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Abstract

The rise of electric vehicles (EVs) and photovoltaic (PV) systems advances renewable energy goals
but also creates challenges due to the intermittent nature of PV generation. Bidirectional EV charging
presents significant opportunities to enhance local energy resilience and to support the grid, where main-
taining both positive and negative flexibility in real time is critical to accommodate unpredictable and
dynamic grid imbalances.

This paper presents a smart charging solution based on Soft Actor-Critic (SAC), a deep reinforcement
learning (DRL) method well-suited for managing continuous control tasks and promoting effective pol-
icy exploration. To ensure scalability across large EV fleets, we incorporate a Centralized Training with
Decentralized Execution (CTDE) framework, which enables efficient learning and decentralized opera-
tion. The proposed approach optimizes charging costs, enhances PV energy utilization, and maintains
flexibility to support grid operations. Simulation results demonstrate that our SAC-based framework
consistently outperforms state-of-the-art DDPG-based methods across key operational metrics.

Keywords: Electric Vehicles, Modelling and Simulation, Smart charging, V2G

1 Introduction

The global shift toward environmental sustainability has accelerated the adoption of electric vehicles
(EVs) and photovoltaic (PV) systems [1, 2], reflecting broader commitments to renewable energy and
greenhouse gas reduction. However, the intermittent nature of PV generation often misaligns with local
energy consumption, causing inefficiencies and underutilization. While unidirectional smart charging so-
lutions address this by coordinating EV charging with PV production, recent attention has turned toward
bidirectional charging for its greater potential to enhance energy system flexibility [3]. By enabling EVs
to discharge energy back into local infrastructures, bidirectional charging improves the self-consumption
of on-site renewable generation, strengthens local energy resilience, and reduces reliance on external
grids. Furthermore, bidirectional EVs can contribute to broader grid stability through participation in
ancillary services such as Frequency Containment Reserve (FCR) and Redispatch 3.0 [4, 5]. Despite
its promise, the effective integration of bidirectional EVs into grid services remains challenging. EVs
operating under smart charging plans may fail to absorb excess energy or deliver needed power during
critical moments. As smart charging solutions often aim to maximize charging or discharging power
to optimize utilization, this approach limits the ability of EVs to provide rapid, dynamic responses to
unpredictable grid fluctuations, particularly amid the inherent uncertainty of grid demand and renewable
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energy forecasts. To overcome these limitations, an effective bidirectional smart charginﬁ solution must
not only optimize costs and PV utilization but also preserve both positive and negative flexibility at all
times. By maintaining this dynamic readiness, EVs can enhance local renewable integration while ac-
tively supporting grid stability under real-time conditions.

While traditional optimization methods such as Mixed-Integer Linear Programming (MILP) and heuris-
tic approaches have been widely applied to smart charging problems [3, 6], deep reinforcement learning
(DRL) offers greater flexibility and scalability. By learning optimal policies through direct interaction
with the environment, DRL is particularly well-suited to the high-dimensional, nonlinear, and stochastic
dynamics characteristic of EV fleet management. Various DRL algorithms have been proposed for EV
scheduling tasks [7—16]. These range from value-based methods, such as Deep Q-Networks (DQN) [11],
which are more appropriate for problems with discrete action spaces, to policy gradient methods like
Proximal Policy Optimization (PPO) [12] and Deep Deterministic Policy Gradient (DDPG) [13], which
can handle continuous control tasks. In [12], the authors compare different DRL methods to solve a bidi-
rectional EV scheduling problem and reduce charging costs. Their results show that DDPG can achieve
higher rewards as opposed to PPO, but it also suffers from significant performance swings, while PPO
shows better stability and, as a result, a more consistent performance. As shown in [14], a reinforce-
ment learning framework for vehicle-to-building (V2B) strategies is proposed for smart communities
with workplace EV charging, aiming to reduce peak energy costs anc{) demand over extended periods.
Their approach uses DDPG, enhanced with action masking and MILP-driven policy guidance, to handle
complex factors like continuous action spaces and heterogeneous EV behavior. [15] explores a DDPG
method to address the challenges of real-time charging control for EVs within smart %rids. Their findings
show that DDPG alone may not be the best-suited approach as it lacks sufficient exploration capabilities.

Soft Actor-Critic (SAC) [17] is an off-policy DRL method that combines continuous control with im-
proved exploration through entropy maximization. The application of SAC to EV smart charging, es-
pecially for coordinated bidirectional management, remains relatively underexplored. It is particularly
well-suited to bidirectional EV scheduling, where continuous action spaces are essential and adaptive
responses to dynamic grid conditions are critical. However, as the number of EVs scales, the expansion
of the state and action spaces significantly increases training time and complexity, posing an additional
challenge. In this paper, we propose a smart charging framework based on SAC to enable flexible and
adaptive EV scheduling in dynamic environments. To address the scalability challenges, we integrate a
Centralized Training with Decentralized Execution (CTDE) framework, which supports efficient learn-
ing and decentralized operation. The key contributions of this work are as follows:

* We develop a smart chargin% framework based on SAC that satisfies drivers’ needs while achieving
system-wide objectives, including reducing charging costs, maximizing PV energy utilization, and
enhancing grid flexibility.

* We adopt a CTDE paradigm, which reduces training time significantly by enabling decentralized
decision-making while leveraging centralized information during training.

* We demonstrate the effectiveness of our approach through comprehensive simulations, comparing
its performance against state-of-the-art DDPG-based methods with respect to charging costs, PV
utilization, and operational constraints.

2 Method

In this section, the EV charging and discharging scheduling problem is modeled as a Markov Decision
Process (MDP), which forms the foundation for the SAC algorithm. SAC is an off-policy, model-free
DRL algorithm. SAC learns by interacting with the environment over time and optimizes both the ex-
pected cumulative reward and the entropy of the policy to encourage exploration.

2.1 SAC Method

The SAC framework is defined by the tuple (S, A, p, ), where:S is the continuous state space, A is the
continuous action space, p : S x A x & — [0, 1] is the transition probability distribution, specifying
the probability of moving to a new state given the current state and action, 7 : S x A — R is the
reward function, which provides feedback based on the current state and action. Unlike standard rein-
forcement learning objectives, SAC maximizes a maximum entropy objective, aiming to maximize both
the expected reward and the entropy of the policy at each state. This leads to improved exploration and
stability during training, with experiences stored in a replay buffer for efficient off-policy learning.

In SAC, the state space defines the environment, and the agent makes informed decisions after interacting
with the environment. The overall state space is defined as:

st = [S0Cy 1, SoCES | ASC,, 4, BT T2 TP vy, By, Py Ny, By, Dy, Cr, Cf  LL, PV D]] (1)
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The state s; defined in (1) consists of the following variables: SoC, ; denotes the State of Charge (SoC)
of EV n at time ¢, calculated according to equation (2); S oC’d indicates the remaining discharge ca-

pacity of the battery, as computed in equation (3); ASoC, ; represents the difference between the target
state of charge and the current SoC, ; for EV n at time t; E7% is the maximum battery capacity of

EV n; T and TP denote the arrival and departure times of EV n, respectively; o, s is a binary flag
indicating whether EV n is present at the charging station at time t; and (3, ; represents the previous

action taken for EV n. The global variables are defined as follows: P, represents the cumulative power
of all EVs at time ¢; N; denotes the number of EVs present at the charging station; B; indicates the
cumulative action values from the previous timeslot; lgt is the power imbalance at time ¢, based on the
load demand L; and PV) generation PV;. In addition C; represents the unit cost of grid energy at time

t. th , L{ , PV;f , and DZ correspond to the unit cost of energy, load demand, available PV power, and
power imbalance over the next 24 timeslots.

7 - max(P,¢—1,0)n¢ LT min(FPy,—1,0)

S0Ch4 = S0Ch—1 + s Frma D 2
t .
. . T - z‘:Tarr mln(Pn,i7 0)
SoCdis = SoCmaxdis 1 : Bimax D 3)

In our simulation, the maximum discharge capacity of EV n is denoted as SoC*>%* which is 50% of
the battery capacity. The charging and discharging efficiencies are represented by ¢ and 1", respec-
tively. The parameter 7 denotes the duration of each timeslot.

The continuous action space defines the possible actions the agent can take, where the action for each EV
n at time ¢ is within the range a, ¢+ € [—Pmax, Pmax]. The agent has access to the entire state space and
independently decides on charging or discharging actions for each EV, with negative values indicating
discharging and positive values indicating charging. Actions in the range [—4 kW, 4 kW] are masked to
0, as the charging and discharging efficiency is low within this range.

ag = [(J,Lt, a27t, . ,CLNJ] (4)

In our problem formulation, after the agent selects the actions for all EVs based on the current policy,
the environment evaluates these actions and provides a reward. The reward reflects how well the agent’s
decisions align with the system’s overall objectives and constraints. This feedback guides the agent in
improving its policy by maximizing the reward over time.

The total reward for timestep ¢ is given by:

lobal | _obj
re =1EY Frd N 5)

E

where: 1y V represents the EV-related reward, 7% lobal represents the global reward, 7} j represents the
p t p g t p
EV

objective reward. The first term, 7;°¥, accounts for violations related to individual EVs. This includes
penalties for SoC violations, final SoC target violations, and discharge limit violations. The total EV-
related reward is given by:

N
1
EV _ ﬁnal
T N E Wsoc * n t + Wdis * t + Wfinal - ) ©6)
n=1

where wsoc, Wdis, Wenal are the weights of the penalties associated with SoC violation, discharge limit
violation, and final SoC target violation, respectively. To promote feasible and user-compliant charging
behaviors, we impose penalties for deviations below the minimum SoC and for overcharging beyond
100% SoC, as defined by the following penalty for SoC violations:

(N

n,t

soc _ J1 ifSoCpt <0.20rSoCpt > 1
0 otherwise

To protect battery health, we impose a penalty for discharge limit violations, as given by the following

equation:
1 ifS Cd“
dis { if So @)

n t —
0 otherwise
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To meet user requirements, it is important for the EVs to reach their target SoC before departure. The
penalty for final SoC target violations is given by:

©)

nt

|1 ift =TH® —1and SoCpy < SoCE!
0 otherwise

The second term, rflObal in equation 5, accounts for global violations across all EVs in the charging

system. This includes penalties for fuse violations, peak violations, and over-discharge penalties. The
total global reward is given by:

global __ fuse peak overdis
Ty = —Wfuse " Tt  — Wpeak " Ty — Woverdis * T'¢ (10)
where Wiyse , Wpeak s Woverdis are the weights of the penalties associated with fuse violation, peak violation,

and over-discharge violation, respectively. In order to ensure the safety and reliability of the charging
station infrastructure, the penalty for fuse violations is defined as:

fuse __ L if 27]:7:1 Pn,t >N - Pfuse
Ty = . an
0 otherwise
To meet the peak shaving target, a penalty is applied for peak violations as follows:
peak |1 i SN Py 4+ Dy > N preak
ry = . 12)
0 otherwise

In order to prevent energy waste and ensure that only the necessary amount of energy is discharged, the
penalty for over-discharge is defined as:

. N N
T?verdis _ {1 if Zn:l Pnat < 0Oand (Dt + Zn:l Pn,t) <0

0 otherwise

(13)

The third term, r?bj in equation 5, represents the optimization objectives, which include minimizing the
charging costs, maximizing PV utilization, and promoting system flexibility. The total objective reward
is given by:

ObJ cost PV flex
Ty 7 = —Weost " Ty —WpV " Ty — Wflex " T

(14)

The penalty for charging cost aims to reduce the overall cost of buying energy from the grid:

i = Cy - 7 - max <ZPM+Dt,O> (15)

n=1

The penalty for PV utilization encourages maximizing the use of available PV energy:

N
= Z min (P, ¢, max(PV; — L, 0)) (16)
n=1
The penalty for system flexibility is:
1 N
pilex — NZ_: max (| Pp.¢| — Miex, 0))* (17)

The weight factors used in the reward equations are listed in Table 1.
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2.2 CTDE-SAC

With the increase in the number of EVs in the schedule, the state and action dimensions grow accordingly
(as shown in equations (1) and (4). As a result, SAC encounters difficulties in effectively handling this
enlarged state-action space. In particular, SAC struggles with distortions that arise in high-dimensional
continuous action spaces [ 18], which can lead to inaccuracies in action selection, value estimation, and
high computation time. With the growing environment, these issues can affect stable policy learning.
To overcome the scalability limitations of standard SAC, we use the CTDE approach and modify the
architecture by employing a single centralized agent that selects actions for each EV through a sequential
for loop. To implement the CTDE-SAC method, the state sgace in (1) needs to be separated into two
parts, local and global. The local state contains only EV-specific information, while the global state space
excludes any EV-specific variables; it instead represents shared common environmental information used
for decision making across all EVs. The local state of E'V,, and global state at timeslot ¢ are defined in
equations (18) and (19), respectively.

Siz,t = [SOCn,ta SOCg?tS? ASOCn,t’ E;rz%am’ Tﬁy.rv T;ziepv an,ta Bn,t] (18)

Sf = [Pt?NhBtthaCtaCgcaL{>P‘/;f>D{] (19)

To enable effective training, the SAC framework with a centralized training and decentralized execution
is applied. As shown in the algorithm for CTDE-SAC in Table. 1, the system utilizes a single shared
actor network for all agents, along with two separate critic networks (g, and ()y,) for estimating the
Q-values. As depicted in Table. 1, the initialization step involves setting up the actor, critic, and target
networks, as well as the replay buffer. In each episode step, when choosing actions, the actor receives
both the global s{ and the local state sln,t for each E'V,, at time ¢. After all the actions are computed and
put in a joint action vector a; shown in (4), the action chosen for absent EVs at time will be masked
to 0. Only after all the actions are computed, the environment provides feedback in the form of reward
denoted as r; and calculated by (5) and transitions to the next state s;;;. The relevant experiences are
then stored in a replay buffer lg States denoted by s; and sy are calculated based on (1) and contain
the local information for all EVs as well as global information.

During training, a batch of transitions (s, at,r, s¢+1) are sampled from the replay buffer. With this

batch, the first step is to update the critic networks. To compute the target Q-value, the next action vector
a; 1 is constructed by looping through each EV. In each iteration, the actor receives the corresponding

local state sim 1 along with the global state sy 1 and produces an action ay ¢+1 and its log probability

log 7(an i+1 | ng,t +1)- These are concatenated to form the full action vector, and the total log probability

is accumulated. The target Q-value is then computed by taking the minimum between the two target
Q-networks and subtracting the entropy term as shown in (20).

Yyt = ¢ + (1 — done) (min Qo (st41,a041) — @ logm(anit1 | 3n,t+1)> (20)
7=1,2 1

n

Here, v is the discount factor, « is the temperature parameter, and 7 is the policy probability for action
an given the observation of s, ;11, and done if T'rue indicates the end of an episode. Next, the current

Q-values are computed using the main critic networks )y, and @)y, on the sampled state-action pairs
(8¢, ag). The critic loss is then calculated using the mean squared error between current Q-values and the
target Q-value. The critics are then updated using the loss function in (21).

LG = Est ag | (Qo, (st,a¢) — y1)* + (Qo, (51, a¢) — yt)ﬂ (21

Once the critic networks are updated, the actor is also updated using the sampled batch. For each iteration
n, the actor takes in its observation s,, ; and outputs an action a,, ; and the corresponding log-probability

log Wd,(an,t | sn,t). These actions are combined into the joint action vector as. The update rule for the
actor is derived from equation (22).

Vol =F

Z (aVglogms(any | snt) — VeQ(snt, an,t))] (22)

n

The gradient helps the actor balance between maximizing the Q-value and maintaining enough explo-
ration, ensuring both improved performance and adaptability. The actor is optimized to increase the
expected return while ensuring sufficient stochasticity in the policy.
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Additionally, the temperature parameter « is automatically tuned to match a target entropy. The target
entropy encourages exploration by penalizing low-entropy (overly deterministic) policies using (23).

[’(a) = Eayrom [_a log (at|5t) - O5/7"[targc:t] (23)
Finally, the target Q-networks are updated using a soft update mechanism in (24).
0 70, + (1—7.)0, (24)

where 75 is a small constant that controls the update rate, ensuring stable target estimates.

Table 1: CTDE-SAC for EV charging

Algorithm: Centralized Training with Decentralized Execution (CTDE-SAC) for EV Charging

Input: PV, load, electricity cost, and hyperparameters such as: «, -y, learning rates, batch size,
replay buffer size, etc.
1. Initialize:
Shared actor network 74 for all EVs
Critic networks Qy, , Qg,
Target networks Q(’i , Qgé
Replay buffer D < ()
2. for each training episode do
3. Reset environment
4. for each timestep ¢ until episode ends do
5. # Decentralized Execution
6 for each EV n do
7 Get local and global state s, ; (e.g., SoC, arrival time)
8. Select action an ¢ = e (spt) + €
9. end for

10. Mask inactive EVs: a,, ; < 0 if EV n not present

11. Execute joint action a; = [a14,...,aN4]

12. Observe next state s;11, reward 7, and done signal

13. Store relevant experiences (s;, a;, ¢, S¢+1,done) in D

14. # Centralized Training

15. if training step then

16. Sample batch {(s;, ag, r¢, S¢4+1,done)} ~ D

17. for each EV ¢ in batch do

18. Get local and global state sy, ;1 < GetLocalandGlobalObs(s;1)
19. Compute ap¢+1,log T < Tp(Spt41)

20. end for

21. Execute joint next action a; 1 = [al,t + 1,...,an+41]

22. Calculate target Q-value using Eq. (20)

23. Update critics using Eq. (21)

24. Update shared actor policy 7 using policy gradient Eq. (22)

25. Update temperature parameter « to match target entropy using Eq. (23)
26. Update target networks using Eq. (24)

27. end if

28. end for

29. end for

30. Output: Shared actor policy 7, for decentralized execution
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3 Results

This study investigates a corporate parking lot with 25 company-owned EVs and charging stations, op-
erating within a power range of 4 to 22 kW in both directions. We also incorporate PV panels, with
ﬁeneration data based on summer 2023 weather in Dresden, Germany, updated every 15 minutes to re-

ect changing conditions. Electricity prices in 2023 are based on historical data from Germany’s energy
market. We simplify the pricing model by assuming a constant price for each 15-minute timeslot, serving
as input for the DRL model. The load data was obtained from a municipal hospital in Dresden for 2023.
The key simulation parameters, including the EV-related values and the CTDE-SAC hyperparameters,

are outlined in Table 2.

Table 2: Simulation parameters for EV charging and CTDE-SAC model

Parameter Symbol Values

Number of EVs N [5, 25]

Number of Episodes € 4000

Time Slots T 96

Battery Capacity Beapacity 85 kWh

Charging/Discharging Power pelvdis 22 kW

Efficiency (Charging/Discharging) n% /nP 0.95

EV Arrival Time T N (8,0.5%) (bounded [7 - 9] hrs)
EV Departure Time Tdep N (16,0.5%) (bounded [15 - 17] hrs)
Arrival SoC SoCaT N(0.4,0.1%) (bounded [0.3 - 0.6])
SoC Weight WsoC 50

Discharge Weight Wdis 20

Final SoC Weight Winal 100

Fuse, Peak, Overdischarge Weight Wiuse s Wpeak s Woverdis 100

Cost, PV, Flex Weight Weosts WPV , Wiex 0.01

Discount Factor 0% 0.99

Learning Rates (Actor/Critic) - 8 x 1073

Net Width (Actor/Critic) Waet 2 layers of 256 units

Batch Size Bhuatch 512

Replay Memory Size Meplay 1 x 108

Training Frequency Sirain 1

Evaluation Frequency Seval 5

As previously discussed, standard SAC can struggle with high-dimensional state and action spaces. To
validate this, we first evaluated our environment using a standard single-agent SAC model. After 8 hours
of training, the model failed to meet the termination criteria and continued to exhibit a high number of
constraint violations. These results demonstrate the limitations of standard SAC in complex environ-
ments, and clearly support the choice of CTDE-based methods for EV scheduling.

Table 3 presents a comparison of three methods: CTDE-DDPG, CTDE-SAC, and CTDE-SAC with Flex-
ibility, evaluated under two configurations: 5 EVs and 25 EVs. The key metrics evaluated include cost
per kWh, violation count, computation time, and the ability to meet the target SoC. A termination cri-
terion was embedded in our environment to end the training process if an episode had no EV-related or
fuse violations and up to 2 peak violations.

Regarding cost per kWh, the minimum, maximum, and mean values during the period from the arrival
of the first EV to the departure of the last EV are 0.0030 €/kWh, 0.1082 €/kWh, and 0.0569 €/kWh,
respectively. For the 5 EV scenario, CTDE-DDPG incurs the highest cost at 0.0538 €/kWh, followed
closely by the proposed method at 0.0532 €/kWh. In contrast, for the 25 EV scenario, the proposed
method has the highest cost at 0.0481 €/kWh, slightly higher than CTDE-SAC (0.0469 €/kWh), while
CTDE-DDPG results in the lowest cost (0.0428 €/kWh). However, CTDE-DDPG’s lower cost can be
attributed to its inability to meet the required SoC, which results in a lower overall charging demand and
consequently reduced cost. As the number of EVs increases from 5 to 25, the flexibility in managing
the EV charging load through smart charging strategies helps reduce grid demand, effectively lowering
the overall cost by optimizing the charging of the large EV fleet. It is important to note that the building
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load remains the same in both the 5 EV and 25 EV scenarios, so the cost reduction is largely driven by
managing the charging of flexible EV load.

For the 5 EVs scenario, the proposed method with flexibility achieved 94% PV utilization, absorbing
more excess PV compared to CTDE-DDPG, which achieved 83%. The CTDE-SAC method without
flexibility achieved 98%. In the 25 EVs scenario, all three methods reached 100% PV utilization, as the
excess PV remained the same with the increase in the number of EVs.

The violation count, including SoC violations (where SoC should not fall below 0.2 or exceed 1.0),
discharge limit violations (where the EVs should not discharge more than 50% of their battery capac-
ity), fuse violations (related to the total charging demand exceeding the fuse limit), and peak violations
(where demand from the grid should not exceed a peak shaving target), varies significantly across meth-
ods. CTDE-DDPG suffers from the highest violation count in both scenarios. In contrast, the proposed
method demonstrates better performance, with only 3 peak violations in the 5 EV scenario and just 1
SoC violation in the 25 EV scenario, while CTDE-DDPG suffers from 23 SoC violations. This indicates
that CTDE-DDPG struggles to manage SoC levels across a larger number of EVs, whereas the proposed
method more effectively balances charging demands, reducing violations. In practical implementations,
these violations can be eliminated using rule-based methods.

The computation time in Table 3 is measured from the start of training until the termination criterion
is met. The proposed method consistently outperforms CTDE-DDPG in terms of computation time,
achieving 0.53 hours for the 5 EV scenario and 0.78 hours for the 25 EV scenario, compared to CTDE-
DDPG’s 5.64 and 8.25 hours, respectively. This demonstrates better scalability and efficiency, especially
with larger EV fleets, as the termination criterion ensures faster and more optimized solutions.

Finally, with regard to the ability to meet the target SoC, the proposed method demonstrates excellent
performance. For the 5 EV scenario, it achieves a minimum SoC of 0.91, a maximum SoC of 0.96, and
a mean SoC of 0.93. In the 25 EV scenario, the mean SoC of the proposed method is highest among
other methods. The method’s flexibility ensures that, even with a larger number of EVs, the target SoC
is consistently met, reflecting its ability to maintain user satisfaction with the system’s charging behavior.

Table 3: Performance comparison across scenarios and models

Model Metric SEVs 25EVs
Cost (€/kWh) 0.0538 0.0428
PV utilization (%) 83 100
CTDE-DDPG Violation count 1 SoC, 4 peak 23 SoC
Computation Time (hr) 5.64 8.25
[Min SoC, Max SoC, Mean SoC] [0.84, 0.96,0.91] [0.73, 0.81, 0.77]
Cost (€/kWh) 0.0518 0.0469
PV utilization (%) 98 100
CTDE-SAC Violation count 1 SoC, 2 peak 0
Computation Time (hr) 0.60 0.88
[Min SoC, Max SoC, Mean SoC] [0.79, 0.90, 0.85] [0.81,0.91, 0.85]
Cost (€/kWh) 0.0532 0.0481
PV utilization (%) 94 100
CTDE-SAC with Flexibility ~ Violation count 3 peak 1 SoC
Computation Time (hr) 0.53 0.78

[Min SoC, Max SoC, Mean SoC] [0.91, 0.96, 0.93] [0.75, 0.98, 0.88]

Figure 1 compares the cumulative EV power profiles achieved by different methods throughout the day,
taking into account the load, PV generation, and electricity cost. As shown in the figure, CTDE-SAC
Flexibility demonstrates the highest amount of discharging compared to other methods and prevents
excessive charging peaks. It also avoids discharging in periods of time when the PV generation is high.
These patterns show that the method adjusts charging and discharging based on what’s happening in the
system, making it more flexible in terms of responding to different system conditions.

A closer look at the EV's charging plan generated by the CTDE-SAC Flexibility method in Fig. 2 reveals
that the EVs start charging soon after arrival, particularly during periods of high PV generation. Once
they approach or reach their target SoC, the charging rate decreases, and by the end of the day, the EVs
even cﬁscharge energy without dropping below their final SoC limits. This helps mitigate load imbal-
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Fig. 2: Soc vs. Time for CTDE-SAC with flexibility

In Fig. 3, the flexibility characteristics of the different methods are illustrated. The plot on the left shows
the standard deviation of cumulative EV power. CTDE-DDPG exhibits the highest variability, indicating
frequent and significant shifts in power usage. Whereas, CTDE-SAC Flexibility demonstrates the lowest
standard deviation, suggesting a more stable and consistent charging schedule. The right plot shows the
average flexibility offered in kW by each method, which indicates the system’s capacity to adjust power
usage in response to changing grid conditions. While CTDE-DDPG achieves the highest average flexi-
bility, it does so at the expense of stability. CTDE-SAC, although more stable, offers limited ﬂexibilitf/.
CTDE-SAC Flexibility presents the highest average flexibility. This highlights its potential as a scalable
and grid-friendly solution for dynamic EV scheduling scenarios.

Lastly, Fig. 4 shows the average reward vs. episode number for our considered methods. Both CTDE-
SAC methods fulfill the termination criteria early on and achieve a high reward, while CTDE-DDPG
shows fluctuation and a higher running time. This suggests that the CTDE-SAC methods provide faster
convergence and more stable performance compared to CTDE-DDPG, which suffers from reward swings
and high computation time.

EVS38 International Electric Vehicle Symposium and Exhibition



20.0

437 o 19.5
= ~ 19.0 1
§ 4.0 B -
s 21851
B 3
g, 3.5 E 18.0 -
'e ()
3 @ 17.5
% 3.0 g
Hh <
@ 17.0

2.5 4 16.5 +

CTDE—'DDPG CTDE'_SAC CTDE_S'AC_FleX CTDE—'DDPG CTDE'_SAC CTDE_S'AC_FIeX
Fig. 3: Comparison of flexibility offered by different methods
0 T A

—1000
e
S -2000
[0}
o
(]
g ~3000
g
<

—4000

—— CTDE-DDPG
CTDE-SAC
—>0001 —— CTDE-SAC Flexibility
0 500 1000 1500 2000 2500 3000 3500 4000
Episode

Fig. 4: Reward vs. episode comparison

4 Conclusion

This paper proposed a smart charging framework for bidirectional EV scheduling based on SAC, com-
binf:dp with a CTDE framework to ensure scalability. Simulation results show that our approach achieves
higher PV energy utilization and greater flexibility compared to state-of-the-art DDPG-based methods,
while maintaining similar charging costs. Moreover, the CTDE framework significantly reduces com-
{)Utation time compared to fully centralized methods, which is crucial for enabling real-time control and
arge-scale fleet management. By preserving dynamic flexibility and improving renewable energy inte-
1%ration, our proposed method offers an effective and scalable solution for future energy systems with

igh EV penetration. Future work will focus on implementing the proposed framework in real-world
testbeds and exploring its performance under realistic operational uncertainties.
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