events. Typically, two CPs share one station’s power output, 

effectively limiting the power available for each individual session, regardless of the CP’s theoretical capability. 

This issue affects the calculated energetic utilization. 

Third, data limitations affect the depth of this study. Important information such as the SOC at start and end, the 

true end of the charging session, or precise geographic coordinates was missing. This lack of detail restricts a 

finer-grained regional analysis and prevents a full understanding of charging behavior at individual sites. 

 

For future research, it would be valuable to expand the sample with data from non-subsidized charging stations 

and expand the analysis to include all power classes. Other modeling techniques, such as multinomial logit 

regression might be used to identify detailed interaction patterns across categories (e.g., usage tier × power class 

× location × region × use case) as partially indicated for ultrafast DC chargers. Plus, semi-annual data for 2024 

is expected to become available too. This extension could help to better identify seasonal trends (e.g., temperature 

effects on usage patterns) and assess the impact of growing EV adoption rates on station performance over a 

longer time period. Last, further operational data like location-specific information including waiting and queing 

times or charging prices would allow for a more nuanced understanding of what drives station performance. 

5 Conclusion and Implications 
 

The present study analyzed the usage patterns of over N=7,500 public fast-charging stations in Germany over a 

two-year period, with a focus on utilization metrics, usage intensity, and charging behavior through a 

combination of data visualization and statistical methods. 

Addressing the first research question, we find that occupancy durations and energy charged per event vary 

substantially across charging points, with the greatest variability observed among lower-power AC chargers. 

Typical energy-to-time utilization ratios range from approximately 1:5 for high-power AC chargers, to 1:2 for 

low-power DC chargers, 1:3 for high-power DC chargers, and 1:4 for ultra-fast DC chargers. Different metrics -

such as number of events, occupancy time, and energy throughput - capture different aspects of usage intensity, 

each with inherent limitations. From an economic standpoint, however, energy throughput is the most critical 

indicator, as it directly influences the amortization of infrastructure investments. 

Regarding the second research question, our results show that temporal and energetic utilization are closely 

related, particularly for DC chargers. Nevertheless, the number of charging events emerges as a more reliable 

proxy for station performance than occupancy time alone, especially at ultra-fast charging stations, where 

sessions are typically short but involve high energy transfer. Top-performing stations are primarily distinguished 

by a high frequency of charging events, and are frequently located along transport corridors facilitating high-

throughput via transit-oriented charging. 

Finally, the analysis highlights the importance of considering the skewed distribution of station usage, meaning 

that a small number of top-performing stations account for a disproportionate share of total energy throughput, 

largely driven by favorable location factors. Consequently, evaluating infrastructure performance based solely 

on average values can lead to misleading conclusions, underscoring the need for more granular performance 

assessments. 
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