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Executive Summary 

This study analyzed real-time driving and charging data from 464 Electric Vehicle (EV) users to evaluate 

Vehicle-to-Grid (V2G) potential as a grid resource. Key findings reveal EV users drive significantly more 

annually (24,156 km) than conventional drivers. Using a Linear Programming model optimized for user profit 

based on price fluctuations in wholesale electricity market at Jeju islands in Korea, while guaranteeing 

sufficient charge for next trips, significant V2G potential was identified. This potential is concentrated during 

long evening and nighttime parking periods, enabling profitable charging and discharging aligned with grid 

needs. Parking duration and frequency emerged as the dominant factors influencing V2G capacity. The study 

concludes that V2G, dependent on future EV adoption, infrastructure rollout, and user participation, offers 

substantial promise for enhancing grid flexibility, integrating renewables, and mitigating grid ramping 

challenges. 
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1 Introduction 

The increasing penetration of renewable energy sources, particularly in regions like Jeju islands in Korea, 

has led to challenges such as output curtailment due to excess generation. Concurrently, the rising adoption 

rate of Electric Vehicles (EVs) presents both a challenge, due to increased electricity consumption and peak 

load impacts, and an opportunity through Vehicle-to-Grid (V2G) technology. V2G allows EVs to not only 

draw power from the grid (charging) but also inject stored energy back into it (discharging), acting as 

distributed energy resources. 

Effective V2G implementation promises several benefits: reduced operating costs and potential revenue 

streams for EV users, absorption of surplus renewable energy thereby minimizing curtailment, mitigation of 

steep net load increases during ramp-up periods, stabilization of daily load curves, reduced investment in 

generation and grid infrastructure, and lower carbon emissions from power generation.[1][2] 

Accurate estimation of V2G potential is crucial for designing efficient V2G systems, formulating effective 

policies, and planning future grid infrastructure. While previous studies often relied on processed data or 

simulations, this research utilizes real-time EV driving and charging data collected from a user panel to 

provide a more realistic assessment. [3][4] 
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This study has two primary objectives: 

1. To analyze the detailed driving and charging characteristics of EV users based on real-time panel 

data.  

2. To estimate the V2G potential based on this real-world data, employing a user-profit maximization 

perspective using a Linear Programming (LP) model. 

The analysis of driving and charging patterns provides foundational insights into EV usage, informing energy 

and transportation policies. The subsequent V2G potential estimation, grounded in actual usage data and 

specific pricing of Jeju wholesale electricity market, offers practical information for V2G policy decisions 

and future planning in Korea.  

 

2 Literature Review 

 

2.1 Vehicle-to-Grid Integration in Electric Vehicles 

The concept of V2G has emerged as an innovative paradigm that positions EVs as active participants in the 

energy environment, enabling bidirectional energy transfer between EVs and the power grid. This allows 

EVs to draw power from the grid when needed and return surplus energy when their batteries have available 

capacity, acting as mobile energy storage devices.[5] 

Current V2G research focuses on several key areas. Grid Management and Services (45%) aims for efficient 

bidirectional energy transfer and grid support. Renewable Energy Integration (25%) explores using V2G for 

distributed energy storage to integrate renewables. The EV Market and Economics (15%) studies charging 

infrastructure and business models. Technology and Infrastructure (10%) focuses on bidirectional chargers 

and communication protocols. Policy and Regulations (5%) examines supportive policies and standards, such 

as California's LCFS and EU initiatives like ISO 15118.[3] 

Despite progress, challenges remain. A key issue is the lack of standardized communication protocols and 

interoperability. The regulatory framework is often inadequate. Limited availability of V2G-enabled 

charging stations is an infrastructure hurdle. Battery degradation due to frequent cycling is a concern, with 

research exploring advanced BMS using AI to optimize charging. Cybersecurity is an increasing concern. 

Consumer understanding and acceptance are limited, requiring education. The economic viability of V2G 

needs further investigation.[2] 

Furthermore, consumer understanding and acceptance of V2G benefits remain limited, necessitating 

education initiatives and incentives. The economic viability of V2G and establishing sustainable business 

models require further investigation to incentivize both EV owners and grid operators. Accordingly, 

accurately estimating V2G potential is crucial for effectively utilizing V2G as a resource.[4] 

 

2.2 V2G Potential Estimation 

 

2.2.1 Studies on V2G Potential Estimation  

Estimating the potential of V2G is essential for effective planning and implementation. The estimation of 

V2G potential is a multifaceted endeavor employing various methods, including modeling and simulation, 

data-driven analysis, techno-economic evaluations, and the critical consideration of user behavior. These 

studies reveal that V2G potential is significantly influenced by factors such as EV penetration, regional 

characteristics, technological advancements, economic incentives, and user acceptance. 

• Modeling and Simulation Approaches: Agent-Based Modeling (ABM) assesses potential 

considering factors like EV ownership, user behavior, and regional characteristics (e.g., Zhang et al.'s 

study in Japan).[6] Optimization models (like MILP) estimate achievable capacity under technical 

constraints.[7] Machine learning (e.g., LSTM) is used for predicting schedulable capacity.[8]  

• Data-Driven Analysis: Analyzing real-world EV usage data (charging location, duration, timing) 

provides empirical insights. Floating Car Data (FCD) helps identify suitable V2G locations based on 

parking patterns. [9] 
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• Techno-Economic Evaluations: Assess economic benefits and costs, considering infrastructure 

investment and battery degradation alongside grid service revenues (e.g., Huda et al. in Indonesia, 

Almehizia & Snodgrass on profit maximization, Han & Han on frequency regulation feasibility). 

• Consideration of User Behavior: Understanding user concerns (inconvenience, range anxiety) and 

actual behavior (plug-in habits, response to incentives) is crucial for realistic potential estimates. 

 

2.2.2 Optimization of V2G Scheduling based on MILP  

Mixed-Integer Linear Programming (MILP) models have been frequently employed to optimize V2G 

operations and assess their potential under diverse objectives and constraints. These models typically aim to 

maximize profits for EV owners or aggregators, minimize grid operational costs, reduce congestion, or 

optimize energy management. Constraints often include EV battery characteristics (capacity, state-of-charge), 

user preferences, grid limits, and battery degradation. [10] 

Several studies highlight the efficacy of MILP in quantifying V2G potential. For instance, one study 

developed a MILP model that optimized V2G scheduling while considering battery degradation. The results 

demonstrated significant cost reductions for EV owners (between 48% and 88% compared to immediate 

charging) even when accounting for battery wear. This underscores the substantial economic advantages of 

V2G when optimized using MILP. [11] 

Furthermore, MILP has been utilized to develop evaluation frameworks for V2G service providers. These 

frameworks characterize V2G output capability by providing metrics for power capacity, service cost, and 

profit, aiding in the strategic planning of V2G services. The application of MILP in transactive energy 

management for V2G-capable EVs in residential buildings has also been explored, aiming to balance user 

preferences with grid support. [7][11] 

In addition to economic benefits at the individual or aggregator level, MILP has been used to assess the 

potential of V2G for addressing grid-level challenges. For example, techno-economic analyses using MILP 

have indicated that widespread EV adoption with V2G could lead to peak load reduction, as seen in the 

Indonesian grid where a 2.8% to 8.8% reduction was projected depending on EV availability scenarios. [12] 

Despite the variety of approaches, MILP remains a valuable tool for its ability to model complex systems 

with multiple constraints and objectives, providing quantitative insights into the technical and economic 

potential of V2G technology. The accuracy of these estimations, however, is contingent on the quality of 

input data and the comprehensiveness of the modeled system, including considerations for user behavior and 

grid dynamics. Future research continues to refine these models to better capture real-world complexities and 

uncertainties associated with V2G implementation. 

 

3 Data and Methodology 

 

3.1 Data Description 

The analysis presented in this study is fundamentally based on real-time operational data collected directly 

from EV users, hereinafter referred to as panels, through installed On-Board Diagnostics (OBD) devices. The 

data comprises three main categories: panel information, driving and charging events, and electricity market 

pricing data. 

• Panel Information Data: Data was initially gathered from 802 validated participants across passenger 

cars, freight vehicles, and taxis. This analysis focuses specifically on the 727 passenger car panels (90% 

of total). Recorded information for each includes a unique OBD device number (linking data across 

datasets), EV make and model, manufacturer-specified maximum battery capacity (kWh), primary 

vehicle usage purpose (categorized as 1: commuting, 2: personal errands including leisure/school runs, 

3: business excluding commercial freight/taxi), primary driver's age group and gender, residential 

administrative district code (125 categories), and panel class (passenger/freight/taxi). 

• Driving and Charging Event Data: This dataset contains timestamped records for individual driving 

('trip') and charging events. Each record typically includes: device number, event start/end date and 

time (Y-M-D h:m:s), start/end battery State of Charge (SOC, reported as %), start/end vehicle 
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odometer reading (km), start/end cumulative energy charged (kWh), start/end cumulative energy 

discharged (kWh), charger connection status at start/end (e.g., SLOW, FAST, CONNECT, NONE), 

and start/end location represented by administrative district codes (OD zones). The initial raw 

collection yielded 757,746 event records from 806 panels. 

• Jeju Electricity Pricing Data: Hourly System Marginal Price (SMP) data from the Jeju island 

electricity market, operated by the Korea Power Exchange (KPX), was used for the V2G economic 

modeling. To capture representative price volatility relevant to V2G arbitrage opportunities, the study 

utilized average hourly SMP values derived from days exhibiting the largest price differentials within 

the month of April for the years 2019 to 2023. This average SMP profile serves as the input for 

calculating charging costs (𝑝𝑡
+) and discharging revenues (𝑝𝑡

−) in the optimization model. The Jeju 

SMP typically shows a distinct "duck curve" pattern, particularly in spring/autumn, with lowest prices 

around midday due to high solar generation and highest prices during the evening peak load hours 

(approx. 19:00-23:00). This pattern is considered a plausible representation of future grid pricing 

dynamics under high renewable penetration scenarios. 

 

       
(a)                                                                              (b) 

Figure 1: (a) Driving and charging event data collection system using OBD-II (b) Average hourly SMP 

profile of Jeju island electricity market 

 

3.2 Data Preprocessing for Analysis and Estimation 

To ensure data integrity for analyzing driving and charging patterns, rigorous preprocessing was applied to 

the raw OBD data, addressing inconsistencies and removing outliers that could skew results. Key steps 

included calculating trip distance and duration from odometer readings and timestamps. Events with zero 

distance were categorized: those with increasing State of Charge (SOC) were separated as charging events, 

while others (likely idling or errors) were removed. Outlier trips, defined as those exceeding 500 km or lasting 

48 hours or more, were removed as probable data loss; exceptionally long-distance trips within plausible 

durations had their distance flagged as potentially inaccurate (NaN). Very long-duration trips over 24 hours 

were kept, but their duration was flagged (NaN) for time-based analysis. 

Continuity between consecutive events was checked by calculating inter-event distance and time intervals. 

Significant gaps (e.g., ≥ 100 km and ≥ 3 days) were marked as missing data periods. Net energy consumed 

per trip was calculated by subtracting estimated regenerated energy from the total discharged energy, derived 

from cumulative energy logs.  

Specific preprocessing was applied to the 127,534 identified charging events. Charged energy was calculated 

from cumulative logs, with corrections based on SOC change for negative results. Inter-charge interval time, 

distance, and energy consumption were calculated. To avoid distorting averages, charging events lasting over 

14 hours were excluded from average charging time calculations. After these steps, 512,509 valid driving 

events from 727 passenger car panels remained for analysis. 

Further specific preprocessing was required to prepare data for the V2G schedule optimization model. Firstly, 

the analysis cohort was restricted to 464 panels primarily used for 'commuting', representing a user group 

with predictable parking patterns suitable for V2G participation. Secondly, SOC values were converted from 

percentages to kWh using each vehicle's specific battery capacity. Thirdly, the event-based data was 

transformed into 'parking interval' data, where each interval represents the time between the end of one trip 
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and the start of the next. Each interval record included duration and a flag indicating if charging occurred. 

A crucial parameter, the 'Required Charge Amount' (𝐸𝑟𝑒𝑞), was calculated for each parking interval. This 

represents the minimum energy needed at the end of parking to complete all subsequent driving until the next 

long parking event (duration ≥ 6hours). It was calculated based on the energy consumed during that future 

driving period. To account for range anxiety and battery health, a safety margin equivalent to 30% of battery 

capacity was added to 𝐸𝑟𝑒𝑞. This final 'Realistic Required Charge Amount' was then capped between 30% 

and 95% of the battery's capacity for use in the model. Finally, rigorous filtering was applied to the parking 

interval dataset. Intervals were removed if 𝐸𝑟𝑒𝑞  was missing, if significant odometer changes (>2km) or SOC 

decreases (>3%) occurred during parking, if start/end SOC was zero, or if calculated 𝐸𝑟𝑒𝑞 was excessively 

negative (< -5% capacity). Importantly, parking intervals where actual charging occurred were excluded from 

the V2G scheduling simulation dataset. Panels with fewer than 50 valid, long-duration (≥6hours), non-

charging parking events remaining after filtering were also excluded to ensure robustness. This resulted in a 

final dataset for V2G analysis comprising 127,856 valid parking events from 464 commuting panels. 

 

3.3 MILP-based V2G Participation Profit Maximization Model 

To estimate the V2G potential, a LP model was formulated. The model aims to determine the optimal hourly 

charging and discharging schedule for each individual valid parking event (defined as parking durations of 6 

hours or more with no actual charging recorded in the preprocessed data). The optimization seeks to 

maximize the economic benefit for the EV user, based on the fluctuating hourly Jeju island’s SMP, while 

adhering to operational and battery-related constraints.  

In this context, V2G potential refers to the available energy capacity (measured in kWh) that an electric 

vehicle user can potentially offer to the power grid through optimally controlled charging and discharging 

actions during stationary parking periods. This study focuses on estimating the average hourly V2G capacity 

achievable, considering the constraints imposed by typical, observed driving patterns and charging needs. 

The optimization is performed from the perspective of the EV user, aiming for User Profit Maximization. 

This objective implies scheduling charging activities during low-price hours and discharging activities during 

high-price hours, thereby minimizing electricity purchase costs and maximizing revenue from selling energy 

back to the grid, based on the dynamic SMP signals. 

 

       
(a)                                                                     (b) 

Figure 2: (a) Illustration of the required final energy level (𝐸𝑟𝑒𝑞) for an individual trip event (b) Valid V2G 

participation intervals between trips 

The LP model is structured with an objective function and a set of constraints governing the EV's 

charging/discharging behavior over the parking duration. The objective is to maximize the net profit accrued 

from V2G participation over the parking duration and its function can be described as follows;  

                                                                  (1) 

Here, 𝑝𝑡
+ and 𝑎𝑡

+denote, respectively, the charging price (W/kWh) and the charged energy amount (kWh) at 

time 𝑡, while  𝑝𝑡
− and 𝑎𝑡

− and represent the discharging price and the discharged energy amount. 

In addition to these, the model incorporates several variables, including: the time horizon representing the 

parking duration in hourly slots (t=1…, T); the maximum allowable hourly charging (𝐴𝑇
+) and discharging 
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(𝐴𝑇
−) rates; the initial battery energy level (𝐸0); the required final energy level (𝐸𝑟𝑒𝑞); the minimum (𝐸𝑚𝑖𝑛) 

and maximum (𝐸𝑚𝑎𝑥) permissible energy levels in the battery; the time(𝑡𝑠) at which the battery’s SOC first 

enters the 30 %–95 % range; coefficients(𝜇+, 𝜇−) limiting the charge/discharge amount by accounting for 

the actual charger-connection duration at the initial and final charge/discharge events; and coefficient (𝐶+, 

𝐶−) restricting operations to only charging or discharging until the battery’s state of charge first enters the 

30 %–95 % allowable range. 

The optimization model is governed by the following key constraints: 

 Start/End SOC (Constraints 1, 2): The SOC at the parking start time (𝐸0) must equal the recorded 

SOC in the dataset, and the SOC at parking end must equal the required charge (𝐸𝑟𝑒𝑞) for the next 

trip. 

 Energy Balance (Constraint 3): Battery energy level (𝐸𝑡) evolves hourly based on charging (𝑎𝑡
+) 

and discharging (𝑎𝑡
−). 

 Operational SOC Limits (Constraints 4, 5, 11-14): To preserve battery health, the SOC is 

maintained conservatively within a 30% to 95% range ([𝐸𝑚𝑖𝑛, 𝐸𝑚𝑎𝑥]) during the V2G operation 

period. If the initial SOC (𝐸𝑖𝑛𝑖𝑡) is outside this range, mandatory charging (if <E𝐸𝑚𝑖𝑛) or discharging 

(if >𝐸𝑚𝑎𝑥) is prioritized until the SOC enters the range at time 𝑡𝑠. Standard profit optimization 

proceeds only from 𝑡𝑠 onwards, and the SOC is strictly kept within [𝐸𝑚𝑖𝑛, 𝐸𝑚𝑎𝑥] for t≥𝑡𝑠. 

 Charge/Discharge Rate Limits (Constraint 6): Hourly charging and discharging amounts are 

capped by maximum power rates (𝐴𝑡
+ = 11 kW, 𝐴𝑡

− = 10 kW used in experiments) since this study 

focuses on AC-V2G and incorporates the performance characteristics of the AC/DC onboard charger 

installed in EVs.  

 Partial Hour Adjustment (Constraints 7-10): To account for the difference between the 1-hour of 

metering interval and scheduling resolution, and potentially shorter actual connection times in the 

first and last hour of parking, the allowable charge/discharge amounts in these specific hours are 

scaled by an adjustment coefficient (μ, 0 to 1) reflecting the true connection duration within that 

hour. 

The V2G optimization model was implemented using Python version 3.8, leveraging the PuLP library 

(version 2.7) for formulating the linear programming problem. The optimization problems were solved using 

the CBC (COIN-OR Branch and Cut) solver, suitable for Mixed-Integer Linear Programming (though this 

formulation appears primarily LP). Computational experiments were conducted on a system running Ubuntu 

20.04, equipped with an AMD EPYC 7742 CPU and 64GB of RAM. 

 

Table 1: Constraints of V2G participation optimization model  
 

No. Constraint No. Constraint 

1 𝐸0 =  𝐸𝑖𝑛𝑖𝑡  8 𝑎0
− ≥ −𝐴𝑡

− ∙  𝜇− 

2 𝐸𝜏+1 =  𝐸𝑟𝑒𝑎  9 𝑎𝑇
+ ≤ 𝐴𝑡

+ ∙  𝜇+ 

3 𝐸𝜏+1 = 𝐸𝜏 + 𝑎𝑡
+ + 𝑎𝑡

−  10 𝑎𝑇
− ≥ −𝐴𝑡

− ∙  𝜇− 

4 

 

11 𝐶𝑡
+ = 1(𝐸𝑖𝑛𝑖𝑡≤𝐸𝑚𝑖𝑛), ∀𝑡 ∈ [0, 𝑡𝑠] 

5 𝐸𝑚𝑖𝑛 ≤ 𝐸𝑡 ≤ 𝐸𝑚𝑎𝑥, ∀ 𝑡 ∈ [𝑡𝑠, 𝑇] 12 𝐶𝑡
− = 1(𝐸𝑖𝑛𝑖𝑡≥𝐸𝑚𝑎𝑧), ∀𝑡 ∈ [0, 𝑡𝑠] 

6 −𝐴𝑡
− ≤ 𝑎𝑡 ≤ −𝐴𝑡

+ 13 𝑎𝑡
+ ≤ 𝐴𝑡

+ ∙ 𝐶𝑡
+, ∀𝑡 ∈ [0, 𝑡𝑠] 

7 𝑎0
+ ≤ 𝐴𝑡

+ ∙  𝜇+ 14 𝑎𝑡
− ≥ −𝐴𝑡

− ∙ 𝐶𝑡
−, ∀𝑡 ∈ [0, 𝑡𝑠] 

 

4 Results 

 

4.1 EV Driving and Charging Patterns 

The analysis primarily focused on 727 passenger car users (panels). Driving patterns were initially analyzed 

based on averages calculated for each of the 727 panels, yielding results with a margin of error of ±3.63% at 

95% confidence. For panels with nearly complete annual data (n=321), the average annual mileage was found 
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to be 24,156.2 km (Std Dev: 12,098.9 km), with a median of 22,095 km, indicating a left-skewed distribution. 

On average, panels used their vehicles on 80.6% of the days within their valid data collection period. The 

mean distance driven per day, averaged over all days, was 67.0 km, substantially higher than the 2022 

national average for non-commercial cars (31.1 km/day). Considering only days with driving activity, the 

average distance increased to 85.2 km/trip day. Panels undertook an average of 2.7 trips per day overall, or 

3.1 trips per driving day, resulting in an average distance per single trip of approximately 28.2 km. 

Analysis by primary driving purpose revealed that business users exhibited significantly higher annual 

mileage (avg. 30,740 km) compared to commuting (23,511 km) and leisure users (17,272 km). However, 

differences in other daily driving metrics across purpose groups were less pronounced. Comparing groups 

by battery capacity (approx. <60 kWh, 64-66 kWh, 77.4 kWh) showed a slight trend towards higher daily 

distance and distance per trip with larger batteries, though often within the margin of error. Notably, the 

largest battery group (77.4 kWh) displayed a more strongly skewed daily distance distribution, suggesting a 

higher proportion of long-distance driving days compared to the 64/66 kWh group. No significant differences 

in driving patterns were confirmed based on driver age groups, partly due to smaller sample sizes in older 

demographics. 

Panel-level average charging characteristics showed a mean energy input of 28.1 kWh per charging session, 

with a near-normal distribution. On average, panels drove 161.3 km between charges, with charging events 

occurring roughly every 2.9 days, equating to about 12.5 charges per month. Typical charging started at an 

average SOC of 46.7% and ended at 84.8%. 

Distinguishing between charging methods, Slow (AC) and Fast (DC) charging delivered similar average 

energy per session (27.6 kWh vs. 25.4 kWh). However, charging times differed dramatically: Slow AC 

charging averaged 6.75 hours connection time (suggesting vehicles remained connected long after charging 

finished), while Fast DC charging averaged 40 minutes. Slow charging was significantly more frequent (avg. 

9.8 times/month) than Fast charging (avg. 5.3 times/month), likely reflecting cost considerations. Fast 

charging typically initiated at lower SOC levels (avg. start 39.1%) compared to Slow charging (avg. start 

48.8%). 

   

(a)                                                                     (b) 

Figure 3: (a) Distribution of charging start and end pairs of 727 passenger EVs (b) Distribution of trip 

start time and interval between trips 

Analysis of the entire population of valid driving events (158,821 driving days) showed that the distribution 

of total distance driven per day was highly left-skewed, peaking at 10-20 km (mode 14 km), with a median 

of 50 km. Seventy-five percent of driving days covered less than 100 km, suggesting typical daily activities, 

while outliers (>214.5 km) constituted 6.7% of days. Daily energy consumption distribution was similarly 

skewed with a mean of 10.2 kWh/day. Weekly trends indicated increased driving activity on weekends (Fri-

Sun), particularly for leisure users. Trip start/end time distributions showed distinct commuting peaks (7-9 

AM starts, 5-7 PM ends). Analysis of first daily trips revealed patterns consistent with potential daytime V2G 

availability (trip before 10 AM, duration < 60 min, followed by > 6 hours parking), observed in 98.5% of 

panels at least once. 

Analysis of filtered charging events (77,086 events) showed less clear SOC range distinctions between Slow 

and Fast charging compared to panel averages. The mean distance driven between charges was 150.6 km, 
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and the mean time interval was 1.9 days (median 1.0 day). Distance between charges correlated positively 

with battery capacity. The charging energy distribution revealed a high frequency of low-energy charges (<8 

kWh), influenced partly by one outlier panel exhibiting frequent top-up behavior, potentially indicative of 

future trends with ubiquitous charging access. Excluding this panel, mode charging amounts were 16 kWh 

(Slow) and 14 kWh (Fast). Weekly average charge amounts showed less variation than driving distance, with 

commuting users exhibiting relatively consistent charging across weekdays. Charging start times peaked 

around morning/evening commutes, with the overall highest frequency occurring around 6 PM, suggesting 

charging often commences after the day's final trip. 

 

4.2 V2G Potential Estimation 

The V2G potential was estimated by applying the formulated MILP optimization model to the preprocessed 

parking event data from 464 commuting users, covering 127,856 valid instances. This model generates an 

optimized hourly charging and discharging schedule for each analyzed parking event, aiming to maximize 

the user's potential profit based on the hourly Jeju SMP. These schedules adhere strictly to operational 

constraints, including maintaining the SOC within a 30-95% range and ensuring the final charge meets the 

calculated required energy level (𝐸𝑟𝑒𝑞). Specific examples illustrate this process; for instance, a vehicle 

parked for around 10 hours demonstrated scheduled discharging during high-price evening SMP periods and 

charging during lower-price afternoon periods, effectively optimizing profit while satisfying all SOC 

constraints. The model consistently adapted schedules based on varying initial conditions across numerous 

analyzed events.  

 

 
Figure 4: Illustration of construction of charging/discharging potential 

estimation using an individual EV panel data 

Aggregating these individually optimized schedules across all events and users allowed for the derivation of 

an average hourly V2G potential profile. While individual users exhibited distinct potential patterns 

reflecting their unique driving and parking behaviors, the overall average pattern across the 464 commuting 

users revealed significant trends. Peak average charging potential was identified during hours with the lowest 

SMP, specifically in the early morning (0-1 AM, 3 AM) and notably during midday (12 PM - 4 PM). 

Conversely, peak average discharging potential aligned with the highest SMP hours in the morning (4-6 AM) 

and evening (7 PM - 11 PM). This aggregate hourly pattern strongly reflects the superposition of typical 

commuter parking behaviors: overnight parking after work and daytime parking at the workplace. During 

overnight stops, the optimization strategy favors charging in the cheapest early morning hours and 

discharging during expensive evening/pre-morning periods, while still meeting the next day's energy 

requirements. During daytime parking, charging potential aligns with the lower midday electricity prices. A 

slight dip observed in charging potential around 2 AM is attributed to optimization logic navigating relative 

price differences within the generally cheap overnight period. Parking start/end time distributions further 

corroborated this interpretation. Crucially, these hourly figures represent averages across many days and 

vehicles, indicating the potential capacity likely available at that specific hour, rather than depicting a 

continuous 24-hour potential profile for a single vehicle. 

To understand the key determinants of this estimated potential, correlation and multiple regression analyses 

were performed, examining factors influencing daily V2G potential expressed both in energy (kWh) and 

potential revenue (KRW). Regarding energy potential, the analyses revealed strong positive correlations with 
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the daily frequency and duration of long parking periods (≥6 hours) and a negative correlation with the 

required charge amount (𝐸𝑟𝑒𝑞), while the starting SOC showed weak correlation. The regression model 

(R²=0.970) confirmed these relationships, emphasizing that parking duration was the most influential factor, 

followed by parking frequency. Battery capacity also played a role, whereas starting SOC and required charge 

had less impact. This underscores that vehicle availability—primarily the length and frequency of parking—

is the most critical factor governing the sheer amount of energy that can be cycled through V2G. 

 

 

Figure 5: Average hourly charging/discharging potential of EV 

When considering potential revenue, the relationships were more nuanced. While similar correlation trends 

were observed, they were less pronounced. The regression model (R²=0.939) showed that all considered 

variables significantly influenced revenue potential. However, the relative importance was more distributed 

compared to energy potential, with starting SOC exhibiting the slightly highest influence, followed by 

parking duration, frequency, battery capacity, and required charge amount, all contributing significantly. 

These findings suggest that maximizing potential revenue is a more complex interplay of factors, heavily 

dependent on having sufficient charge available at the right times (influenced by starting SOC and battery 

capacity) and sufficient parking duration during periods with favorable SMP fluctuations for profitable 

discharging. 

 

4.3 Mid-to-Long Term V2G Potential  

Building upon the analysis of current driving patterns and simulated V2G capabilities, an estimation of the 

mid-to-long-term V2G potential in Korea was conducted. This projection leverages official Korean 

government targets for EV adoption, aiming for 4.2 million EVs by 2030, and the associated expansion of 

charging infrastructure, targeting 1.23 million Slow AC chargers by the same year, including approximately 

660,000 residential and workplace locations. The estimation incorporates several key assumptions regarding 

the market penetration of V2G technology and user behavior. 

Specifically, it was assumed that V2G-capable EVs would become commercially available starting in 2026, 

gradually increasing to represent 100% of new EV sales by 2027. The potential estimation focuses primarily 

on the commuting passenger EV segment, which was projected based on current ratios of private car 

ownership (approx. 77%) and the proportion of those vehicles primarily used for commuting (approx. 75%). 

Recognizing that not all users with V2G-capable vehicles parked at suitable times would participate, varying 

V2G participation rates (10%, 30%, 50%, 70%, 90%) were simulated for eligible parking events. 

Furthermore, the availability of V2G-enabled charging infrastructure was assumed to align with the rollout 

targets specified in government policy for residential and workplace chargers. 

Two primary scenarios were considered to evaluate the impact of infrastructure availability. The first scenario 

assumes that the deployment of V2G-specific charging infrastructure perfectly matches the growing fleet of 

V2G-capable vehicles. Under this optimistic infrastructure scenario, by 2030, with an estimated 1.23 million 

commuting V2G EVs on the road, the potential grid contribution could be substantial. At a 10% participation 

rate, the aggregated potential is estimated at approximately 210 MW for charging and 316 MW for 

discharging. This scales significantly with higher participation: a 30% rate yields roughly 631 MW (charge) 

/ 947 MW (discharge), and a 50% rate reaches approximately 1,052 MW (charge) / 1,579 MW (discharge). 

When compared to national energy storage targets, such as those outlined in the national electricity plan of 

Korean government in 2022, the V2G potential under 30% participation could fulfill around 30% of the 
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planned energy storage needs by 2030. This contribution could be even more valuable considering V2G's 

inherent alignment with grid operational needs, such as absorbing excess renewable energy during midday 

(mitigating curtailment) and providing power during evening ramp-up periods. 

The second scenario explores a more constrained future where V2G-enabled charger installation strictly 

adheres to the national policy targets for residential and workplace chargers (projected around 463,000 by 

2030), without specific allocation for the V2G fleet. In this case, the number of V2G-capable EVs is projected 

to outpace the available compatible chargers from approximately 2027 onwards, creating an infrastructure 

bottleneck. Consequently, the estimated V2G potential by 2030 is significantly reduced. At 10% participation, 

the potential drops to approximately 79 MW (charge) / 119 MW (discharge). At 30% participation, it reaches 

only about 238 MW (charge) / 358 MW (discharge), and at 50%, it is limited to roughly 397 MW (charge) / 

596 MW (discharge). Under this infrastructure-constrained scenario, the contribution of V2G to meeting 

national storage targets diminishes considerably, estimated at only around 10% at a 30% participation rate. 

 
Table 2: Charging/discharging potential (MW) of V2G EVs under national policy 

of Korea with different participation rate assumptions 

 

Year 
2026 2027 2028 2029 2030 

Ch. Disch. Ch. Disch. Ch. Disch. Ch. Disch. Ch. Disch. 

V2G EV 120,000 329,000 628,000 927,000 1,227,000 
Residential/Workplace  
AC V2G Infrastructure 

147,000 204,000 275,000 362,000 463.300 

V2G 

Participation Rate 

10% 20.5 30.8 35.0  52.5  47.2  70.8 62.1 93.2 79.4  119.2 

30% 61.6  92.4 105.0  157.5 141.5  212.4  186.3 279.5 238.2  357.5 

50% 102.7  154.1  175.0  262.6 235.8  353.9 310.5 465.9 397.1  595.9 

70% 143.7  215.7 244.9  367.6 330.2  434.6 1113.5  652.3  555.9  834.3 

90% 184.8  277.3 314.9  472.6 424.5  558.8 1431.6  838.6 714.7  1072.6  

Comparing these scenarios underscores a critical dependency: realizing the full potential of V2G as a 

significant grid resource hinges on the implementation of coordinated and synchronized policies. Effective 

strategies must not only encourage the adoption of V2G-capable vehicles but also ensure the timely and 

targeted deployment of the necessary V2G-enabled charging infrastructure, particularly at residential and 

workplace locations where vehicles spend considerable time parked [490]. Without such alignment, 

infrastructure limitations risk significantly curtailing the valuable grid flexibility V2G technology promises 

to offer. 

 

5 Discussion and Implications 

 

This study, grounded in the analysis of extensive real-world EV operational data from Korea, provides 

significant insights into the potential value of V2G and carries substantial implications for the future power 

system. The findings generally align with international perspectives which forecast that EVs, through 

intelligent charging strategies including V1G and V2G, could emerge as one of the most significant sources 

of grid flexibility globally. The potential capacities estimated in this research, even under more conservative 

assumptions regarding user participation and infrastructure, indicate that the EV fleet represents a 

considerable future resource pool for enhancing grid stability and efficiency. 

The analysis particularly highlights V2G's potential to address key challenges associated with the increasing 

penetration of variable renewable energy sources. Significant EV charging potential was identified during 

midday hours (approximately 12 PM to 3 PM), aligning closely with periods of peak solar generation and 

potential curtailment events, a notable issue particularly in regions like Jeju. Commuters parking at 

workplaces during these hours present a prime opportunity to absorb surplus renewable energy, potentially 

creating value for both the grid and the user under appropriate tariff structures. Furthermore, demonstrable 

discharging potential exists during evening ramp-up periods (e.g., 6 PM to 8 PM), offering a means to 

mitigate steep increases in net load. While the number of available vehicles might be somewhat limited 

during the immediate post-work commute, targeted V2G programs and financial incentives could encourage 

participation during these critical hours. 
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A key strength of this work lies in its reliance on actual driving, charging, and parking data, which yields 

more grounded estimates of V2G potential compared to purely theoretical simulations. By incorporating 

realistic SOC levels upon parking, observed parking durations, and the energy required for subsequent trips, 

the model provides a more accurate reflection of operational constraints. Among the most critical findings is 

the confirmation that vehicle availability—specifically the duration and frequency of parking periods—is the 

dominant factor determining V2G energy potential, significantly outweighing the influence of battery 

capacity alone. This emphasizes the strategic importance of focusing V2G initiatives on user segments with 

predictable and sufficiently long parking durations, such as commuters parking at workplaces during the day 

or residents parking overnight at home. 

The mid-to-long-term potential estimations starkly illustrate a critical dependency: realizing the substantial 

benefits offered by V2G requires more than just the availability of V2G-enabled vehicles. It necessitates a 

parallel and potentially accelerated rollout of compatible V2G charging infrastructure, particularly 

concentrated at residential and workplace locations. The analysis indicates that relying solely on current 

general charging infrastructure expansion targets may lead to significant bottlenecks, hindering the scaling 

of V2G services as the V2G-capable fleet grows. Therefore, synchronized policy frameworks that actively 

promote both V2G vehicle adoption and the deployment of dedicated V2G infrastructure are imperative. 

Finally, while this study modeled user behavior based on rational profit maximization responding to SMP 

signals, real-world V2G adoption will inevitably involve complex user behavior and economic factors. 

Actual participation rates will depend heavily on user acceptance, the design of effective and understandable 

tariff schemes (which may need to extend beyond simple SMP arbitrage), adequate compensation or 

mitigation strategies for perceived or actual battery degradation (partially addressed by SOC limits in the 

model), and the overall ease of participation, potentially facilitated by aggregators or Virtual Power Plant 

(VPP) operators. The observation of diverse charging behaviors, such as the frequent, low-energy 

"smartphone charging" pattern seen in one panel, suggests that user approaches to EV charging and potential 

V2G participation may vary, requiring flexible program designs. Effectively harnessing the V2G potential 

identified requires an integrated approach addressing these technical, economic, policy, and behavioral 

dimensions. 
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