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Executive Summary

The transition towards vehicle electrification presents various challenges due to uncertainties in charging
behavior. This study proposes a strategy to generate a charging schedule for a fleet of Battery Electric
Vehicles (BEVs) while reducing the Total Cost of Ownership (TCO). The Charge Planning Tool (CPT)
is integrated with Digital Twins (DTs), which models realistic battery behaviour of aging and charging
phenomenon. The DTs are adaptive, have fast prediction and low training costs. The method is tested
in simulation to show the impact of different cost factors and improvements to the scheduling due to
the DTs. A multi-objective optimization strategy is proposed that is suitable for adoption by the fleet
operators.

Keywords: battery digital twin, battery degradation, battery charging profile, charge planning, electric
vehicle logistics.

1 Introduction
Greenhouse Gas Emission (GGE) are known to cause a significant negative impact on the environment
and are one of the major contributors to climate change [1] due to the prevalent usage of Internal Com-
bustion Engine (ICE) in most modern vehicles [2]. This has led to the enforcement of zero-emission
zones in cities where only emission-free vehicles are allowed [3].

In recent years, BEV have been identified as a potential mitigation technology for this problem, as they
have lower well-to-wheel GGE emissions than ICEs [4]. However, the complete adoption of BEVs still
faces several challenges due to uncertainties in modeling charging behavior and battery aging. These
challenges are particularly relevant in commercial applications, such as delivery companies and bus oper-
ators, which require large fleets of BEVs, which could benefit from optimal scheduling for cost reduction.

Various studies have investigated charge scheduling strategies, an overview of which can be found in
[5]. [6] focuses on optimal charging considering grid-capacity limitations, using a distributed optimiza-
tion problem. [7] describes an algorithm to determine the size, routing and operation of an electric bus
fleet. Neither approaches consider battery degradation in their strategies. In [8], a real-time optimal
charging strategy is described taking into account grid constraints, dynamic energy pricing and battery
degradation. But it does not consider peak shaving and the robustness of the schedules. [9] develops a
comprehensive tool for charge planning taking into account electricity price, peak shaving, operational
robustness and battery degradation for a non-homogeneous fleet of Electric Vehicles (EVs). However,
the tool uses linear charging behaviour and lacks adaptive capabilities for the battery system.
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This work presents a CPT that can be used for scheduling the charging for a large fleet of BEVs. This
tool is improved by using adaptive DTs that makes realistic predictions on battery parameters and self-
calibrates during the battery lifetime. The inclusion of DTs generate new opportunities for charge sched-
ule optimization. The novel contribution of this work includes:

• Integration of adaptive DTs into a CPT whcih have self-calibrating capabilities

• Multi-objective optimization for fleet scheduling taking into account the realistic behavior of the
battery

2 Charge Planning Tool
The CPT is designed to manage the smart charging of large-scale EV fleets, particularly heavy-duty
commercial trucks and buses, at a single depot or similar facility. The objective is to create an optimal
charging schedule that minimizes costs and maximizes operational efficiency, considering limitations
such as limited chargers and grid capacity. The CPT is suitable for scenarios where vehicles, following
a logistics schedule, return to a central hub for charging, excluding public charging during (round) trips.
The logistics planning determines the constraints for the charge schedule with specific arrival (ETA) and
departure times (ETD), and the required energy for the scheduled trips. Reliable scheduling requires
accurate estimation of energy requirements, preventing operational disruption due to underestimation,
while saving time by avoiding unnecessary full charges. The CPT will generate a feasible charge sched-
ule; the allocation of charger to vehicle, at a specified time, with a certain charge profile. The schedule
can be optimized for operational costs such as electricity price for a variable tariff, or battery ageing by
controlling the charging profile and moment of charging. The tool has two components: Fast Initializa-
tion Algorithm and Genetic Algorithm.

2.1 Fast Initialization Algorithm
Evaluating the feasibility of the logistics plan on the charger allocation problem requires a computa-
tionally efficient solution. The proposed heuristic method is inspired by Multi-Processor Scheduling
Problems (MSPs), where the similarity is drawn between available tasks and charge requests, processors
and chargers, and processing speed and charging power. The charge requests are sorted and given a
priority according to their laxity, deadline, arrival time, or other user-defined objectives, and the chargers
are sorted on power levels, either in ascending or descending order. The algorithm then loops through
each one of the charge requests, trying to assign them to chargers, according to the previously decided
order of priority. In case the assignment is feasible, it is stored in the internal memory. Otherwise, a dif-
ferent charge power or charger is selected. In case the assignment fails, the priority and order is updated,
and a new attempt to generate a schedule is started. This algorithm can easily run in parallel to create
additional schedules, by changing the priority rules and selected charge power order and running several
instances in parallel.

2.2 Genetic Algorithm
The Genetic Algorithm is an improvement-type algorithm; it requires a set of feasible initial schedules,
which are constructed with the heuristics described in the previous section and tries to improve upon
them. Iteratively, the population of feasible schedules evolves by selecting individuals (schedules) to
create offspring by either crossover or mutation. Only offspring with better fitness than their parents are
accepted for the new generation.

The complexity of the charge scheduling problem requires an algorithm that is tailored to the needs.
Due to the large scale and complexity of the optimization problem, the randomness in typical crossover
and mutation operators will easily lead to either infeasible results or too little improvement per gener-
ation. Hence, a sequential mutation method and a partial crossover method are adopted. To improve
computational efficiency, these operations are processed in parallel for each generation. The extent of
function evaluations involved in mutation and crossover is substantial enough to offset the parallelization
overhead.

3 Digital Twin
A DT is a virtual model that has a bi-directional exchange of data between physical and virtual systems.
This ensures a good state of synchronization, while also guaranteeing high accuracy, real-time perfor-
mance, and scalability for the prediction algorithms. Further, it can be used for process optimization,
observation, prediction and maintenance. For a DT of a battery in an EV, the DT uses sensor data to
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calibrate itself while the Battery Management System (BMS) receives feedback to adjust its operation
and control.

Fig. 1 shows the architecture of a battery DT in a charge planning use-case. The fleet operator can make
a prediction request and use the output to generate a charging schedule for a fleet of EV. During the
operation, the DT can update its parameter using calibration data from the EV. In this work two DTs are
developed: Battery Aging and Charge Profile Prediction.

Figure 1: Architecture of a battery DT for a charge planning use-case.

3.1 Battery Aging Prediction
Batteries degrade over time, diminishing their ability to store and deliver energy. This directly impacts
the driving range, performance, and reliability of electric vehicles. The battery aging prediction DT en-
ables prediction of the capacity degradation of the battery when subjected to varying operating conditions
such as temperature, State-of-Charge (SoC), Depth-of-Discharge (DoD) and C-rates. The predictive ca-
pability of the DT is crucial for optimizing battery usage, enhancing charging strategies, and extending
the overall lifespan of the battery. Fleet operators can also use accurate battery aging for long-term TCO
optimization.

The battery aging prediction DT uses a semi-empirical model to compute battery capacity due to calendar
and cyclic aging as

Ccal = αcap · tx (1)

Ccyc = βcap ·Qy (2)

Here, Q is the charge throughput in Ah and t the elapsed time during the ageing event. αcap and βcap are
defined as

αcap = (a1 · z − a2) · 10−6 · e−a3/Tbat (3)

βcap = b1 · (∅z − b2)
2 + b3 ·∆z + b4 · Cratech + b5 · Cratedch + b6. (4)

where, z and Tbat are SoC and battery pack temperature contributing to calendar ageing. ∅z is the
average SoC, ∆z is the DoD, and Cratech and Cratedch are the c-rate during a full charge and discharge
cycle, respectively. ai and bj are several battery-specific ageing parameters. The total capacity loss is
calculated as

Ctot = αcap · tx + βcap ·Qy (5)

At the beginning of its life cycle, ageing parameters are identified from a cell-level aging experiment in a
lab. This is used to initialize the aging model. During battery operation, the parameters are recalibrated
periodically using the battery data obtained from the vehicle in the fleet.
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3.2 Charge Profile Prediction
The objective of the charge profile prediction DT is to accurately predict the electrical power during a
charging session. The primary advantage of this method is the generation of a realistic power profile as
opposed to the standard profile commonly used by fleet operators. Fig. 2 shows the standard charging
profile that is used by the grid operators to schedule their fleets. It is seen that the predicted charging
power profile from the DT has differences in peak power and charging time. This can improve the as-
sessment of the charge time and grid load while making the charge scheduling more robust.
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Figure 2: Charge profile prediction from Charge Profile DT.

The predicted charging profile is divided into three segments: ramp, constant and decay. Each segment
is parameterized and identified during the operation of the vehicle at charging conditions: Start SoC (zs),
End SoC (ze), Reference Charging Power (Pc) and Ambient temperature (Ta). The real charge profile
can be predicted for a use-case at these conditions [10].

4 Results and Discussion
The charge scheduling algorithm is applied to a use case with a fleet of 5 medium-duty EVs and 2 charg-
ers as shown in Fig. 3. Each EV is assigned 3 trips with rest periods in between (shown in blue) where
the vehicle can be charged. The vehicle undergoes opportunity charging during the day and overnight
charging at the end of the day when it’s stationary at the charging hub. The fleet scheduling is simulated
for a single day of operation, while the DTs used are calibrated on real data.

4.1 Baseline Schedule
The standard scheduling method is used as a baseline where the vehicles are charged on a first-come first-
served basis to the maximum possible SoC. This technique is commonly employed by fleet operators.
Fig. 3 shows that when the DTs are not used, the fleet can be charged by using only one charger, i.e.,
Charger 1 can complete all change requests. However, the use of DTs enforces a longer charge time and
schedules the fleet differently. The increase in SoC is non-linear, with slower rates of increase towards
the beginning and end of charging. In this case, a second Charger 2 is also used as Charger 1 is unable
to finish charging in time to move to the next charge request. Hence, using the DTs ensures correct
infrastructure planning and improves the robustness of the charge schedule.

4.2 Optimal Schedule
Both schedules in Fig. 3 are generated using fast initialization algorithm. The charging schedules are
further improved by using Genetic Algorithm by mutating over the initial schedules. In this method, four
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Figure 3: Charge scheduling without and with battery DTs.

types of cost factors are considered: Electricity Cost, Battery Degradation, Peak Power and Robustness.

Electricity cost is the cost of consuming power from the grid and is influenced by the varying price of
electricity during the day. In this use case, the electricity tariffs are lower during the night, but the costs
also have a dip during the day due to alternative renewable sources of energy (such as solar). Battery
degradation is the reduction in charge capacity due to calendar and cyclic battery operations. Lower
electricity cost results in short-term profit to the fleet operators while lower battery degradation gives
long-term benefits by improving EV performance and saving maintenance cost.

Fig. 4 shows Minimum Electricity Cost (MEC) and Minimum Battery Degradation (MBD) strategies,
which optimizes electricity cost and battery degradation, respectively. It is seen that the MEC minimizes
electricity cost by clustering peak charging around the lowest electricity price during the day. During the
night, the charging is pushed and spread out towards the relatively lower cost periods. MBD lowers bat-
tery degradation by lowering the average charge power, thereby reducing the cyclic aging. The vehicles
are also charged as late as possible to keep the average SoC low which reduces the calendar aging.

The TCO can also be reduced by minimizing peak power as energy contracts have additional costs as-
sociated with them. However, these costs are levied on a longer time horizon, such as 6 months. This
work will focus on the reduction of peak power for a single day of operation. Robustness of a schedule is
defined as the slack in planning that can be used to counter unforeseen circumstances and emergencies.
It is an important factor for fleet operators as missing an operational schedule has the highest economic
impact for them.

Fig. 5 Minimum Peak Power (MPP) and Optimal Robustness (OR) strategies, which optimizes peak
power and robustness, respectively. It is seen that MPP uniformly reduces the maximum power by
charging at every charge opportunity using relatively lower power. OR improves Robustness by charging
in the middle of the charge opportunity. This increases the slack time both at the beginning and end of the
charge opportunity. The power consumption for this optimization is also higher to reduce the charging
time. Smaller charging time will also have higher slack.

4.3 Multi-factor Optimization
Amongst the cost factors, electricity cost and battery degradation have the most clear economic impacts
on TCO. Analysis of optimal peak power requires a longer time horizon (outside the scope of this study).
Robustness also has a high impact, but the exact cost on TCO is dependent on the fleet operator’s prefer-
ence while being difficult to quantify. Hence, a multi-factor optimization is simulated for electricity cost
and battery degradation.

Fig. 6 shows the charge schedule with a combined optimization of electricity cost and battery degrada-
tion. This Optimal Electricity Cost and Degradation (OED) schedule resembles the MBD strategy and
makes minor changes to utilize low-cost charging.
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Figure 4: Charge scheduling with MEC and MBD strategies.
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Figure 5: Charge scheduling with MPP and OR strategies.

Figure 6: Charge scheduling with OED strategy.
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Fig. 7 shows the comparison between the 5 optimal strategies and their relative impacts on the cost fac-
tors Electricity Cost, Battery Degradation and Peak Power. The greedy algorithm is taken as the baseline
for comparison. It is seen that the strategies focused on reducing a singular cost factor have the optimal
for it; MEC for electricity cost, MBD for battery degradation and MPP for peak power, while the OED
schedule presents a good score for all cost factors.

Figure 7: Charge scheduling without and with battery DTs.

Commonly, when fleet operators are looking to improve their charge scheduling, their focus is on the
reduction of electricity costs, with battery degradation not being a priority. However, it is seen that OED
gives lower electricity cost than MBD, lower battery degradation than MEC and lower peak power than
both of them. Hence, this strategy can be used by fleet operators as an improvement to their current
charge scheduling.

5 Conclusion
In this work, two battery DTs (Battery Aging and Charge Profile Prediction) were implemented into a
CPT to achieve a realistic charging schedule for a fleet of EVs. The DTs were calibrated on real data
while the fleet scheduling with CPT was simulated. The implementation generates a realistic schedule
that is robust and reduces TCO by applying various optimization strategies. A combined optimal elec-
tricity cost and battery degradation strategy (OED) was found to be most suitable for fleet operators’
adoption due to its multi-objective minimization.

Future work will focus on the integration of peak power and robustness to the TCO analysis. The impact
of other cost factors such as alternate energy sources, peak shaving via stationary storage, micro-grid sta-
bilization and imbalance market will be analyzed. Analysis will be done on the real-time implementation
by leveraging the fast and slow algorithms in different scenarios. The tool will be extended to integrate
more DTs such as energy estimation and traffic prediction. This will provide further avenues for cost
factor optimization. Lastly, the algorithm will incorporate the generation of suboptimal solutions in case
of infeasibility for the required charging conditions.
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