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Executive Summary

Companies are increasingly investing in electric vehicle (EV) and photovoltaic (PV) infrastructures to
meet sustainability targets, making effective energy management a priority. This study introduces a
Vehicle-to-Building (V2B) model that incorporates three key stakeholders: the company, the EV aggre-
gator (EVA), and EV owners. To encourage participation in V2B systems, we adopt a Stackelberg game
approach that balances the economic interests of each stakeholder while preserving data privacy. The
proposed model leverages a Mixed-Integer Quadratically Constrained Programming (MIQCP) formula-
tion to jointly optimize building energy usage and EV charging. A Liebmann-based iterative algorithm
and a gradient-based update method are employed to achieve Nash equilibrium among EV owners and
to optimize the pricing strategy of the EV aggregator, respectively. Together, these approaches reduce
charging costs, fulfill building energy demands, and maximize aggregator revenue, enabling a coordi-
nated and economically beneficial outcome for all stakeholders.
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1 Introduction
As the deployment of electric vehicles (EV) and photovoltaic (PV) infrastructures accelerates under
global sustainability initiatives such as the European Green Deal [1, 2], the efficient management of lo-
calized energy consumption and distribution has become a key operational challenge. Given that EVs are
stationary and unused for approximately 95% of the time [3], bidirectional charging presents an oppor-
tunity to turn these parked EVs into an active player in the energy system. Traditional Vehicle-to-Grid
(V2G) solutions are often hindered by the involvement of multiple independent stakeholders, including
EV owners, grid operators, and energy providers. This complexity introduces regulatory barriers and co-
ordination difficulties [4, 5], prompting interest in more contained systems where stakeholder alignment
can be more effectively managed.

Vehicle-to-Building (V2B) systems adapt the core principles of V2G to a localized context, such as
a single building or corporate campus. These systems enable EVs to participate in energy balancing
by charging from surplus onsite renewable generation and discharging to support building loads. Many
existing V2B implementations rely on centralized control architectures, which typically assume full com-
pliance from EVs and often overlook key considerations such as user incentives and privacy concerns [6].
In contrast, practical energy management scenarios often involve decentralized decision-making, where
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control is outsourced and must accommodate variable user behavior and limited data sharing. In such
settings, the stochastic nature of EV availability – driven by unpredictable arrival and departure times –
is frequently addressed using Monte Carlo Simulation (MCS) techniques [7].

Coordinating EVs in V2B systems typically involves either centralized or distributed control. Central-
ized approaches can yield globally optimal schedules but require complete system data, raising privacy
concerns. Distributed approaches are more scalable and preserve user autonomy, but struggle with coor-
dination. This trade-off is critical in energy applications where both efficiency and user privacy matter.
To address this challenge, game-theoretic methods offer a promising approach by explicitly modeling
the strategic interactions among decentralized agents such as EVs and aggregators without requiring full
system visibility [8]. In non-cooperative settings, EVs act independently to maximize their own utility,
influencing collective system outcomes [9]. Techniques like the Jacobi best response [10] and fictitious
self-play [11] have been proposed to manage these interactions, but they often assume equal influence
among all participants, which oversimplifies the power dynamics found in practice.

A more realistic approach involves hierarchical decision-making using the Stackelberg game. In this
framework, leader-follower interactions where the leader sets a strategy first, and the followers respond
optimally [12]. This results in a Stackelberg equilibrium, in which followers reach a Nash Equilibrium
(NE) based on the leader’s decision, and the leader optimizes their strategy accordingly. Some studies
apply this model to dynamic pricing scenarios [13], though often without considering V2G or V2B func-
tionality. More recent approaches integrate Stackelberg games with decentralized reinforcement learning
[14], preserving privacy but requiring extensive training and fixed hierarchies.

In this work, we focus on a V2B energy management scenario involving three stakeholders: the company,
the EV aggregator, and the EV owners. The company aims to minimize peak load demand and effectively
utilize excess PV energy, while the EV aggregator profits by providing energy balancing services to the
company and charging services to the EVs. Each EV owner seeks to achieve a desired State-of-Charge
(SoC) level at minimal cost.

Our main contributions are as follows:

1. Formulating the joint optimization of building energy management and individual EV charging
tasks as a Mixed-Integer Quadratically Constrained Programming (MIQCP) problem.

2. Modeling the hierarchical interaction between the EVA and EV owners using a Stackelberg game
framework, which reflects real-world asymmetries in decision-making authority and enables strate-
gic coordination under decentralized control.

3. Implementing a robust algorithm that guarantees convergence to an NE among EV owners, sup-
ports mutually beneficial energy and economic outcomes, and preserves user privacy by minimiz-
ing the need for sensitive data exchange.

2 System Model
The overall structure of the system is presented in Figure 1, which consists of four main components:
the Grid, the building EMS, the EVA, and a fleet of EVs. These components interact through three types
of flows: communication, energy, and financial transactions. The objective is to enable local energy bal-
ancing and maximize the utilization of on-site renewable energy. The EMS manages building load and
PV output, while the EVA serves as an intermediary, offering both EV charging services and temporary
energy storage support to the EMS. Each EV is modeled as a self-interested agent in a non-cooperative
game, deciding its charging or discharging actions based on broadcasted, aggregated information. Direct
communication between the EMS and EVs is avoided; instead, coordination is achieved via the EVA,
preserving privacy in a distributed setting.

Communication begins when the EMS receives real-time electricity price signals from the grid and fore-
casts its load and PV output. Based on this, it generates a V2B energy request and proposes a corre-
sponding price to the EVA. The EVA uses this information, combined with electricity pricing from the
grid, to compute a price signal. This is communicated to the EVs along with an aggregated cluster-level
charging plan. Each EV then solves a local optimization problem, aiming to minimize its energy cost
while meeting individual charging requirements, and reports its decision to the EVA. These strategies
are aggregated into a unified response and returned to the EMS. Both EMS and EVA draw their baseline
energy from the grid based on scheduled contracts. During events such as PV overproduction or high de-
mand, the EMS requests balancing services from the EVA. Due to market regulations prohibiting direct
resale of electricity from the EVA or EVs to the EMS, the EVA acts as an energy storage service provider.
It leases battery capacity from EVs to support intra-campus energy shifting. The V2B energy exchange
balances out over time, enabling regulatory-compliant use of EV resources to manage local energy needs.
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The financial layer coordinates the flow of payments across the system, ensuring alignment between en-
ergy consumption, regulation services, and incentives. Specifically, the EMS pays for grid energy and
compensates the EVA for providing regulation services. In turn, the EVA covers its energy usage and col-
lects payments from EVs for charging services. Each EV is individually responsible for its energy costs,
and no direct monetary transactions occur between the EMS and EVs. This structure promotes economic
alignment among stakeholders while preserving privacy and minimizing information exchange.

Figure 1: System architecture showing communication (blue), energy (green), and financial (orange) flows among
Grid, EMS, EVA, and EVs.

To implement the system, the first step is to identify which EVs are eligible to provide regulation ser-
vices. To support this, an MCS approach is adopted to generate realistic EV behaviors over a day, divided
into T time slots. For a fleet of M EVs, each EV i is assigned an initial SoC, arrival time, and parking
duration, all drawn from normal distributions. The departure time is computed by adding the parking
duration to the arrival time, constrained within the simulation horizon [0, T ]. Only EVs satisfying crite-
ria such as minimum parking duration and feasible SoC range are selected for participation in demand
response (DR).

Further filtering is applied to ensure alignment with the EMS’s regulation window. The peak regulation
requirement is first identified, and only EVs whose parking intervals fully overlap with this time window
are considered. To account for user behavior, a willingness factor randomly sampled for each EV is
introduced to reflect the likelihood of owner participation. The required number of EVs is computed by
dividing the EMS’s peak support request by the maximum discharge rate per EV, scaled by a safety factor
to account for uncertainties such as early departures or communication delays. If enough willing EVs
are available, the subset with the highest initial SoC is chosen; otherwise, all willing EVs are included.

The hierarchical interactions among EMS, EVA, and EVs are modeled using a pricing-based Stackelberg
game. In this framework, the EVA serves as the leader, while the EVs act as followers. The grid provides
the real-time electricity price, which is observed by both EMS and EVA. Based on this, the EMS and
EVA determine their electricity needs, which are then fulfilled by the grid as an energy supply. Simul-
taneously, the EMS communicates a regulation signal and budget to the EVA. The EVA determines how
much of this regulation it can support and sets a service fee. As the leader, the EVA then broadcasts to
each EV a personalized dynamic price and the aggregated behavior of the other EVs. Each EV indepen-
dently computes its optimal charging or discharging strategy, aiming to minimize its cost, and reports
this plan to the EVA. The EVA aggregates all responses into a coordinated V2B strategy and provides it
to the EMS for execution.

The pricing strategy employed by the EVA follows a price-based demand response framework (1), where
prices are dynamically adjusted based on the EMS’s regulation needs and the collective EV behavior:

peva(t) = pbase ·

(
P eva
base(t) +

∑
i∈N

P ev
i (t)− P ems

reg (t)

)
(1)

The parameter pbase is a positive scaling factor that adjusts the price sensitivity. Its unit is C/kW2h.
P eva
base(t) is the baseline power demand of the EVA at time t, P ev

i (t) denotes the charging power of EV i at
time t (positive for charging, negative for discharging), and P ems

reg (t) is the regulation signal provided by
the EMS at time t. The price signal dynamically adjusts based on the discrepancy between the aggregate
EV power and the EMS’s regulation request. When the total EV power exceeds the EMS’s regulation
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target, the price increases, discouraging further charging and promoting discharging. Conversely, when
the EV fleet’s contribution falls short of the EMS’s target, the price decreases, encouraging additional
charging. This mechanism enables the EVA to guide distributed EV decisions toward fulfilling the EMS’s
regulation objectives through dynamic, price-based control signals.

2.1 EV Utility Model
Based on this pricing rule, each EV aims to minimize its total cost. The corresponding utility optimiza-
tion problem is given by:

min
P ev
i (t)

U i
ev = Cenergy + Cpos

dev + CSoC (2)

The utility function for each EV consists of three components. The first term, Cenergy, represents the net
energy cost over the scheduling horizon and is computed as:

Cenergy =
T∑
t=1

P ev
i (t) · peva(t) ·∆t (3)

where P ev
i (t) > 0 denotes charging and P ev

i (t) < 0 denotes discharging, the term peva(t) is the dynamic
unit price determined by EVA at time t.
The second term, Cpos

dev , is the deviation penalty associated with the underutilization of surplus energy
from the EMS. When the EMS provides surplus energy (P ems

reg (t) > 0), EVs are encouraged, though not
mandated, to consume it. Self-interested EVs may opt to charge more or less depending on price and
their own SoC needs. To encourage more active participation in absorbing surplus power, the following
penalty function is defined as:

Cpos
dev = kpos ·

∑
t∈T +

max

0,
∣∣P ems

reg (t)
∣∣−
∣∣∣∣∣∣P ev

i (t) +
∑
j ̸=i

P ev
j (t)

∣∣∣∣∣∣
2

(4)

In this expression, T + is the set of time slots with positive EMS signals, where j indexes all EVs
excluding EV i, and kpos is a penalty coefficient expressed in C/kW2. The final term, CSoC , ensures that
the EV achieves a satisfactory SoC by departure time. Without this term, cost-minimizing EVs might
terminate charging prematurely, possibly violating user expectations. To address this, a linear penalty is
introduced as:

CSoC = γSoC · (SoCtarget
i − SoCfinal

i ) (5)

Here, SoCtarget
i denotes the user-specified target SoC (typically 80%), SoCfinal

i is the SoC resulting
from the planned charging trajectory, and γSoC is a weight capturing the sensitivity to SoC deviation
expressed in C. This utility formulation thus balances cost efficiency with grid support and user satis-
faction. This function introduces a trade-off between charging cost savings and user satisfaction. The
optimization is subject to several operational constraints. First, the SoC of EV i at any time t denoted
SoCi(t), must remain within allowable bounds, expressed as:

SoCmin ≤ SoCi(t) ≤ SoCmax (6)
Second, to meet user expectations, the SoC upon departure must satisfy a minimum required level:

SoCfinal
i ≥ SoC

target
i (7)

Third, the power limits for charging and discharging must be enforced at all times:

Pmin ≤ P ev
i (t) ≤ Pmax (8)

where Pmin and Pmax are the minimum and maximum charging power, respectively. Lastly, availability
constraints are imposed such that no power is transferred when the EV is not present:

P ev
i (t) = 0, if t /∈ [tarr

i , t
dep
i ] (9)

Under this approach, tarr
i is the arrival time and t

dep
i is the departure time of EV i. The optimization

problem is formulated as an MIQCP model. To solve it, the commercial optimization solver Gurobi is
employed [19]. For each EV, the model finds the optimal charging/discharging schedule that minimizes
the individual cost while satisfying SoC dynamics, user requirements, power bounds, and availability
constraints. The model formulation guarantees that each EV can achieve a net benefit under the proposed
dynamic pricing strategy. Moreover, the pricing design aligns individual incentives with system-wide
demand response objectives, enabling effective regulation signal tracking from the EMS while preserving
user satisfaction.
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2.2 EVA Utility Model
As the leader in the Stackelberg game, the EVA’s primary objective is to maximize its economic profit by
designing dynamic price signals that balance EV charging demands with regulation requirements from
the EMS. The EVA’s utility function under the DR framework is defined as:

max Ueva = Rev − Cgrid + F dr
ems (10)

The first component, Rev, denotes the revenue collected from EV users through charging transactions:

Rev =
T∑
t=1

N∑
i=1

P ev
i (t) · peva(t) ·∆t (11)

In this context, peva(t) is the dynamic electricity price set by the EVA (defined in Eq. 1), and ∆t is the
time slot duration.
The second component, Cgrid, reflects the cost incurred by the EVA for purchasing electricity from the
grid:

Cgrid =

T∑
t=1

Pg(t) · pgrid(t) ·∆t (12)

Here, Pg(t) is the power drawn from the grid at time t, and pgrid(t) is the grid electricity price. The
final component, F dr

ems, represents the regulation compensation provided by the EMS to the EVA as de-
fined in (16). This function quantifies the alignment between the regulation signal executed by the EVA,
P eva(t), and the target regulation signal requested by the EMS, P ems

reg (t). The compensation mechanism
is designed to incentivize compliance with regulatory objectives while accounting for the EVA’s eco-
nomic self-interest. As a result, the EVA is motivated to provide regulation services only when doing
so is economically beneficial, thereby reflecting the trade-off between regulatory performance and profit
maximization.

2.3 EMS Utility Model
In the EVA’s utility function, the regulation fee paid by the EMS is not a fixed amount, but instead
depends on the actual regulation signal provided by the EVA. The EMS evaluates the effectiveness of
this support based on the operational cost savings achieved relative to a baseline without regulation. The
EMS’s utility function is defined as:

min Uems = Cgrid + Cpeak (13)

The electricity cost component Cgrid represents the total energy expenditure for the building:

Cgrid =
T∑
t=1

pgrid(t) ·max(0, P ems
Load(t)− P ems

PV (t) + P eva(t)) ·∆t (14)

Within this framework, P ems
Load(t) donates the building’s base load, and P ems

PV (t) is the power generated
by the photovoltaic system. If no regulation is provided, this term is zero. The peak demand cost Cpeak

accounts for the highest net power demand, which often incurs an additional charge:

Cpeak = max
t
{P ems

Load(t)− P ems
PV (t) + P eva(t)} · cpeak (15)

Where cpeak is the peak demand price imposed by the grid expressed in C/kW. By leveraging EV
charging and discharging flexibility via the EVA, the EMS can reduce both its electricity costs and its
peak demand, resulting in overall cost savings. Consequently, the EMS is willing to share part of these
savings as a regulatory fee to incentivize EVA’s cooperation. This fee, denoted F dr

ems, is defined as:

F dr
ems =

(
U ems
noreg − U ems

withreg

)
· cems (16)

Here, U ems
noreg and U ems

withreg are the EMS utilities without and with regulation, respectively, and cems ∈
[0, 1] is a coefficient indicating the proportion of the savings shared with the EVA. This formulation
ensures that EMS payments to EVA are performance-based, rewarding effective regulation efforts. The
more successfully the EVA reduces energy consumption and peak load, the greater the compensation it
receives, thereby aligning both parties’ interests.
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2.4 Algorithms for V2B Game
To model the interactions among EVs, we consider a non-cooperative game where each EV i selects
a charging/discharging schedule P ev

i (t) over the time horizon t ∈ [1, T ], subject to a feasible set Qi
that incorporates SoC constraints, power limits, and other physical constraints. The feasible set Qi is
closed and convex, typically defined by linear constraints. The cost function Ui(·) for each EV is convex
in P ev

i (t) when the strategies of the other EVs P ev
−i(t) are fixed, and is continuous with respect to all

strategies. These properties fulfill the conditions for the existence of a NE as established in the work
of Facchinei et al. [20]. Furthermore, due to the strict convexity of Ui(·) in P ev

i (t), the best response
for each EV is unique, ensuring the uniqueness of NE. This guarantees that there cannot exist multiple
distinct strategy profiles that simultaneously satisfy the optimality conditions for all EVs.

Given the guaranteed existence and uniqueness of the NE, we employ the Liebmann method to compute
it via iterative best responses. In this approach, each EV sequentially updates its strategy by solving a lo-
cal optimization problem, assuming the strategies of all other EVs remain fixed. The process is repeated
until the change in strategy profiles between successive iterations falls below a predefined threshold. The
corresponding pseudocode is presented in Algorithm 1.

Algorithm 1: Liebmann method for EV Nash Equilibrium

Input: Initial strategies P(0) = {P (0)
1 , . . . , P

(0)
N }, tolerance ε, max iterations Kmax,

Output: Nash equilibrium strategy profile P∗

1 Initialize k ← 0
2 repeat
3 Set P(k+1) ← P(k)

4 for each EV i = 1 to N do
5 Solve the following optimization problem for EV i using (2)

6 Update EV i’s strategy: P(k+1)[i]← P
(k+1)
i

7 Compute convergence gap: δ ← ∥P(k+1) −P(k)∥
8 if δ < ε then
9 break

10 k ← k + 1

11 until convergence or k ≥ Kmax;
12 return P(k+1)

At the upper layer of the Stackelberg game, the EVA acts as the leader and selects a pricing parameter
pbase to maximize its own utility. The response of the EVs, as followers, is the NE {u∗i (t)} corresponding
to the given pbase. This bilevel optimization is expressed as:

max
pbase

Ueva

(
pbase, {P ∗

i (pbase)}Ni=1

)
(17)

where P ∗
i (pbase) is computed using Algorithm 1. To solve this problem, a gradient-based iterative ap-

proach is adopted. The EVA evaluates its utility at perturbed price values pbase±δ, estimates the gradient
numerically, and updates the price accordingly. This process is repeated until the change in utility falls
below a predefined threshold. The full procedure is outlined in Algorithm 2.
Under the assumption that the EV-level game has a unique NE and that the aggregator’s utility function is
smooth with respect to pbase, the proposed method guarantees convergence to a Stackelberg equilibrium
(p∗base, {P ∗

i }).

3 Results and Discussion
This section presents the simulation results and analysis of our proposed framework. Each day is divided
into 96 time slots, with each slot representing 15 minutes. The arrival times of EVs follow a normal
distribution centered at 8:00 am, and each EV parks for at least 10 time slots. Among the EVs that
arrive at the charging station, it is assumed that 80% of the owners are willing to participate in V2B. To
account for operational uncertainty, a safety factor of 1.2 is applied, ensuring a margin when selecting
a reasonable number of EVs to meet the regulation task requirements. Table 1 presents the parameter
values for the EVs used in the simulation. Additionally, the use of the MCS method guarantees that only
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Algorithm 2: Gradient-Based Update for EVA Optimization

Input: Initial price p
(0)
base, price bounds [pmin, pmax], step size δ, update rate α, tolerance ϵ, max

iterations Kmax

Output: Optimal price p∗base
1 Initialize pbase ← p

(0)
base, set k ← 0

2 repeat
3 Compute utility U+ ← aggregator utility at pbase + δ (using Algorithm 1)
4 Compute utility U− ← aggregator utility at pbase − δ (using Algorithm 1)

5 Compute gradient estimate: g ← U+ − U−

2δ
6 Update scaling coefficient: pbase ← pbase + α · g
7 Clamp: pbase ← min(pmax,max(pmin, pbase))
8 if |U+ − U−| < ϵ then
9 break

10 k ← k + 1

11 until convergence or k ≥ Kmax;
12 return pbase

a subset of EVs will be selected, covering the total time required for regulation. Thus, the number of
participating EVs depends on the V2B request and the safety factor.

Table 1: Parameter values for EVs used in the simulation.

Parameter Symbol Value
Number of EVs M 200
Time Slots per Day (24 hours) T 96
Length per Time Slot N 15 minutes
Battery Capacity Cbat 80 kWh
Mean/Std. of Initial SoC (µSoC, σSoC) (0.4, 0.1)
SoC Range (SoCmin,SoCmax) (0.2, 0.7)
Charging Station Power Limit Pmax

EV 22 kW
Mean/Std. of Arrival Time (µarr, σarr) (32, 4)
Mean/Std. of Parking Duration (µpark, σpark) (32, 5)
Minimum Parking Duration Dmin 10 slots
Willingness Probability p 0.8
Safety Factor fsafety 1.2

Figure 2 (a) illustrates the convergence process of the game under a fixed electricity price signal. The
y-axis represents the total charging cost of the EV cluster, serving as an indicator of the overall system
state. As shown, the lack of coordination among EVs initially results in poor completion of the regula-
tion task. This misalignment under the dynamic pricing strategy leads to elevated electricity prices and,
consequently, a relatively high total charging cost at the start. As iterations progress, each EV adapts its
charging strategy based on the updated behaviors of others. The system gradually converges, and after
approximately 40 iterations, the total cost curve flattens, indicating that the charging behaviors of the EV
cluster have stabilized. This convergence demonstrates that the Liebmann algorithm effectively reaches
an approximate NE within a reasonable number of iterations.

For the upper-level decision process, where the EVA acts as the Stackelberg leader, a gradient-based
method is used to update the base price pbase and maximize its overall utility. The convergence process
is shown in Fig. 2 (b). As shown, the EVA’s income fluctuates initially due to the sensitivity of the utility
function to price changes when the system is far from the optimum. After approximately eight iterations,
the revenue curve stabilizes and converges toward a maximum value, representing the optimal revenue
of the EVA. The price signal corresponding to this revenue and the best responses from EVs to this price
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signal (p∗base, {P ∗
i }) together form the optimal solution for the entire Stackelberg game.

Figure 2: (a) Convergence of EV charging plan (b) Convergence of aggregator revenue

Based on this optimal solution, the comparison between the desired regulation signal by EMS and the
actual charging and discharging plan of the EV cluster is shown in Figure 3 (a). Since this V2B task only
requires regulating power during the daytime, the analysis is focused on this period. As observed, the
actual power curve of the EV cluster generally follows the trend of the EMS regulation signal, indicating
a successful DR to the V2B request. During charging phases – when the EMS supplies energy to the
EV cluster – the actual power curve often exceeds the EMS’s regulation signal. This is due to the fact
that, in addition to supporting the EMS’s objectives, individual EVs also need to fulfill their own energy
requirements before departure. Conversely, during discharging phases – when the EMS requests energy
from the EV cluster – the total power fed back by the EVs typically falls short of the EMS demand.
This discrepancy arises because the EVA, acting as the leader in the Stackelberg game, prioritizes system
optimization from its economic standpoint. As a result, the extent to which EMS requests are met is
inherently constrained by the economic incentives offered to the EVs under the prevailing pricing mech-
anism.

To quantitatively assess the economic impacts of each stakeholder under the V2B framework, Figure 3
(b) presents a comparison of daily costs and revenues for the EVs, the EVA, and the EMS before and after
the V2B optimization. The results demonstrate that all three parties benefit from the implementation of
V2B, creating a win-win scenario. Notably, the EVA achieves the highest profit, with a daily increase
in revenue of 61C. At the same time, the EMS reduces its daily energy expenditure by 32.20C, and the
total daily charging cost borne by the EV cluster decreases by 24.42C.

Figure 3: (a) V2B request vs actual EV power (b) Cost and revenue of each stakeholder

Conclusion and Future Work
The proposed V2B energy management model uses a Stackelberg game to coordinate EV charging and
discharging through a dynamic pricing strategy set by the EVA. The EVA acts as the leader, sending price
signals to guide EV behavior, while each EV independently optimizes its charging plan to reduce costs.
This model is solved using a Liebmann algorithm to reach a stable Nash equilibrium across all EVs.
Simulation results show that the system stabilizes quickly, and all stakeholders – EVs, EVA, and EMS –
benefit from the V2B framework. The EVA achieves a significant economic gain, while the EMS reduces
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its energy expenditure, and the EV cluster experiences a decrease in overall charging costs. Although
the individual benefits for EVs are smaller compared to the EVA, the approach effectively maintains sys-
tem stability and demonstrates strong potential to enhance energy efficiency while aligning stakeholder
interests. Importantly, the decentralized design minimizes data sharing among participants, preserving
privacy and ensuring scalability in practical deployments.

Future work could enhance the model’s practicality and fairness by incorporating privacy-preserving
mechanisms like federated learning or blockchain. Additionally, improving battery degradation costs
and integrating AI techniques such as neural networks and reinforcement learning could make the model
more adaptive to real-time conditions. These advancements would increase its effectiveness in real-world
energy systems.
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