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Executive Summary 

Precise battery Remaining Useful Life (RUL) algorithms are required to optimally design charging strategies 

for Electric Vehicles (EVs). However, the uncertainty of RUL estimations before EV commissioning is 

usually high, due to the scarce degradation evidence at that stage. To overcome this issue, data-driven RUL 

algorithms have been proposed, which can be periodically upgraded with real-life degradation evidence. 

These upgrades allow to regularly update any control strategy aiming to reduce battery degradation. In this 

context, this paper proposes a novel charging strategy for EVs, which is regularly optimized based on 

periodical updates of a data-driven RUL algorithm. The paper also introduces a simulation environment to 

demonstrate the strategy. The results demonstrate that regularly updating the charging strategy allows 

reaching a pre-defined battery end of life objective of 10 years with an error of 25 days, while a baseline 

strategy without updates may reach the end of life 2 years earlier. 

Keywords: Electric Vehicles; Smart charging; Batteries; Battery Management System; AI – Artificial 

Intelligence for EVs 
 

1 Introduction 

Given the importance of lithium-ion Battery (BT) technology for the attainment of greenhouse gas emissions 

and global temperature increase reduction goals, it is necessary to continue advancing for a broader adoption 

of this technology. However, there are still some important drawbacks that hamper this wider adoption. Among 

others, high cost, short life cycle, constrained performance temperature, and possible safety infractions caused 

by overcharge, over-discharge, short circuit or even production defects are typically mentioned [1]. In some 

applications such as Electric Vehicles (EVs), some additional bottlenecks such as range anxiety or charging 

time are constantly mentioned in the literature [2], [3]. 

In the specific scope of BT charging, an inefficient strategy may result in the charging currents and voltages 

surpassing the BT tolerance limits, eventually leading to overheating, accelerated degradation, diminished 

longevity, and in the worst case, fires or explosions [4]. These challenges have been addressed in a wide amount 

of literature works, which explore diverse novel charging strategies for BT systems. Some comprehensive 

reviews about BT charging strategies can be found in the following references [1], [3], [5], [6]. These reviews 

classify charging strategies into passive methods (also referenced as non-feedback-based methods) and active 

methods (also referenced as feedback-based methods). In some cases, intelligent strategies are also considered 

as a separate category, but they can be also integrated into passive or active methods. Passive methods charge 

the BT under pre-set instructions, meaning that the charging is stopped when a certain condition is met, without 

varying the charging pattern based on the feedback of the BT [3]. Many of these works are focused on 

proposing variations of the traditional Constant Charge Constant Voltage (CC-CV) charging pattern: Multi-

step CC (MCC), Multi-step CC with CV (MCC-CV), pulse charging, and negative pulse step after CC-CV 

(CC-CV-NP) are just some examples [7]. Besides, active methods charge the BT under dynamic profiles, 

which are adapted based on the feedback that the BT is providing [3]. This feedback can be provided directly 

by sensors, or by BT state estimators, e.g., State of Charge (SOC) or State of Health (SOH) estimators. Some 
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of the widely used active methods are based on predictive control, such as the Model Predictive Control (MPC) 

or the Generalized Predictive Control (GPC) [8], [9]. Optimization-based methods can be also categorized as 

active methods. Strategies based on Dynamic Programming (DP) or Pontryagin’s Minimum Principle (PMP) 

are some examples that can be found in the literature [10], [11]. 

In the context of BT charging strategies, the degradation associated to the charging is one of the key points 

that directly impacts in the technical and economic viability of the application, especially in those where fast 

charging is preferred (e.g., in EVs). As the literature shows, there are different ways of addressing the 

minimization of the degradation associated to the BT charging. Some works consider the minimization of the 

degradation by just defining some constraints in the charging optimization problem. For instance, Jiang et al. 
[12] propose a Bayesian optimization to reduce the BT charging time, defining some temperature and voltage 

limits to reduce the BT ageing. Besides these simple approaches, other scientific works directly attain the 

extension of the BT lifetime as the main goal. Bharathraj et al. [13] propose a novel charging strategy based 

on dynamically adapting the charging cut-off voltage based on a physical model. This adaptation is triggered 

when the BT is reaching its End of Life (EOL), and the performed laboratory tests demonstrate a 30% extension 

on the BT lifetime. Besides, Lei et al. [14] propose a charging optimization method based on DP, being the 

objective the reduction of the energy loss and the degradation speed. An equivalent circuit model is employed 

to account for the lifetime evolution of the BT internal resistance, and an empirical degradation model is 

derived to evaluate the degradation associated to a specific charging pattern. Laboratory testing demonstrates 

that the degradation can be reduced a 33% with this method, but the conclusion is obtained after few testing 

cycles and capacity loss. Some other literature works directly consider the specific characteristics of the 

application in which the BT will be integrated. Hoke et al. [15] propose a charging optimization method that 

reduces the costs associated to the EV charging, considering not only the BT degradation, but also the varying 

electricity price at different time periods. For this aim, a degradation model that allows to directly assign an 

economical cost to a specific charging pattern is proposed. In short, the objective is to obtain an optimal trade-

off between a lower BT degradation and charging at low electricity price periods. Another trend in the analyzed 

literature consists of finding or analyzing the optimal trade-off between the charging time and the associated 

degradation, as they are conflicting objectives. Lam et al. [16] propose an offline multi-objective optimization 

based on the single shooting framework to solve the mentioned trade-off, but they mainly focus on obtaining 

a robust controller. Besides, Appleton et al. [17] focus their contribution to comprehensively analyze the Pareto 

front possibilities of the mentioned trade-off problem. In order to derive the most appropriate solutions, they 

mainly focus on the limitations associated to the charging power and the cooling power. Some other similar 

approaches dealing with the mentioned trade-off can be found in [18], [19]. 

As it has been reviewed, many scientific works employ degradation models to estimate the degradation loss or 

degradation cost of a certain charging pattern, but they hardly estimate the lifetime associated to that charging 

pattern. Evaluating the Remaining Useful Life (RUL) can be an interesting solution to solve the trade-off 

between charging time and the associated degradation. Indeed, the BT integrator or BT manufacturer may be 

interested on reaching a specific BT EOL, as the whole system may have been optimally designed based on 

the assumption of a specific lifetime threshold. In order to implement this approach, a RUL estimation 

algorithm is necessary [20]. One of the main limitations of RUL algorithms is the high uncertainty of the 

estimations when the BT has not been yet tested in real life, as the degradation patterns significantly differ 

from laboratory conditions to real operation. Consequently, the uncertainty of the charging strategies designed 

before EV commissioning might be also high. In order to overcome the low precision of degradation estimation 

before commissioning, data-driven RUL algorithms oriented to be updated with real-life data have been 

proposed in the literature [21]. Updating the RUL algorithm through the BT lifetime also allows to update on 

a regular basis any control strategy aiming to reduce the BT degradation, including the charging strategy. 

In this context, this paper proposes a novel charging strategy for EVs, which is regularly optimized based on 

the periodical updates of a data-driven RUL estimation algorithm. To the best of the author’s knowledge, these 

are the main contributions of the present paper: 

1. The trade-off between charging time and BT degradation is proposed to be solved in terms of EOL, 

i.e., the optimal charging strategy is defined as the charging patter that gets closer to a specific and 

pre-determined EOL.  

2. In order to counteract the uncertainty of RUL estimation models, regular updates of the model are 

proposed during the BT lifetime. This allows to periodically find a new optimal trade-off between 

charging time and BT degradation, and therefore, to better adjust to the pre-determined EOL.  



3 EVS38 International Electric Vehicle Symposium and Exhibition  

The remainder of the paper is structured as follows. Section 2 details the RUL algorithm implemented together 

with the novel charging algorithm. Then, Section 3 derives the periodically optimized charging strategy. 

Section 4 focuses on the environment proposed to demonstrate the concept of the novel charging strategy, and 

Section 5 presents the Case Study selected for the even objective. Hereafter, in Section 6 the obtained results 

are presented, and a discussion on these results is derived. Finally, Section 6 reviews the main conclusions and 

outlines the future lines of the proposed work.  

2 Remaining Useful Life (RUL) Estimation Algorithm 

As derived in Section 1, the novel charging algorithm proposed in this paper is based on the predictions made 

by a RUL algorithm. As different reviews show, the development of a RUL algorithm for BTs is a widely 

addressed research topic in the literature [22], [23], [24]. Deriving a novel RUL algorithm stays out of the 

scope of the current research work, and therefore the data-driven ageing algorithm proposed by Lucu et al. is 

implemented [21], [25], [26]. This section gives a general overview of this algorithm in order to understand 

how it is implemented together with the proposed charging strategy. First, the theoretical basis of the ageing 

model is given in Section 2.1. Then, the processes carried out to re-train the model and perform predictions 

based on field data are derived in Sections 2.2 and 2.3, respectively.  

2.1 Theoretical Background 

The data-driven ageing model implemented in this paper is based on the Gaussian Process (GP) framework 

[27]. The GP model was selected due to its nonparametic and probabilistic features – it has the increased 

capability of integrating new information from the data collected in-field, and it allows to evaluate the 

reliability of the model’s predictions, respectively [21]. The GP is a random process, i.e. a random entity whose 

realization is a function 𝑓(𝑥) instead of a single value. The GP is fully determined by its mean and covariance 

functions, which encodes the prior assumptions about the function to be learnt. Eqs. (1)-(3) summarize the GP 

definition, being 𝑚(𝑥) the mean function, 𝑘(𝑥, 𝑥′) the kernel function, and 𝑥 and 𝑥′ two different input vectors. 

The reader is referred to the book written by Rasmussen and Williams for a broader theoretical and 

mathematical derivation of the GP framework [27].  

𝑓(𝑥) ~ 𝒢𝒫(𝑚(𝑥), 𝜅(𝑥, 𝑥′)) (1) 

𝑚(𝑥) = 𝔼[𝑓(𝑥)] (2) 

𝜅(𝑥, 𝑥′) = [(𝑓(𝑥) − 𝑚(𝑥)) (𝑓(𝑥′) − 𝑚(𝑥′))] (3) 

The RUL algorithm is composed of: (1) a first GP model that predicts the capacity loss when the BT is under 

calendar conditions, i.e., when the BT is not operating; and (2) a second GP model that predicts the capacity 

loss under cycling conditions, i.e., when the BT is operating.  

On the one hand, the calendar model considers as inputs: (1) the storage time [days] since the BT Beginning 

of Life (BOL), (2) the storage time [days] experienced by the cell and for which the ageing is desired to be 

predicted, (3) the temperature [K] corresponding to this storage time, and (4) the SOC level [%] corresponding 

to this storage time. According to this input variables, the corresponding capacity loss [%] of the BT is 

predicted as output. The detailed development and validation of the calendar GP model is found in [26]. 

On the other hand, the cycling model considers as input: (1) the number of Full Equivalent Cycles (FEC) [#] 

that the BT has cycled since BOL, (2) the amount of FEC [#] experienced by the cell and for which the ageing 

is desired to be predicted, (3) the temperature [K] corresponding to the cycled FEC, (4) the Depth of Discharge 

(DOD) level [%] corresponding to the cycled FEC, (5) the average SOC [%] corresponding to the cycled FEC, 

(6) the charging C-rate [h-1] corresponding to the cycled FEC, and (7) the discharging C-rate [h-1] 

corresponding to the cycled FEC. According to this input variables, the corresponding capacity loss [%] of the 

BT is predicted as output. The detailed development and validation of the cycling GP model is found in [25]. 

Therefore, concatenating sequential predictions of the calendar and cycling operation, it is possible to derive 

the remaining time until the capacity of the BT drops below the defined EOL, i.e., the RUL prediction.  

2.2 RUL Training based on Field Data 

Typically, BT operation data collected in-field is represented in terms of current, voltage and temperature time 

series. Systems with advanced Battery Management System (BMS) functionalities may also include regular 
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SOC and SOH estimations. In any case, the data collected in-field requires a processing step in order to obtain 

the appropriate data structure for the periodical trainings of the calendar and cycling models during the BT 

lifetime (which are required for the charging strategy updates).  

The data processing step includes a target processing algorithm (required to obtain the model output) and an 

input processing algorithm (required to obtain the model inputs), as illustrated in Figure 1. Both algorithms are 

applied through the data collected in an observation period. Two consecutive observation period may have 

different length, but they should not be overlapped. The generated new training matrix should be attached to 

the already existing matrixes, also to the ones that were not generated from field data. Both target and input 

processing algorithms are further derived in the following sub-sections.  

 

Figure 1: Method for the extraction of training data from field data. Adapted from [21]. 

2.2.1 Target Processing Algorithm 

The target processing algorithm aims at deriving the capacity loss required by the ageing model for the training. 

The capacity loss is derived based on the SOH estimation provided by the BMS. During field operation, BTs 

are typically subjected to both calendar and cycling operation taking place successively. Besides, the periodical 

SOH estimations are not necessarily carried out at every transition between calendar and cycling phases, as no 

significant ageing may be experienced in such short-term. For these reasons, the SOH loss data computed 

during an observation period must be split and associated with the sequential calendar and cycling operating 

conditions experienced between them, as depicted in Figure 1.  

This process is composed of the following steps [21]: (1) the overall SOH loss data is decomposed into a 

calendar and cycle components, applying a decomposition factor based on the respective duration of the 

calendar and cycling phases with respect to the total duration of the observation period, (2) the calendar 

capacity loss component is partitioned among each input vector of the calendar ageing model training data 

(obtained from the input processing algorithm, see Section 2.2.2), applying a decomposition factor based on 

the respective duration of each vector with respect of the total duration of the calendar phase; and (3) the cycle 

capacity loss component is partitioned among each input vector of the cycle ageing model training data (also 

obtained from the input processing algorithm, see Section 2.2.2), applying a decomposition factor that in this 

case is based on the number of FECs of each vector with respect of the total FECs of the cycling phase.  

2.2.2 Input Processing Algorithm 

The starting point of the input processing algorithm is the decomposition of the current, temperature and SOC 

time series, which eventually derive to the calendar and cycling components of the BT operation. This 

decomposition starts with a zero-current detection step, which allows defining the calendar sections of the 

observation period. A minimum length of 60 seconds without current is required for the definition of a calendar 

step. Once the cycling and calendar sections are divided, they are processed separately.  

In the case of the cycling operation, the following steps are followed [21]: (1) from the current time series, 

positive and negative half-cycles are distinguished; (2) for each half-cycle, and based on the current, 

temperature and SOC time series, the average values of the temperature, DOD, middle SOC, and charging and 

discharging C-rates are calculated; (3) the number of FECs cycled at similar stress-factor values are 

accumulated, separately for the charging and discharging half-cycles; and (4) the accumulated charging and 

discharging half-cycles corresponding to similar temperature, DOD and middle SOC are associated to 
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synthesize full-cycles. In this way, input vectors are generated and organized in a design matrix for the cycling 

ageing model, as previously depicted in Figure 1. 

In parallel, the sections of the current, temperature and SOC time series that were assigned to the calendar 

operation are also processed, in order to generate an analogue input table for the calendar ageing model, 

consistent with the data structure previously described in Section 2.1. 

2.3 RUL Predictions based on Field or Predicted Data 

Performing a RUL prediction requires to define the future BT operation, and this can be carried out based on 

the past field data or based on estimations of the future operation (e.g., with operation prediction algorithms). 

Regardless of this definition, a processing step might be necessary before performing a RUL prediction to 

adapt the voltage, current, temperature and SOC time series to the appropriate data structure, analogously to 

the approach necessary to define the training data. In this case, only the input processing algorithm derived in 

Section 2.2.2 is required.  

3 Periodically Optimized Charging Strategy 

This section derives in detail the periodically updated charging strategy proposed in this paper. Essentially, the 

proposed concept can be implemented with many of the charging patterns reviewed in Section 1 – CC-CV, 

MCC, model-based or even optimization methods. However, the strategy proposed in this paper is oriented to 

be integrated in a BMS. These devices just provide in real time the maximum power or current that the BT can 

withstand, as they do not actively act on the BT charging current. Another controller (typically a DC/DC 

converter associated to the BT) reads this maximum allowable current value from the BMS and eventually 

fixes the BT current based on that reading. Indeed, some of the advanced charging algorithms reviewed in 

Section 1 should be embedded in these controllers, due to the limiting set of actions that the BMS can perform. 

Consequently, in this paper a baseline strategy based on the typical CC charging protocol is defined. The 

charging strategy will be just in charge of defining in real time the maximum charging current value that the 

BMS will issue (𝐼𝑐ℎ−𝑚𝑎𝑥). Having the charging strategy associated to a specific BMS allows to perform the 

periodical optimizations based on the historical use of that specific BT, contrary to the case where the strategy 

is embedded in the controller.   

In this context, the periodical optimizations proposed as main contribution of this paper adapt the maximum 

charging current value based on the estimations of the updated RUL algorithm (see Section 2). As previously 

explained, this approach allows to obtain an appropriate trade-off between charging rates that may damage too 

fast the BT and charging rates that may be too conservative. Besides these periodical updates, the proposed 

strategy should also reduce the impact of non-safe BT operation conditions during EV charging, which is 

performed based on the real-time information collected by the BMS (mainly, temperature and voltage 

measurements). Due to the different time scale of the two tasks to be performed by the charging strategy, the 

proposed novel concept is divided into two levels, denoted as Level-1 and Level-2, as depicted in Figure 2. 

 

Figure 2: General overview of proposed charging algorithm. 

On the one hand, Level-1 is oriented to define the maximum BT charging current that better adjusts to a specific 

EOL objective. Due to the complex operations and the high computational effort required, Level-1 needs to be 

deployed in a cloud system that extends the capabilities of the low-level traditional BMS. The RUL estimation 

algorithm should also be integrated in the mentioned cloud system. On the other hand, Level-2 is executed in 

the low-level BMS, and consists of a derating factor that reduces the maximum charging current value of 

Level-1 according to the instantaneous BMS measurements. Eventually, the maximum current value provided 



6 EVS38 International Electric Vehicle Symposium and Exhibition  

by the Level-2 is the value that the BMS issues. 

It is worth mentioning that the multi-layer BMS architecture (including the low-level and cloud layers) required 

to deploy the proposed strategy is being developed in BIG LEAP project [28]. BIG LEAP is a Horizon Europe 

initiative that aims at improving the reliability of second-life BTs by addressing interoperability in BMSs and 

Energy Storage Systems (ESS).  

3.1 Level-1 Charging Algorithm  

Level-1 deploys an optimization based on an exhaustive search. Specifically, a set of possible maximum 

charging C-rates (Cch) is defined, and the remaining life of the BT under each Cch value is predicted with the 

RUL algorithm presented in Section 2. Then, the Cch value that obtains the RUL value closest to a predefined 

EOL objective is defined as the optimal charging pattern. 

In order to perform the optimization, Level-1 first initializes the exhaustive search optimization. For that aim, 

a set of potential Cch values is defined, noted as 𝐼. As mayor discretization, a more precise optimization result 

is obtained, but more loops and execution time is required. Once the initialization is ready, the optimization 

loops are executed. At each loop a potential Cch value is evaluated (𝑖), and the same 3 steps are followed:  

1. The first step consists of defining the necessary input for the RUL estimation. As explained in Section 

2, this requires estimating the future BT operation under the considered Cch value. Considering the 

random nature of EV driving patterns, and that optimizing the driving pattern itself stays out of the 

scope of the proposed optimization, it is not considered feasible nor necessary to derive an estimator 

for the future driving cycles. Instead of this approach, the future BT operation is based on the collected 

past data. Specifically, the data input matrixes (see Figure 1) collected during the year prior to the 

optimization are used as reference. Only the “C-rate CHA” column is modified – the values are 

proportionally modified according to the Cch value being evaluated, and in relation to the maximum 

Cch limitation applied during that specific time.  

2. The RUL algorithm presented in Section 2 is triggered to estimate the remaining life under the 

considered future BT operation.  

3. The optimization cost 𝐽(𝑖) is computed, following equation (4). The equation requires defining 

beforehand the EOL objective for the BT (𝐸𝑂𝐿𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒). This value might be defined as the warranty 

period of the BT defined by the manufacturer.  

𝐽(𝑖) = 𝑎𝑏𝑠[𝐸𝑂𝐿𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 − 𝐸𝑂𝐿(𝑖)] (4) 

Finally, the Cch value with the lowest cost function is defined as the optimal charging pattern, 𝐶𝑐ℎ−𝑚𝑎𝑥−𝐿1. 

Each time the optimization is performed, the obtained 𝐶𝑐ℎ−𝑚𝑎𝑥−𝐿1 value is sent to the low-level BMS, where 

it is used as reference point for the Level-2 charging algorithm. 

3.2 Level-2 Charging Algorithm  

In order to meet together the real time and safety requirements, Level-2 is based on a derating strategy that 

reduces the 𝐶𝑐ℎ−𝑚𝑎𝑥−𝐿1 value defined in Level-1 according to the instantaneous BT temperature and SOC. 

This strategy is typically adopted by BMS or BT manufacturers, and consists of the combination of two 

individual derating vectors, which are defined individually for temperature and SOC. The definite derating 

factor (and consequently, the maximum current 𝐼𝑐ℎ−𝑚𝑎𝑥) is calculated as the multiplication of the two derating 

factors (𝑑𝑇 and 𝑑𝑆𝑂𝐶), as shown in Eq. (5). Figure 3 shows the concrete values of the individual derating vectors 

implemented in this paper. As depicted, a smooth transition between the different states is proposed.   

𝐼𝑐ℎ−𝑚𝑎𝑥 = 𝐶𝑐ℎ−𝑚𝑎𝑥−𝐿1 · 𝑑𝑇 · 𝑑𝑆𝑂𝐶 (5) 

4 Simulation Environment 

This section presents the simulation environment implemented in this paper for the demonstration of the 

proposed charging concept. Indeed, this simulation environment is necessary to estimate the operation of the 
BT under different charging conditions, and also to estimate the associated degradation. Figure 4 shows the 

general scheme of this environment, which consists of the main 4 steps highlighted in the figure itself. These 

steps are detailed below. It is worth noting that these steps do not need to be executed always in a sequential 

order, as they can be triggered with different frequencies.   
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Figure 3: Derating factors for Level-2: a) 𝑑𝑇 b) 𝑑𝑆𝑂𝐶 . 

 

Figure 4: Simulation framework for the demonstration of the charging concept . 

The first step consists of the EV field operation simulation, which is an iterative process that continuously 

simulates the daily BT operation and estimates the associated BT ageing. The daily simulation consists of 

concatenating a random EV operation with a charging operation right after the operation is finalized. During 

the EV operation, a random number of driving cycles is concatenated, with the aim of representing a user with 

random EV usage. The driving cycles are based on the UDDS profile and consist of the measurements available 

in the dataset by Pozzato et al. [29]. The random number of repetitions is generated via a Gaussian distribution 

with 𝜇 = 0 and 𝜎2 = 4, converting the negative values to positive ones. To avoid a discharge below 20% SOC, 

no more than 8 repetitions can be concatenated. During the EV charge, the BT is charged until the 100% SOC 

with the value issued by Level-2, 𝐼𝑐ℎ−𝑚𝑎𝑥.  

After each daily simulation, the associated BT degradation is computed. The SOH value of the BT is updated 

according to a simplification of the model proposed by Olmos et al. in [30]. Specifically, expression in Eq. (6) 

is applied, which defines the SOH loss at the current time step. In the expression, 𝑖 represents the current time 

step, 𝑇 the battery temperature, 𝐶𝑐ℎ the charging C-rate, 𝐶𝑑𝑐ℎ the discharging C-rate, and 

𝛽, 𝑘𝑇, 𝑇𝑟𝑒𝑓, 𝑘𝐶𝑐ℎ, 𝑘𝐶𝑑𝑐ℎ and 𝛼 are model parameters (specified in Section 5). 

𝑑𝑆𝑂𝐻𝑖 = 𝛽 · 𝑒𝑥 𝑝 (𝑘𝑇 ·
𝑇 − 𝑇𝑟𝑒𝑓

𝑇
+ 𝑘𝐶𝑐ℎ · 𝐶𝑐ℎ + 𝑘𝐶𝑑𝑐ℎ · 𝐶𝑑𝑐ℎ) · (𝐹𝐸𝐶𝑖

𝛼 − 𝐹𝐸𝐶𝑖−1
𝛼 ) (6) 

The second step of the simulation framework is the data intake process. This step represents the compilation 

of the raw operation data of the BT, and the execution of the data processing step explained in Section 2.2. The 

data intake is tackled with a fixed frequency (i.e., it is not a continuous daily process), mainly with the aim of 

obtaining a data slot with a representative SOH loss. Finally, the two last steps of the simulation framework 

are the training of the RUL algorithm (according to the model represented in Section 2.1 and 2.2), and the 

execution of the Level-1 optimization based on the updated RUL model (based on the method presented in 

Section 3.1).  

5 Case Study 

This section presents the selected case study for the demonstration of the proposed charging concept, which 

will be evaluated in the simulation framework previously presented in Section 4.  

A representative BT system has been selected for the case study, whose main details are depicted in Table 1. 
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The module is based on the cell cycled in the dataset by Pozzato et al. [29]. Indeed, the current, voltage and 

temperature time-series included in this dataset have been used to simulate the BT operation.  

Variable Value 

Chemistry NMC 

Capacity 4.85 Ah 

Voltage Range 30 - 50.4 V 

Continuous ch/dch C-rate 2C/2C 

Design Lifetime 10 years 

Table 1: Representative data of defined BT module. 

Considering the chemistry of the selected BT and its design lifetime, the parameters of the model implemented 

to estimate the BT ageing (see Section 4) have been adapted from the original model [30]. Table 2 shows the 

updated parameters. 

Parameter Value 

𝛽 0.019827 

𝑘𝑇 11.62 

𝑘𝐶𝑐ℎ 0.5898 

𝑘𝐶𝑑𝑐ℎ 0.1077 

𝑇𝑟𝑒𝑓  293.15 

𝛼 0.91 

Table 2: Parameters of BT ageing model used to estimate SOH evolution. 

Eventually, Table 3 defines the set of parameters required for the execution of Level-1. 𝐸𝑂𝐿𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 is defined 

at 10 years, in accordance with the normal lifetime design. Initially, 𝐶𝑐ℎ−𝑚𝑎𝑥−𝐿1 is defined at 2C, and after 6 

months of operation, the first Level-1 OCA is executed. The frequency of RUL training is also defined at 6 

months, while the frequency for the data intake (and data processing) is defined at 3 months. 

Parameter Value 

𝐸𝑂𝐿𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒  10 years 

EOL critera 80% SOH 

Initial 𝐶𝑐ℎ−𝑚𝑎𝑥−𝐿1  2C 

Cch value set (𝐼) [0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2] 

Frequency of data intake 3 months 

Frequency of RUL training 6 months 

Frequency of Level-1 6 months 

Table 3: Configuration of Level-1 optimization. 

6 Results and Discussion 

This section presents the results of the proposed charging strategy, which has been simulated in the framework 

defined in Section 4, according to the case study defined in Section 5. Figure 5 shows the summary of the 

obtained results, specifically, in terms of SOH evolution. The figure depicts the following information:  

- The discontinuous light blue line represents the linear degradation trend to reach the defined EOL 

objective (20% SOH loss after 10 years), i.e., it represents the aimed degradation trend.  

- The continuous dark blue line represents the final degradation curve of the BT obtained in simulation, 

i.e., after applying the charging updates. In order to obtain an effective charging strategy, the dark 

blue line should follow as close as possible the light blue line.  

- The discontinuous red and green lines represent the two worst cases of the optimization problem, i.e., 

a case in which the maximum C-rate is always defined at 2C (red line), and a case in which the 

maximum C-rate is always defined at 0.25C (green line). It is worth noting that due to the random 

nature of the simulated driving cycles, two simulations with the same maximum C-rate may not obtain 
the same exact degradation evolution.  

- The values above the arrows at the top of the figure represent the maximum charging C-rate allowed 

at each time frame (𝐶𝑐ℎ−𝑚𝑎𝑥−𝐿1), i.e., the results returned by the periodical Level-1 optimizations. 
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The exact values returned at each optimization are shown in Table 4. 

 

Figure 5: Results of the BT ageing evolution with the proposed charging strategy.  

Time Optimization Result Time Optimization Result 

Year 0 - Year 5 1.25 C 

Year 0.5 0.25 C Year 5.5 1.25 C 

Year 1 0.25 C Year 6 1.75 C 

Year 1.5 0.25 C Year 6.5 0.5 C 

Year 2 1 C Year 7 0.25 C 

Year 2.5 1.25 C Year 7.5 1 C 

Year 3 1.25 C Year 8 2 C 

Year 3.5 1.25 C Year 8.5 1.75 C 

Year 4 1.25 C Year 9 0.75 C 

Year 4.5 1.5 C Year 9.5 2 C 

Table 4: Results returned by Level-1 optimization. 

The results show that the battery reaches the EOL at 9.93 years, 25 days prior to the defined EOL objective 

(10 years). This means that an absolute error of the 0.7% is obtained. This can be denoted as an appropriate 

result, even if the EOLs obtained at the two worst cases are considered – with a continuous 2C charge, the 

EOL is reduced to 8.13 years (1.8 years less than the obtained EOL); while with a continuous 0.25C charge, 

the EOL can be extended to 12.9 years (2.97 years more than the obtained EOL). Therefore, even if only the 

feasible EOL window is considered (difference between the EOLs derived at 2C and 0.25C), the obtained 

deviation leads to a relative error of the 1.47% (0.07 years deviation in relation to 4.93 years of feasible 

window). The error in relation to the feasible EOL window is also relevant, as the obtained absolute error 

depends on the ageing model implemented in the proposed case study (see Table 2). Even in an excessive case 

with a feasible EOL window of 16 years (e.g., the EOL with the hardest charging leads to 2 years of lifetime, 

and the EOL with the softest charging leads to 18 years), the obtained relative error would derive into an EOL 

of 9.76 years (absolute error of the 2.3%).  

Looking with more detail into the yearly evolution of the degradation curve, it can be noted that the main 

deviation is obtained at the first half year, when the initial maximum charging C-rate is defined at 2C (without 

deploying the Level-1 optimization). Then, in the first optimization, the Level-1 OCA identifies the deviation, 

and proposes a 0.25C maximum charge to reduce the gap with the ideal trend. This proposal is maintained for 

1.5 years, until the realistic degradation curve (dark blue) gets closer to the ideal degradation curve (light blue). 

Then, for 4 years, the maximum C-rate proposal gets quite stable between 1 and 1.5C, and the realistic curve 
follows approximately the ideal curve. From year 6 on, it can be noted that the Level-1 OCA gets more 

unstable, as it changes the maximum allowable C-rate each time the execution is launched. In any case, during 

the remaining 4 years, even if at same points the realistic curve deviates from the ideal curve, the overall trend 

leads to an EOL close to the defined objective, as previously highlighted.  
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Figure 6 shows some examples of the optimization carried out at specific moments during the battery lifetime. 

Specifically, the RUL predictions performed at year 0.5 (first optimization), year 4 and year 7.5 are depicted. 

It can be noted that the difference between the proposed maximum C-rates is not very high, contrary to the 

difference identified in the realistic degradation (difference between green and red lines in Figure 28). The 

RUL algorithm is able to predict better this difference when more realistic data is observed (note that the 

difference in the RUL predictions is higher at year 4 compared to year 0.5), but this is not enough to reach the 

same trend as the observed realistic degradation. In any case, even with the identified limitation, the continuous 

optimization process allows getting a final EOL close to the predefined objective, as previously highlighted. 

This demonstrates that the proposed charging concept does not necessitate a very accurate RUL estimator, as 

the proposed updates allow to counteract this limitation.  

 

 

Figure 6: Examples of Level-1 optimization: a) at 0.5 years, b) at 4 years, c) at 7.5 years.  

7 Conclusions and Future Lines 

This paper has presented a novel concept for EV charging optimization, which is based on updating the 

charging pattern based on the periodical updates of a data-driven RUL estimation algorithm. The two main 

contributions of the proposed concept are claimed to be: 1) The trade-off between charging time and BT 

degradation is solved in terms of EOL, and 2) regular updates of the RUL estimation model are proposed 

during the BT lifetime, in order to counteract the uncertainty of the model itself, and allowing to periodically 

find a new optimal trade-of between charging time and BT degradation.  

The obtained results have demonstrated the benefits of both contributions. On the one hand, it is considered 

that an appropriate trade-off between charging time and BT degradation has been obtained in the simulated 

case study. Indeed, the BT follows the predefined degradation objective with an error at EOL of just 0.07 years 

(0.7% absolute error). The error has been demonstrated to be low even if only the feasible EOL window is 

considered), what demonstrates that the BT would also follow the predefined degradation trend in a scenario 

where the degradation differs more between the proposed charging C-rates. On the other hand, the benefit of 

the periodical updates has also been demonstrated. Indeed, it has been noted that the RUL algorithm is not able 

to perfectly predict the difference in degradation between the proposed charging patterns. These estimations 

are improved as more data is collected from field operation, but it is not enough to perfectly predict the realistic 

trends. In any case, even with these limitations, the proposed updates allow the degradation evolution to not 

deviate from the predefined objective, what demonstrates the benefits of the proposed charging concept. 
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Future lines of this work include the deploying of the charging concept in a real BT demonstrator with a cloud 

monitoring platform, what would allow to demonstrate the concept in a real-life application. Moreover, another 

research line derived from the current work may include the coupling of the proposed Level-1 optimization 

with an improved Level-2, which would be optimized in real-time to improve the thermal behavior of the BT.  
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