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Executive Summary

This study examines Electric Vehicles (EVs) as flexible storage assets, particularly through bidirectional
charging, to stabilize the energy grid amid the growing shift to renewable energy for a sustainable future.
By integrating real-world travel data and smart charging algorithms into the Simulation of Urban Mobil-
ity (SUMO) software, the work establishes a synergy between energy and traffic networks, generating a
flexibility map that captures the spatial-temporal characteristics of EVs in Dresden, Germany. The map
reveals energy flexibility across times and regions, highlighting the potential of vehicle to grid (V2G) to
enhance energy grid stability and meet regional demand.

Keywords: Electric Vehicles, Modelling and Simulation, Smart charging, V2G

1 Introduction

Transitioning to a sustainable energy system is essential for meeting long-term environmental goals and
reducing reliance on conventional power sources. A notable example of this shift is Germany, which
installed 14.4 GW of solar photovoltaic capacity in 2023, nearly doubling the previous year’s total with
a 92% increase [1]. This rapid expansion reflects the accelerating shift toward renewable energy. How-
ever, as more renewable sources are integrated into the grid, balancing supply and demand becomes
increasingly challenging due to their intermittent nature, which can lead to frequent fluctuations in grid
frequency and affect overall system stability [2].

During periods of high solar output, particularly around midday, the residual load, as the total electricity
demand minus renewable generation, can drop significantly. On April 10, 2023, residual load in Ger-
many turned negative for the first time, as renewable output exceeded total demand [3]. This highlights
the need for rapid-response flexibility measures to ensure grid stability.

One common approach to addressing these challenges is stationary battery storage, which helps decou-
ple the time of generation from consumption. However, this method comes with practical limitations,
such as high costs, scalability issues, and environmental concerns [4]. Electric vehicles (EVs) present
a promising alternative as decentralized, flexible storage assets, with considerable potential to enhance
grid stability through V2G technology. In [5], the authors propose an exhaustive enumeration approach
within a home energy management system to assess EV flexibility and pricing strategies. However, the
individual storage capacity of EVs — typically below 100 kWh — falls short of the thresholds required for
direct participation in demand-side management programs [6], limiting their standalone impact.
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Aggregators play a crucial role in coordinating the collective response of numerous EVs, effectively
bridging the gap between individual limitations and the large-scale flexibility needs of energy providers.
To enable this, EVs must be organized into coordinated clusters, typically managed by third-party entities
such as charge point operators, enabling a structured and scalable response to grid demands. Multiple
aggregators may simultaneously serve a single energy provider, and with V2G technology and two-way
communication, aggregator-managed EV fleets can function as dynamic energy buffers, helping to bal-
ance supply and demand by offering flexible grid support. However, for effective integration of EV-based
flexibility, energy providers must have a clear understanding of three key parameters: the amount of flex-
ible power an aggregator can provide, the duration for which this flexibility can be sustained, and the
specific location within the grid where the flexibility is available.

Leveraging the full potential of EVs in grid management requires a clear understanding of their charging
behavior. However, uncertainty in EV users’ behavior, driven by both charging and driving characteris-
tics, complicates this task. Consequently, studying the temporal and spatial patterns of EV charging is
essential. Probabilistic approaches, such as probability theory and the Monte Carlo model based on travel
chains, are widely used to model these uncertainties. For instance, [7] employed a travel chain model to
simulate uncoordinated EV charging demands, analyzing location and time-based characteristics of EV
behavior in China.

While recent studies have focused on sustainable smart charging goals [8], the energy flexibility potential
of electric vehicles remains underexplored. Energy flexibility, defined as the ability to adjust charging
behavior in response to grid conditions, is critical for effective integration into power systems. This study
addresses this limitation by using the Simulation of Urban Mobility (SUMO) framework to model EV
mobility, implement a smart charging algorithm, and quantify regional flexibility potential.

Our three main contributions are as follows:

1. Establishing the synergy between energy and traffic networks by extracting temporal and spatial EV
travel characteristics from real-world data. These characteristics are used to create detailed travel
plans, which are then fed into SUMO to generate trip data (distance, time, and battery usage).

2. Developing a smart charging algorithm aimed at maximizing flexibility and minimizing charging
costs. The algorithm optimizes charging schedules to enhance the regional flexibility potential avail-
able for grid support.

3. Generating a regional flexibility map based on the spatio-temporal characteristics of EVs. This map
visualizes flexibility potential across regions, supporting grid stabilization throughout the day.

The remainder of this paper is organized as follows: Section 2 outlines the detailed methodology, includ-
ing the SUMO-based simulation framework, the travel chain modeling approach, and the Mixed-Integer
Linear Programming (MILP) formulation for smart charging optimization aimed at maximizing regional
energy flexibility. Section 3 presents the results of quantifying flexibility across different regions. The
paper concludes with key findings and potential directions for future research in the final section.

2 Methodology

This section provides an overview of the methodology for modeling EV mobility and assessing regional
flexibility through local aggregators. The proposed framework incorporates three key components: a
SUMO-based traffic simulation, a travel chain model, and a smart charging optimization algorithm.

SUMO is an open-source, microscopic traffic simulation platform developed by the German Aerospace
Center [9]. It 1s widely used for modeling multi-modal transportation systems with high temporal and
spatial resolution. While some studies have used SUMO to assign EVs to charging stations, estimate
charging demand, and plan station locations, limited research integrates SUMO with smart charging so-
lutions, especially for analyzing the flexibility potential of EV's to support the grid. This paper bridges
that gap by using SUMO to construct the urban traffic network, simulate realistic EV driving behavior,
and visualize vehicle movements for spatiotemporal flexibility analysis. Fig. la shows a snapshot of
the SUMO interface, simulating EV traffic (green) in the city of Dresden. We select a map section of
Dresden with a longitude of approximately 13.70°E to 13.80°E and a latitude of 51.02°N to 51.08°N.
The map is obtained from OpenStreetMap, a publicly accessible website [10].

We divide the Dresden map into 15 regions, with 5 regions each for work, home, and other locations
as illustrated in Fig. 1b. Each region has its own local aggregator responsible for performing local
optimization. The objectives of each local aggregator are identical: minimizing costs and maximizing
flexibility. In this scenario, we consider a total of 500 EVs, with 100 EVs allocated evenly across each
home region. However, not all EV owners are assumed to participate in the flexibility program. We
assume a 50% participation ratio, meaning that half of the EVs will actively contribute to the flexibility
program, while the other half will charge uncoordinated, depending on availability. Furthermore, it is
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assumed that a charging station will be available whenever an EV arrives. To realistically model EV
travel behavior throughout the day, travel chains for each vehicle were generated using the National
Household Travel Survey (NHTS) dataset [11]. These travel chains represent typical daily trip patterns
between home, work, and other regions. The generated travel chains are then fed into the SUMO interface
to simulate traffic and generate detailed trip data, including distance traveled, travel time, and battery

consumption.
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Figure 1: (a) Visualization of vehicle movement within the SUMO framework, (b) Dresden map divided into
regions.

2.1 Travel Chain

A travel chain refers to a sequence of trips that begins and ends at the same origin, typically the home
location, and includes multiple stops for activities such as work, shopping, or other purposes. As shown
in Fig. 2, the travel chain model is divided into two complementary components: the time chain and the
space chain. The time chain captures the chronological structure of travel behavior, detailing the start
time of each trip, the duration of travel, the time spent at each stop, and the final return to the origin. This
temporal information is crucial for estimating the availability windows during which EVs are parked and
potentially available for charging or participating in flexibility programs. In contrast, the space chain
represents the spatial transitions between different activity locations — categorized as Home (H), Work
(W), or Other (O) — along the travel path. It maps how EVs move across regions throughout the day,
providing insights into spatial distribution and mobility patterns. Together, the time and space chains of-
fer a comprehensive view of EV behavior, allowing us to derive four key parameters: (1) initial trip start
times, (2) stop durations, (3) travel distances between regions, and (4) transition probabilities between
location types. Data from the 2017 NHTS was used to construct the travel chain [11]. Since EVs can
only charge when parked, these chains are particularly valuable for estimating vehicle availability and
flexibility potential across temporal and spatial dimensions.

Table 1 summarizes the key attributes used to construct travel chains. For this study, we consider only
trips made using private cars. While the 2017 NHTS dataset covers a wide range of travel distances,
our focus is on short-distance travel in urban areas. Following the approach in [7], we filter the data to
include only trips under 100 km and use conditional probabilities to model short-distance travel behavior.
This approach 1s suitable for the Dresden study area, where the maximum distance between regions is
around 15 km.

Fig. 3 illustrates the probability distribution of the start time for the first trip of the day, which follows
a Gamma distribution. The data reveals a distinct peak between 7:00 and 9:00 AM, indicating that the
majority of EVs initiate their first trip during the early morning hours. This start time is critical for
constructing the travel chain, as it determines the beginning of daily mobility. Once the departure time
is selected based on this probability, the next step involves identifying the type of destination the EV
is likely to travel to. The spatial transition probabilities, as shown in Fig. 4, guide this decision by
indicating the likelihood of various trip tyipes defpending on the time of da%/ and the trip’s origin.

Fig. 4 (a) presents the transition probabilities for trips originating from home locations. It can be ob-
served that during early time slots, especially around 7 AM, trips from home to work (HW) dominate,
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Table 1: NHTS data variables and descriptions

Column Name Description
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—
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— Stay duration 1 Stay duration2 . .
R Mo HOUSEID Household identifier
ey PERSONID Person identifier
| Space (hain _— HiHome | BEGNTIME  Tour begin time (HHMM)
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} } MODE.T Mode of the transport
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Figure 2: Travel chain model.
0.14
0.12
,.0.10
% 0.08
§ 0.06
0.04
0.02
0.00-
QG'QQ @;‘QQ QN‘QQ QQ"‘QD 0‘690 NQQQ \?"QQ »“90 \,6& '\,‘690 ”990 ’»"”"QQ

Time of Day (HH:MM)

Figure 3: Probability distribution of the start time of the first trip.

reflecting typical commuting behavior. As the day progresses, the probability of trips from home to other
destinations (HO) becomes more prominent. Conversely, Fig. 4 (b) shows the transition probabilities for
trips starting from work locations. Here, a high likelihood of work-to-home (WH) transitions is observed
during the late afternoon and evening hours, while work-to-other (WO) trips are distributed more broadly
throughout the day. After selecting the destination type (e.g., Work), a specific destination location is
randomly assigned using a uniform distribution over a predefined set of location IDs. For instance, if
the destination is classified as "Work’, a location ID between 1 and 5 is randomly selected to represent a
specific worksite. Following the destination assignment, the travel characteristics — such as trip duration,
travel distance, and energy consumption — are computed using SUMO.

Upon arrival at the destination, the stopping time is determined using spatial stay duration distributions,
as depicted in Fig. 5. The stay durations vary depending on the time of arrival and destination type. For
example, longer stays are associated with work d%stinatlons during early hours, consistent with standard
working hours. In contrast, shorter durations are more common later in the day. Once the stop duration
is determined, the vehicle proceeds to its next trip, repeating the destination selection, trip generation,
and stay duration steps to form a complete daily travel chain, ensuring a return to the home location by
the end of the day.

To illustrate this process, consider an example where an EV begins its day at Home location H1. Based on
the distribution in Fig. 3, the start time is assigned as 7:00 AM. According to the transition probabilities
in Fig. 4 (a), this trip is most likely to be of type HW, indicating a commute to work. A specific work
location, say W2, is then randomly selected. After simulating the trip with SUMO, the stay duration
at W2 is assigned using the spatial distribution shown in Fig. 5, reflecting a long stay due to the early
mornin% arrival. Later in the day, the EV departs W2, and based on the probabilities in Fig. 4 (b), it
may either return home (WH) or travel to other location (WO), depending on the time slot and transition
likelihood. In this work, we consider a maximum of three trips per EV, which allows for at most two
destinations before returning to the home location. The travel chain is considered complete once the EV
arrives back home, marking the end of its daily mobility cycle.
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Figure 4: Spatial probability distribution (a) trip starting from Home, (b) trip starting from Work.

Figure 5: Spatial stay duration probability at Work location.

2.2 Smart Charging Model

To optimize the charging schedules of the EV fleet, we implement a smart charging method based on
a mixed integer linear programming (MILP) framework. This method aims to coordinate EV charging
in a cost-effective manner while reducing peak demand associated with uncoordinated charging behav-
iors. The approach ensures that each EV meets its energy requirement before departure, while also
contributing to overall grid stability through flexibility provisioning. The MILP model is designed with
two primary objectives as mentioned in Eq. (1): minimizing the total cost of energy consumed from the
grid and maximizing the symmetric flexibility provided by the fleet as shown in Eq. (2) and (4) respec-
tively. The key decision variable in the model is the charging and discharging power of each EV, which
is treated as a continuous variable.

To solve this optimization problem, we utilize the Gurobi solver, which provides optimal solutions within
a computation time of less than two minutes. The objective function is defined as:

min w1 - Cl — w2 - CQ (1)

where (' represents the total energy cost from the grid, and Cs denotes the total symmetric flexibility
across all EVs. The parameters w; and wsy are weighting factors to balance both objectives, where w;

and wy have units of €~ and kW ! respectively.
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n=1
Here, C'grid; is the unit cost of grid energy at time ¢, D; is the demand from the grid, and 7 represents
the duration of a time slot (in hours). The term P, ; corresponds to the charging or discharging power of

EV 7 at time ¢, while P/°*? is the charging demand of all uncoordinated EVs at time ¢.
The second objective, C, captures the total symmetric flexibility offered across the fleet:

tdep
Ca=> > S €

nEN t=tarr
Symmetric flexibility is defined as:
Snt = min(P;ft, P'r;t) 5)
where P,JLC ¢ and P, represent positive and negative flexibility, and are calculated as Eq. (6) and (7)
respectively.
Pl = Puax — Pay, Vn,t (6)
P, = Pnt— Puin, Vn,t @)

The terms Pax and Py, denote the maximum charging and minimum discharging power, respectively.
SoC dynamics are given by:

P ..
SOCn,t+1 = SOCn’t + Ne - Pn,t T — LT, VTL, t (8)
Nd

with 7. and 7, referring to the charging and discharging efficiencies, respectively. The model includes
constraints to ensure safe battery operation, The model operates under several constraints as shown in
Eq. (9)—(12), including maintaining the state of charge (SoC) within an allowed range, achieving a target
SoC by departure time, and preventing excessive discharge that may degrade battery health.

SoCmin < SOCn,t < SoChmaz, n,t &)
where SoC,iy, and SoCi,,, represent the minimum and maximum allowable battery levels.
Socgeparture > Soc;flarget, vn (10)

Here, SoC2ePatre i the actual SoC at the time of departure, while SoC*"9°" is the required SoC.

Prin < Pn,t < Pnax, Vn,t (11)
tdep
> Pui < —05E7 Wn (12)
t=tarr

where )" is the maximum battery capacity of EV n.

The optimized charging plan generated by this model is based on each EV’s availability and stay duration
at specific locations. It also serves as the basis for computing the aggregated positive and negative flexi-
bility of each region. Since these values may differ, the symmetric flexibility is defined as the minimum
of the positive and negative flexibility. In this work, each location is assumed to have a local aggregator
that applies this framework to estimate the flexibility potential of its EV fleet.

Fig. 6 illustrates the role of a local aggregator in estimating the symmetric flexibility of an EV fleet at
a single location. The energy provider interacts with the aggregator, which manages the flexibility of
the fleet by optimizing charging and discharging schedules. Symmetric flexibility refers to the ability to
increase or decrease charging power based on grid needs, helping to balance energy supply and demand.
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Figure 6: Role of aggregator in estimating symmetric flexibility.

The aggregator determines this flexibility by analyzing both infrastructure-related factors (charging in-
frastructure, station availability, charging power, and cost) and EV-specific factors (battery capacity, state
of charge at arrival and departure, arrival time, and stay duration). These constraints define the extent to
which the fleet can participate in the flexibility program without compromising individual EV require-
ments.

3 Results

To participate in the flexibility program, aggregators must meet two key criteria: First, they must be able
to provide flexibility for at least 4 hours, ensuring they can remain on standby for a sustained period.
Second, the allocated power must be available for a minimum of 15 minutes, guaranteeing reliability in
meeting the grid’s demand [13]. These criteria ensure that the aggregator can consistently and reliably
contribute to the grid flexibility program.
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Figure 7: Spatial probability distribution at different work locations.

Fig. 7 shows the symmetric flexibility profiles at two work locations, W2 and W4. Solid lines represent
the total symmetric flexibility available throughout the day, while dashed lines indicate the flexibility
estimated for the upcoming 4-hour window. Specifically, the blue lines correspond to W2 and the black
lines to W4. For instance, at 10:00 AM, the aggregator estimates approximately 350 kW of symmetric
flexibility available at W4 over the next 4 hours. This means that if an agreement is made with the energy
provider at that time, the aggregator commits to remaining on standby, ensuring that the allocated power
can be provided on request for at least 15 continuous minutes during the contract window.
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Fig. 8 illustrates the distribution of symmetric flexibility (in kW) across various region types and times of
the day during daytime hours. The heatmap reveals how flexibility availability varies by region and time,
providing insights into temporal and spatial patterns of EV availability for flexibility services. The X-
axis represents the time (HH:MM), while the Y-axis categorizes region types into home (H0O-H4), work
(W0-W4), and other (O0-0O4) locations. Flexibility in the home region is high in the early morning and
late evening, with even greater potential at night as EVs return to their home locations after completing
all trips. For this reason, nighttime flexibility potential is not shown. For the work region, the peak
flexibility potential occurs between 08:00 and 13:00, and for the other regions, the flexibility is limited
due to variations in EV arrival and departure times.
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Figure 8: Daytime flexibility map by region.

Conclusion and Future Work

This paper establishes a synergy between energy and traffic networks through the integration of real-
world travel data, the SUMO traffic simulation platform, and a smart charging algorithm based on a
Mixed-Integer Linear Programming (MILP) approach. By modeling daily EV commute and optimizing
charging schedules, we generate a spatial-temporal flexibility map that captures the regional Hexibility
potential of EV fleets in Dresden. This map highlights how local optimization at each region can max-
1mize the flexibility available for grid support, revealing the crucial role of smart charging in balancing
supply and demand. The optimization of charging schedules enhances grid stability by offering flexible
energy provisioning, ensuring that EV fleets can contribute to grid management while minimizing costs
and reducing the impact of renewable energy variability.

In the future, we will extend this framework to a joint optimization model, where aggregators coordinate
across regions to better allocate flexibility resources city-wide. While the current results offer insights
into daily flexibility patterns based on a one-day simulation, we also plan to explore the German Mobility
Panel (MOP) dataset to evaluate flexibility over a longer time horizon, enhancing the statistical robustness
and real-world applicability of our model.
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