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Executive Summary

Road freight transport is a major contributor to greenhouse gas emissions in Europe, underscoring the
need for sustainable alternatives to diesel-powered trucks. This study assesses the public charging infras-
tructure required along German motorways to support increasing levels of long-haul truck electrification,
balancing the needs of logistics companies and charge point operators (CPOs). At 1% electrification, 519
high-power charging (HPC) points and 742 low-power charging (LPC) points are required, with HPC uti-
lized during short driving breaks and LPC during extended rest periods. This demand grows to 2,155
HPC and 8,147 LPC points across 525 locations at 20% electrification. The charging power is not fixed
but dynamically determined based on parameters such as charging duration and the vehicle’s remain-
ing state of charge (SoC). HPC utilization rises from 8% to 38% across these scenarios, while average
waiting times remain between three and five minutes. The results demonstrate that efficient, scalable
infrastructure can be deployed to meet rising electrification demands while maintaining service quality
and operational viability for both stakeholder groups.

Keywords: Heavy Duty electric Vehicles & Buses, Optimal charging locations, Modeling & Simulation,
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1 Introduction
As the global shift towards sustainable energy solutions accelerates in response to climate change, the
transportation sector remains a key area of focus for emission reduction. In the context of decarbonizing
road transport, the European Union (EU) has introduced stringent CO2 emission performance standards
for new heavy-duty vehicles [1]. Battery electric trucks (BETs) are emerging as a central technology in
this transition, with high-power charging (HPC) during intermediate stops playing a critical enabling role.
To support the deployment of such infrastructure, the EU has enacted the Alternative Fuels Infrastructure
Regulation (AFIR), which sets minimum requirements for publicly accessible charging stations along the
Trans-European Transport Network (TEN-T) [2].
Germany, as the EU member state with the highest annual volume of road freight transport, faces a
particular challenge in electrifying long-haul operations and ensuring adequate public charging infras-
tructure [3]. Although slow depot charging (below 44 kW) is expected to meet the needs of most small
and medium electric trucks [4], long-haul trucks are likely to obtain approximately 50% of their required
energy from public chargers [5]. This makes analysis and optimization of the charging infrastructure
for long-haul freight transport, defined here as trips exceeding 300 km, a critical priority. Moreover,
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providing a robust data-driven foundation for infrastructure planning facilitates further techno-economic
and environmental assessments, such as those demonstrated by [6].

Several studies have investigated the charging infrastructure requirements for BETs in long-haul freight
transport.
[7] propose a demand-oriented charging network for Germany using an agent-based microscopic simula-
tion, estimating 1,296 Megawatt Charging System (MCS) chargers at 457 locations to support 20% BET
penetration. However, the study does not address overnight charging or apply an optimization approach.
[8] enhance this model by refining route planning, break scheduling, and queuing behavior within the
multi-agent simulation framework (MATSim [9]).
Alternative approaches avoid microscopic simulations. [10, 11] use node-based models with queuing
theory, estimating infrastructure needs based on traffic volumes. Their analyses for a 15% BET share
suggest charging networks with locations spaced every 50 or 100 km, but these models assume uniform
daily mileage and do not consider existing rest areas or differentiate charging technologies in detail.
At the European scale, [12] employ a trip-chain model aligned with EU driving regulations, estimating
Germany’s infrastructure need at 10,300 Combined Charging System (CCS) and 1,360 MCS points for
a 15% electrification level, without distinguishing between public and depot charging.
This study aims to comprehensively assess the public charging infrastructure needs for battery-electric
long-haul freight transport along the German motorway network, incorporating the distinct perspectives
of two key stakeholder groups: logistics companies and charge point operators (CPOs). To achieve this,
the analysis builds upon the existing methodology explained in [13], which explicitly distinguishes be-
tween high-power (HPC) and low-power (LPC) charging, as well as between public and depot charging.

2 Methodology
The methodology described in [13] is outlined in Figure 1 and consists of multiple components. It
combines multi-agent simulation (MATSim [9]) with evolutionary bi-objective optimization (NSGA-II
[14]) to design efficient public charging infrastructure for long-haul battery-electric trucks in Germany.
It simulates truck traffic and charging demand, then optimizes charger placement by balancing two goals:
maximizing charger utilization (for CPOs) and minimizing user waiting times (for logistics companies).
The optimization focuses on high-power chargers and evaluates each configuration through simulation-
based performance metrics. For better understanding, important aspects of the methodology will be
elaborated further beginning with the MATSim scenario.

Figure 1: Schematic representation of the methodology outlined in [13], own presentation

The transport simulation software MATSim is employed to generate synthetic origin-destination trajec-
tories (trip data) based on publicly available data as described in [7]. The specifications of the MATSim
scenarios are provided in Table 1. The spatial and temporal distribution of truck trajectories is calibrated
to realistically reflect long-haul freight traffic on the German road network, using traffic count data from
2020. The MATSim scenarios simulate freight movements at five different levels of fleet electrification,
ranging from 1% to 20%, by varying the share of BET trips. Only BET-operated trips are considered
within the simulation and at least the start or end of each trip is located within German borders. Ac-
cording to European regulations, trip plans include mandatory breaks, a 45-minute pause after 4.5 hours
of driving followed by an 11-hour rest after 9 hours total driving time [15]. Based on OpenStreetMap
data, these breaks are scheduled at one of 526 designated rest areas, each located within 1.5 km of the
nearest motorway [7]. Charging activities occur exclusively during these breaks, and these rest areas
also serve as candidate sites to deploy the charging infrastructure. To avoid route modification due to
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charging station availability, the scenario assumes unlimited charging capacity at each potential location,
ensuring that all BETs can complete their trips without delay. Although the MATSim scenarios provide
chronological trip and break data for BETs, they do not track individual vehicles, as a new agent is ini-
tialized for each trip [7]. All vehicles are uniformly modeled as semi-trailer trucks, each with a gross
vehicle weight of 40 tons, a battery capacity of 600 kWh, and an energy consumption rate of 1.2 kWh
per kilometer [8].

Table 1: Specifications of the MATSim scenarios (cf. [7])

Parameter Specification Parameter Specification
Simulation area Germany Charging infrastructure availability unlimited
Scenario year 2020 Usable battery capacity 600 kWh
Share of electrified trips 1%/5%/10%/15%/20% Average vehicle energy consumption 1.2 kWh/km
Simulation period Monday-Thursday (96 h) Vehicle start SoC 100%
Potential charging locations 526

In addition to the truck trip data, an initial population of charging infrastructure configurations, referred
to as individuals, is required to initiate the evolutionary optimization process. This initial population
is generated by randomly assigning charging points (CP) to the predefined set of potential charging
locations. To ensure plausibility, the random assignment procedure is subject to a set of constraints that
enforce basic feasibility criteria. In the charging infrastructure simulation, charging events occurring
during the mandatory 45-minute breaks are classified as HPC, while those taking place during the 11-
hour rest periods are treated as LPC. Notably, the duration of HPC processes is set to 40 minutes while
charging time of LPC processes is set to nine hours. Additionally, the charging power of HPC and LPC is
set to the required mean power to reach the target SoC of 100% at the end of each charging process while
ensuring that the mean charging power can not exceed 900 kW. As the optimization procedure focuses
solely on HPC infrastructure, the individuals in the evolutionary algorithm encode only the number of
HPC points per location. Consequently, only the HPC infrastructure is subject to optimization.
For LPC charging, no decision-making process is involved during simulation. Trucks encountering an
extended rest period are assumed to charge without incurring any waiting time. Given that overnight
charging sessions occupy CP for extended durations and offer limited potential for efficiency optimiza-
tion, the required number of LPC plugs per location is determined in a post-optimization step. This
incorporates the influence of LPC on HPC requirements, ensures sufficient capacity for LPC and allows
to determine reasonable numbers for required LPC plugs per location.
Both the generated individuals and the BET trip data serve as input to the charging infrastructure sim-
ulation. The simulation-based evaluation process assesses each individual by simulating truck charg-
ing behavior using MATSim trip data. It processes truck arrivals at charging locations chronologically,
checking state of charge (SoC), waiting queue and break duration to determine whether a truck should
charge. For each charging attempt, it calculates waiting time, charging power, and updates truck sched-
ules accordingly. Based on these performance indicators, each individual is evaluated with respect to the
two performance metrics. A genetic algorithm (NSGA-II) is then employed to evolve the population by
selecting the best-performing individuals and using them to generate a new population through crossover
and mutation operations. This iterative optimization continues for 700 generations, ultimately producing
a final set of Pareto-optimal charging infrastructure configurations. These configurations represent dif-
ferent trade-offs between the evaluation criteria, thereby reflecting the diverse priorities of both logistics
companies and CPOs.
The charging infrastructure scenarios are evaluated using two performance metrics: the Temporal Charger
Utilization (TCU) and the User Waiting Time Index (UWTI) [13]. TCU quantifies the efficiency of in-
frastructure usage by measuring the proportion of time that charging points are actively in use relative to
the total scenario duration. It is expressed as a percentage, with higher values indicating more effective
utilization of the installed charging capacity. The UWTI, by contrast, serves as a user-centric metric
aimed at capturing service quality and user satisfaction. It penalizes waiting times experienced by ve-
hicles at charging locations. A waiting time of zero yields the optimal score, while increasing waiting
durations progressively reduce the index. In particular, waiting times that exceed a predefined threshold
incur a substantial penalty, reflecting their negative impact on operational efficiency and user experience.
This methodological setup enables the inclusion of real-world factors such as driving breaks, waiting
queues, energy consumption, and the locations of rest areas and depots. Moreover, it supports a compre-
hensive analysis of vehicle and charging infrastructure needs and helps evaluate load profiles to estimate
grid connection requirements.

3 Results
In this section, the optimization results corresponding to these electrification levels are analyzed to de-
rive insights into the charging infrastructure requirements necessary to support battery-electric long-haul
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freight transport on the German motorway network. Furthermore, the performance of the resulting in-
frastructure configurations is evaluated in relation to the objectives and constraints of both logistics com-
panies and CPOs, allowing for an assessment of alignment with stakeholder perspectives.

3.1 Charging Infrastructure Demand of Investigated Electrification Levels
The electrification levels represent the proportion of trips conducted by BETs. The following section
presents characteristics for each electrification level, focusing on the extent of required HPC and LPC
infrastructure, the resulting waiting times, and the temporal charger utilization. Figure 2 [13] illustrates
the final non-dominated set of solutions, including a reference solution for each electrification level.
These reference solutions indicate the number of required HPC charging points assuming that every
charging process occurs without waiting time, indicated by a waiting time of zero minutes.

Figure 2: Final non-dominated set of each electrification level cf. [13]

The results indicate that the number of required HPC points does not increase linearly with the level of
electrification. Rather, the rate of increase diminishes as electrification progresses. Moreover, the dis-
tance between the non-dominated set and the reference solution underscores the potential for optimiza-
tion, with lower electrification levels (e.g., 1%) exhibiting comparatively limited potential. Additionally,
the temporal utilization of chargers in the reference solution increases with higher electrification levels,
even in the absence of optimization. The optimization procedure further amplifies this utilization trend.
This effect is accompanied by rising waiting times, particularly when the number of charging points is
reduced. Table 2 specifies the bounds of selected characteristics within the final non-dominated sets, as
visualized in Figure 2.

Table 2: Boundary values of the final set of HPC solutions for each electrification level

Electrification level Charging points (plugs) [pcs] TCU [%] Mean waiting time [min]
1% 519 – 722 6.11 – 8.26 0.26 – 4.69
5% 823 – 1,317 16.27 – 23.58 0.77 – 10.23

10% 1,261 – 1,828 23.41 – 31.33 0.94 – 7.86
15% 1,675 – 2,366 29.87 – 38.33 1.40 – 10.70
20% 1,987 – 2,824 30.39 – 39.87 1.10 – 8.30

For further analysis, a specific solution is selected from each electrification level that represents a bal-
anced trade-off between the perspectives of logistic companies and CPOs. Similar to [13], a solution
qualifies for selection if the mean waiting time per charging process is under five minutes and the pro-
portion of charging attempts with a waiting time exceeding 90 minutes is below 0.5%. From the eligible
solutions, the one closest to these criteria is chosen for each electrification level.
A detailed overview of these solutions is presented in Table 3. The 1% solution exhibits the highest mean
waiting time per HPC charging process among the selected solutions and shows a relatively smaller im-
provement in the number of HPC plugs and TCU compared to the corresponding reference solution. The
remaining solutions demonstrate much higher relative improvements in these characteristics, although
there is a tendency that the lower limit of mean waiting times per charging process rises with the increas-
ing number of electrified truck trips (Table 2). Additionally, the 1% solution has very low utilization,
which increases by a factor of 4.6 when electrification reaches 20%. Despite the 20-fold increase in trips
made by BETs, the required number of HPC plugs only increases by a factor of 4.2.
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Table 3: Characteristics of the chosen charging infrastructure solutions for each electrification level

Electrification level 1% 5% 10% 15% 20%
Total trips [pcs] 6,940 34,482 68,854 114,968 138,563
Mean trip distance [km] 483.7 479.88 480.56 481.45 481.54
HPC plugs [pcs] 519 943 1,389 1,899 2,155
HPC sites [pcs] 491 520 525 525 525
LPC plugs [pcs] 742 2,525 4,446 6,874 8,147
LPC sites [pcs] 377 469 498 499 506
LPC/HPC plug ratio 1.42 2.68 3.2 3.62 3.78
Total HPC charging processes [pcs] 5,868 28,337 56,580 93,648 112,602
Total LPC charging processes [pcs] 1,350 6,582 13,098 22,019 26,576
Mean waiting time HPC [min] 4.69 3.84 3.79 4.53 4.44
TCU HPC [%] 8.26 21.88 29.68 35.9 38.02
TCU LPC [%] 21.37 28.26 32.03 35.05 36.07
Accumulated Energy at trip start [GWh] 4.16 20.69 41.31 68.98 83.14
Energy charged at public CPs [GWh] 2.6 12.63 25.2 41.85 50.37
Charged energy via public HPC [GWh] 2.11 10.21 20.4 33.77 40.61
Charged energy via public LPC [GWh] 0.49 2.42 4.81 8.08 9.76
Depot charging demand [GWh] 1.56 8.06 16.11 27.13 32.77
Share of public charging [%] 62.65 61.04 61.0 60.67 60.58

Furthermore, the demand for LPC infrastructure at various electrification levels is assessed. In this study,
the impact of HPC infrastructure on LPC infrastructure occurs solely when vehicles are unable to charge
and reach a state of charge (SoC) of 0% due to excessive waiting times. This is because subsequent
rest periods, and thus LPC processes, are not considered once vehicles reach an SoC of 0%. Therefore,
it is reasonable to derive the LPC demand from the reference solution for each electrification stage to
avoid this underestimation. It is shown that the number of LPC plugs required is significantly higher
than the number of HPC plugs. Although the LPC infrastructure is designed to ensure that every long
charging process occurs without waiting time, the TCU is comparable to the TCU of HPC infrastructure
in the optimized solutions. For low electrification levels from 1% to 10% LPC TCU is even higher than
HPC TCU. This is caused by the high occupation time of the long charging processes. Considering the
amount of energy charged at 20% electrification, LPC infrastructure is responsible for only 19% of the
charged energy indicating that there is a potential use case for public LPC infrastructure but public HPC
infrastructure is more relevant for both, users and CPOs.
Moreover, Figure 3 compares the number of fast charging, slow charging, waiting, and driving vehicles
over time for electrification levels of 5% and 20%. The curves exhibit cyclical behavior between day
and night, with the peak of vehicles using LPC occurring at night and the peak of vehicles using HPC
occurring during the day. This suggests a correlation between the number of en-route vehicles and HPC
processes. Furthermore, the peak of simultaneous LPC processes closely matches the peak of driving
vehicles, while the peak number of simultaneous HPC processes is much lower. However, the total
amount of HPC processes is over four times higher than the amount of LPC processes, as shown in Table
3. Despite the higher number of vehicles in the 20% scenario, the observed behavior over time between
the 5% and 20% electrification levels remains very similar. Notably, the peak number of LPC processes
increases more significantly with the rising number of driving vehicles compared to the peak number
of HPC processes. This trend is highlighted in Table 3, which shows that the number of required LPC
plugs increases more sharply with higher electrification levels than the number of required HPC plugs,
while the ratio of energy charged with HPC and LPC remains constant. The ratio of LPC plugs to HPC
plugs rises from 1.42 to 3.78, displaying an asymptotic behavior that suggests this ratio increases less as
electrification exceeds 20%.
Furthermore, the accumulated start SoC shown in Table 3 represents the total energy in the batteries of
all trucks at the beginning of each trip. This study assumes that the start SoC is restored after each trip.
Therefore, the difference between the accumulated start SoC of all trips and the energy charged at public
CPs represents the depot charging demand. Similarly, the share of public charging is calculated as the
proportion of energy charged at public CPs relative to the accumulated start SoC. The results indicate
that the share of public slow and fast charging for the chosen charging infrastructure solutions is slightly
above 60%.
The subsequent sections will analyze the most relevant characteristics of the chosen charging infrastruc-
ture solutions in more detail.
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(a) 5% electrification (b) 20% electrification

Figure 3: Temporal distribution of vehicles charging, waiting, and en-route throughout the simulation period

3.2 Spatial Distribution of Charging Infrastructure
This section analyzes the spatial distribution of HPC and LPC infrastructure within Germany based
on the truck traffic. Figure 4 shows the locations of installed charging infrastructure differentiated by
available charger types for the 1% electrification level. Most locations provide both HPC and LPC
charging options, with a greater number of locations offering exclusively HPC charging compared to
those offering only LPC charging. However, both charger types exhibit a comprehensive distribution,
indicating that even a low electrification level necessitates a well-distributed charging network across
Germany.

Figure 4: Locations with installed charging infrastructure per charger type at the 1% electrification level

Moreover, Figure 5 illustrates the spatial distribution and the quantity of charging points per location
for HPC (5a) and LPC (5b) at an electrification level of 20%. Both HPC and LPC infrastructure show
comprehensive distributions within Germany with a maximum of 41 HPC chargers and 111 LPC chargers
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per location. However, there are notable differences in their spatial distribution, as the HPC infrastructure
is densely distributed in central parts of Germany, becoming sparser towards the borders, while the LPC
infrastructure exhibits the opposite pattern.

(a) HPC infrastructure with TCU (b) LPC infrastructure with TCU

Figure 5: Spatial distribution of charging infrastructure with TCU for 20% electrification

3.3 Temporal Charger Utilization and Waiting Times
This section evaluates the results concerning TCU and waiting times, beginning with the spatial distribu-
tion of charging points, as illustrated in Figure 5. For a 20% electrification scenario, numerous locations,
particularly those with a high number of charging points, exhibit a TCU exceeding 30%. This pattern is
observed across both HPC and LPC infrastructures, with LPC infrastructure generally displaying higher
TCU values than HPC infrastructure. To gain deeper insights into location-specific TCU patterns, an
additional analysis focusing on HPC infrastructure is conducted. Figure 6a demonstrates a consistent
increase in TCU across locations with rising levels of electrification. Importantly, the median TCU per
location is lower than the mean TCU values provided in Table 3, indicating that locations with high TCU
disproportionately influence the mean values compared to those with low TCU. Moreover, at the 1%
electrification level, approximately 75% of locations report a TCU below 10%. TCU values increase sig-
nificantly for the 5%, 10%, and 15% scenarios but decelerate towards the 20% level. At this level, 50%
of locations record a TCU between roughly 22% and 43%, with a median TCU of approximately 33%.
Despite this upward trend, each electrification scenario includes locations with minimal TCU values,
approaching 0%. This phenomenon is attributed to optimization constraints, ensuring that every location
with at least one charging event is allocated a minimum of one charging point. However, in the 15% and
20% electrification scenarios, certain locations achieve TCU values up to 67%.

Table 4: Duration of queuing events for each electrification level

Electrification level 1% 5% 10% 15% 20%
Charging processes without queuing [%] 83.78 82.10 80.32 75.00 75.23
Mean [min] 28.90 21.48 19.28 18.14 17.92
Median [min] 26.48 16.68 14.03 12.43 11.52
75% Quantile [min] 40.62 31.56 27.42 24.50 24.06
90% Quantile [min] 57.00 45.78 43.67 42.51 44.32

An analysis of waiting times for HPC charging processes reveals that the majority of charging events
occur without any queuing delay. Table 4 provides a detailed overview of the statistical distribution of
queuing durations, along with the proportion of charging processes completed without queuing. This
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share declines from 84% at a 1% electrification level to 75% at 20%, indicating a gradual increase in
queuing likelihood with rising electrification.
In addition, Figure 6b presents a box plot illustrating the mean waiting time per location and electri-
fication level. The median queuing duration per location decreases as electrification increases: at 1%
electrification, 50% of locations have a mean waiting time below 24 minutes, whereas this value falls
below 14 minutes at 20%. Although the probability of experiencing a queue before charging increases
with electrification (as shown in Table 4), the average waiting time per queuing event declines. This
suggests that while queues become more frequent, the delays they cause become shorter on average.
This interpretation is further supported by the growing disparity between the mean and median queuing
durations, indicating that a small number of high-duration queuing events increasingly skew the mean.
Furthermore, all electrification scenarios contain locations where no queuing occurs, yet the frequency
of outlier locations with exceptionally high average waiting times rises with increasing electrification.

Figures 6a and 6b both exhibit an asymptotic trend, implying that beyond a 20% electrification level,
further increases in electrification are unlikely to significantly impact TCU or waiting times, provided
that the charging infrastructure remains optimally distributed.

(a)
TCU of HPC infrastructure per location

(b)
Mean duration of waiting processes per location

Figure 6: Characteristics of TCU and waiting processes per location for each electrification level

3.4 Analysis of Three Highly Frequented Charging Locations for 20% Electrification
The approach utilized in this study enables the analysis of charging demand and other characteristics at
specific locations. Consequently, this chapter examines three charging locations from the 20% electri-
fication scenario, each with distinct characteristics. Figure 4 illustrates the positions of these locations,
while Table 5 presents their key characteristics. Despite their differences, all three locations rank among
the most frequented in the simulation and serve a similar number of charging processes.
Location one (”Autohof Bayrisches Vogtland”) on the A9 motorway is characterized by a high number
of HPC plugs and a comparatively low number of LPC plugs. In contrast, location two (”Autobahn-
raststätte Waldnaabtal Ost”) on the A93 motorway offers a more balanced charging infrastructure, with
approximately three times as many LPC plugs as HPC plugs. Location three (”Autohof Northeim”) on
the A7 motorway contains one of the largest amounts of LPC plugs among all sites. These distinct in-
frastructure configurations highlight the importance of tailoring charging infrastructure designs to the
specific characteristics and requirements of each location.
Figure 7 presents the number of vehicles charging per charger type, the number of vehicles waiting, and
the temporal evolution of the required peak power at each of the three locations. The required peak power
is calculated based on the mean power of ongoing charging processes.
At all three locations, HPC infrastructure utilization peaks during daytime hours, whereas LPC infras-
tructure is predominantly used at night. Consequently, the overall power demand also peaks during the
day. Notably, location two exhibits the lowest peak power demand during the simulation period, despite
experiencing high utilization of its HPC infrastructure during daytime hours. The elevated total charger
utilization (TCU) at this site leads to increased waiting times during peak periods. Given that location
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Table 5: Characteristics of selected charging locations at the 20% electrification level

Location 1 Location 2 Location 3
HPC plugs 20 13 14
LPC plugs 18 41 110
HPC charging processes 1229 1030 787
LPC charging processes 54 151 396
Mean waiting time [min] 1.08 18.01 0.43
HPC TCU [%] 42.67 55.02 39.038
LPC TCU [%] 28.13 34.53 33.75
Mean HPC charging power per process [kW] 526.37 559.76 526.69
Mean LPC charging power per process [kW] 35.17 37.29 37.67
Total peak power [MW] 10.83 8.6 9.78

two has the fewest HPC plugs among the locations analyzed, this observation suggests that the primary
determinant of a site’s maximum power requirement is the number of HPC plugs, with the quantity
of LPC plugs playing a comparatively minor role. In contrast, locations one and three achieve above-
average HPC plug utilization while maintaining low average waiting times, indicating a more favorable
balance between infrastructure capacity and demand from the user perspective.
Among the analyzed locations, location one exhibits the highest simulated power demand, suggesting the
need for the most robust grid connection. However, assuming nominal charging powers of 720 kW per
HPC plug and 75 kW per LPC plug, location three would theoretically require the largest grid connection,
exceeding 18 MW due to the high number of LPC plugs. Nevertheless, the observed peak power demand
at this site remained below 10 MW during the simulation, indicating that load management strategies
could substantially reduce the actual grid connection requirements.

(a) Location 1 (b) Location 2 (c) Location 3

Figure 7: Temporal development of vehicle activity and total charging power at selected locations under 20%
electrification level

4 Discussion
This study aimed to quantify the number of charging points required for varying levels of long-haul
truck electrification on the German motorway network and to determine an optimal LPC-to-HPC plug
ratio that ensures both infrastructure availability and efficient utilization. Using a long-haul freight traffic
scenario based on 2020 traffic volume data, a set of non-dominated charging infrastructure configurations
was identified for five electrification levels. Selected solutions represent balanced trade-offs between the
perspectives of logistics companies and CPOs, with user waiting times reflecting logistics priorities and
TCU representing CPO interests.
Some previous research papers investigate the required number of charging points for BETs, providing a
basis for comparison with our study’s findings. [12] employ a trip chain based approach to model long-
haul truck traffic and estimate charging demand in European Countries at a 15% electrification level.
They determine the necessary number of HPC and LPC ([12] calls it MCS and CCS) charging points
for charging areas of 25 km2, consisting of multiple charging locations, to maintain a waiting time of
five minutes. Their findings indicate that more LPC plugs than HPC plugs are required with increasing
electrification, which aligns with the results of this study. However, they estimate the need for 10,300
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LPC and 1,360 HPC (ratio: 7.57) charging points in Germany, showing a significantly higher LPC to
HPC plug ratio compared to our study, which requires 6,874 LPC and 1,899 HPC plugs (ratio: 3.62) at
the 15% electrification level [12]. The discrepancy in HPC requirements can be partly attributed to the
difference in assumed charging durations. The shorter charging duration of 30 minutes assumed by [12]
results in fewer HPC charging points with higher charging powers, as also noted in their study. Addition-
ally, a crucial difference is the use of trip chains in [12], which are not considered in the MATSim model
that our study is based on. This omission in our study leads to an underestimation of long breaks, as trip
chains connecting multiple trips over several days result in more long breaks and fewer short breaks due
to European rest regulations. Moreover, transit traffic without a start or end in Germany is not consid-
ered in the MATSim model, potentially further reducing the LPC charging demand. Consequently, the
observed differences in the results can be partly attributed to methodological differences and limitations
of our methodology, which will be addressed in future research. Nevertheless, the results of this study
indicate that the majority of the total energy delivered originates from HPC plugs, and that the number of
HPC plugs is the primary driver of a location’s peak power demand. Despite this, LPC infrastructure re-
mains an attractive option for CPOs, particularly when synergies with the existing HPC grid connection
can be leveraged. As the peak usage times for HPC and LPC infrastructure do not coincide, a substantial
number of vehicles can be serviced via LPC plugs without necessitating an upgrade to the existing grid
connection.
Moreover, the results indicate that both HPC and LPC infrastructure need to be well-distributed across
the major German road network even at an electrification level of 1%. Notably, this is based on the
underlying MATSim scenario which assumes an evenly electrification of long-haul freight traffic. The
results do not apply if early stages of electrification would focus on a few origin-destination connections.
At higher electrification levels, the distribution of HPC and LPC infrastructure exhibits slight differences.
HPC infrastructure tends to dominate in the more central parts of Germany, whereas LPC infrastructure
becomes more prevalent towards the borders, suggesting a higher number of long driving breaks at
these locations. This distribution is influenced by the MATSim model used. In future research, it is
important to investigate whether this reflects actual driving behavior or if it is a consequence of the
model’s limitations, which only consider trips that at least start or end in Germany. This could explain the
observed infrastructure distribution, as long breaks typically occur after covering long distances, leading
to more long breaks near the borders. However, the analysis of highly frequented charging locations in
Section 3.4 reveals that the requirements for HPC and LPC charging infrastructure can vary significantly
among different locations, depending on the frequency of long and short breaks at each site.
In addition, our study determined the share of public charging as the ratio between the energy charged at
public LPC and HPC infrastructure and the accumulated start SoC of all trips. According to [5], multiple
truck manufacturers estimate that approximately 50% of the driving energy for long-haul trucks will be
charged at public charging infrastructure. our study suggests that this share could be slightly higher,
around 60%, if every charging process ends with a SoC of 100%. However, in real-world applications
where not every charging process will end at an SoC of 100%, this share would likely decrease towards
50%, aligning with the manufacturers’ estimates. The share of public charging is highly dependent on
operational schedules, trip structure, and the availability of charging infrastructure. Therefore, consid-
ering a public charging share of approximately 50% seems to be appropriate when planning public and
depot charging infrastructure for long-haul freight traffic.
Furthermore, the TCU is a relevant criterion from the CPO perspective. The network-wide TCU for
HPC infrastructure from Monday to Thursday increases to 38.02% at the 20% electrification level. The
results also show a sharp increase in TCU from 1% to 5% electrification, reaching 21.88% which can
be sufficient for profitable HPC charging infrastructure operation according to [16, p.23]. This suggests
that charging infrastructure may not be economically viable at lower electrification levels, except in
highly frequented areas. Given that 1% electrification already requires 519 HPC plugs distributed across
the German transport network, CPOs must accept lower TCUs at this early stage to facilitate a rapid
transition to battery-electric long-haul freight traffic and establish a profitable business.
From the perspective of drivers or logistics companies, the waiting time statistics presented in 3.3 indicate
that the average trip delay due to fast charging stops will be between three and five minutes per stop
across the entire network. While this seems to be generally acceptable to logistics operators, higher
waiting times may be encountered on highly frequented routes, particularly at outlier charging locations
with significantly high mean waiting times per charging process. However, the numbers provided by
our study are a result of a network-wide optimization, whereas in reality charging location design is
managed individually by CPOs. It is therefore likely that CPOs will expand infrastructure at these high-
demand locations or set up additional charging locations where feasible. Nevertheless, the existence
of those outlier locations like location 2 in Section 3.4 shows that other mechanisms are necessary to
further optimize the charging infrastructure distribution. Allowing the re-routing of trips could prevent
the excessive queuing of BETs at charging locations in peak hours and distribute the charging demand
more evenly on potential charging locations. This will be a topic of future research.
Moreover, Figure 7 in Section 3.4 illustrates the power demand at the selected locations. The observed
total peak power does not exceed 10.83 MW (Location 1). However, all charging processes in the
simulation are based on a linear charging profile, meaning that variations in charging power throughout
the session are not taken into account. In practice, real-world charging behavior, characterized by non-
linear power curves, may significantly affect the actual peak power requirements of a charging site. This
potential influence warrants further investigation.
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The analyzed charging infrastructure configurations for each electrification level were selected from
the final set of solutions (Figure 2) to illustrate a potential trade-off between the interests of logistics
companies and charge point operators. However, the employed evaluation criteria, temporal charger
utilization (TCU) and user waiting times, do not fully capture all factors influencing the operational
efficiency and economic viability for both stakeholder groups. To support data-driven decisions on the
most favorable trade-offs, future research should develop and incorporate comprehensive cost models
tailored to the needs of each stakeholder. These models should be integrated as optimization criteria to
enable a more holistic assessment of infrastructure configurations.

5 Conclusion
Using a methodology that combines multi-agent simulation with bi-objective evolutionary optimization,
this study provides a detailed assessment of the public HPC and LPC charging infrastructure required
to support different levels of long-haul truck electrification in Germany, while balancing the needs of
logistics companies and CPOs. Results show that infrastructure requirements scale non-linearly with
electrification: a 20-fold increase in BET trips (from 1% to 20%) demands only a 4.2-fold increase
in HPC plugs. HPC plug requirements range from 519 to 2,155, and LPC plugs from 742 to 8,147.
Network-wide HPC utilization increases from 8.26% to 38.02%, while average waiting times remain be-
tween three and five minutes. This indicates the compatibility of high charging infrastructure utilization
and efficient BET operations.
Our study also shows that the ratio of LPC to HPC plugs increases with increasing electrification, reach-
ing 3.78 at 20% electrification, although HPC remains the dominant contributor to total charged energy
(over 80%). Spatial analysis highlights the necessity for a widespread and balanced infrastructure rollout
from the outset, even at low electrification levels, while usage patterns underscore the complementary
nature of HPC and LPC in managing daily and overnight charging demands.
The growing LPC-to-HPC ratio and complementary usage patterns emphasize the need for integrated
infrastructure strategies. Location-specific analyses further underline the importance of tailoring infras-
tructure deployment to local conditions, enabling both economic viability for CPOs and reliable access
for logistics companies.
Ultimately, these findings support the scalable and coordinated development of a robust public charging
network for long-haul freight transport in Germany and lay the groundwork for further research into
dynamic routing strategies, real-world charging behavior and grid integration.
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