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Executive Summary

The growing adoption of electric vehicles (EVs) and the rapid expansion of public charging infrastructure
pose new challenges and opportunities for energy systems, particularly in urban settings. This study
presents an optimization-based evaluation of different EV charging strategies—including direct charging,
average-based methods, smart charging, and vehicle-to-grid (V2G)—at public parking lots using real-
world charging session data. This data-driven model is set to optimize the public EV charging of vehicles
in Gothenburg, without sacrificing on the energy requirement while minimizing charging costs for the
operators. Results indicate that direct charging scenarios lead to significantly higher peak loads (up
to 752 kW) and costs, highlighting their inefficiency under unmanaged operation. In contrast, smart
charging reduces peak loads by approximately 60% and overall costs by around 35%, showcasing its
potential for cost-effective grid-friendly operation. V2G with incentives enables energy discharge back
to the grid, but its benefits remain modest under current assumptions due to tight operational constraints
and limited incentives. The study emphasizes the value of smart optimization and appropriate market
design in enhancing the flexibility and cost efficiency of public EV charging systems.
Keywords: Vehicle to grid, energy management, parking lot operator, electric vehicle.

1 Introduction
The rapid electrification of the transportation sector has positioned electric vehicles (EVs) as a corner-
stone of sustainable mobility. As EV adoption accelerates, the demand for accessible, reliable, and
cost-efficient charging infrastructure becomes increasingly critical. Integrating EVs into urban infras-
tructure presents both challenges and opportunities for parking operators and energy systems. Public
charging stations, essential for supporting EV users, are increasingly viewed not only as service points
but also as potential nodes for providing grid flexibility—by modulating consumption, relieving network
stress, and enabling vehicle-to-grid (V2G) technology. V2G allows bidirectional energy flow between
EV batteries and the grid, positioning parked EVs as distributed energy resources [1]. In this context,
public parking lots emerge as promising assets to enhance grid stability, reduce operational costs, and
unlock new revenue streams.

Parking lot operators are uniquely positioned in this sustainable transition. Due to their control over the
spatial and temporal availability of chargers, they can provide scalable charging services while leverag-
ing idle vehicle time and onboard energy storage. This allows them to participate in electricity markets,
reduce peak demand, and contribute to ancillary services such as frequency regulation and load balanc-
ing. However, realizing these benefits depends on understanding real-world charging behavior and the
operational dynamics of public parking environments.
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In literature, there has been several studies focusing on parking lot optimization. Awad et al. [2] pro-
posed an smart parking-lot based optimization model to minimize the operational costs by determinging
the optimal sizing of solar-based distributed generation along with EVs charging price by analyzing two
scenarios: coordinating and uncoordinated scenario of EV demand. The results show a reduction in
costs for the coordinated case without the need for any distributed generation. Zanvettor et al. [3] ana-
lyzed the problem of energy pricing under vehicle uncertainty is addressed by proposing a new energy
pricing strategy where the daily profit of the parking lot is guaranteed with a given probability level.
Fallah-Mehrjardi et al. [4] proposed a multi-stage stochastic programming approach using Stochastic
Dual Dynamic Programming (SDDP) to optimize EV charging schedules in a public parking lot, consid-
ering admission control and uncertain future demands to minimize expected energy costs and the results
showed that the method significantly reduces total energy costs and rejected charging requests compared
to a myopic strategy. Jhala et al. [5] developed a centralized linear programming strategy for coordi-
nating EV charging at renewable-powered parking lots, aimed to maximize parking lot operator profits
under time-varying electricity prices while meeting customer demand and system constraints. While
these studies underscore the economic viability of optimizing EV parking lots, they focus solely on grid-
to-vehicle (G2V) charging.

In contrast, V2G integration offers additional flexibility and revenue potential. Sevdari et al. [6] reviewed
the existing literature in terms of the flexibility potential of EV participation in different services through
V2G and the potential returns of such services. Alinejad et al. [7] proposed a particle swarm optimiza-
tion to maximize the returns of an parking lot utilizing V2G services while addressing the randomness
of the EV owners behaviour. Chandra Mouli et al. [8] proposed a work place PV-installed parking lot
optimization with V2G services based on Mixed-Integer Linear Programming (MILP) optimization, in
which results show a 32% to 651% reduction in costs for EV charging. Salvatti et al. [9] proposes a dy-
namic programming-based Energy Management System (EMS) for microgrids integrating EV parking
lots, PV generation, and dynamic loads, optimizing EV charging and discharging profiles to reduce grid
dependence, enhance efficiency, and respect user preferences.

Despite extensive work in the area, the evaluation of public EV charging stations remains relatively un-
derexplored. Furthermore, most existing models rely on assumptions about user preferences and charg-
ing acceptance, limiting real-world applicability. This study aims to fill that gap through a data-driven
analysis of charging session records from public stations in Gothenburg, Sweden. By analyzing current
charging patterns and evaluating multiple charging strategies—including smart charging and V2G—this
paper assess both the economic and operational impacts for parking lot operators.

The findings of this research contribute to the broader discourse on sustainable urban mobility and energy
systems by demonstrating how public charging infrastructure can be transformed as an active participant
within the energy ecosystem. The insights presented here provide a foundation for parking operators,
policymakers, and energy stakeholders to collaboratively design and implement ideal solutions in public
charging stations that balance environmental, economic, and operational considerations.

2 Methodology
The proposed workflow used in this study is illustrated in Fig. 1. The analysis begins by assessing the
charging demand and session duration of each EV connected to the public parking lot, specifically, the
arrival and departure times, requested energy, and connection periods. This data is then used as input to
the optimization model, which is designed to optimally reschedule charging and discharging activities
under various scenarios. The model supports multiple objectives, including minimizing energy costs,
reducing peak demand, and enabling participation in grid services. The final step involves analyzing and
interpreting the results across different charging strategies.

The input data required to simulate the optimization model include:

• Arrival and departure timestamps for each EV

• Number of connected EVs at each time step

• Requested energy per EV.

Based on this data, the model schedules charging and discharging while ensuring energy requirements
are fulfilled prior to departure and operational limits are respected.

2.1 Optimization model
The optimization model is based on linear programming which is used to optimize the parking lot charg-
ing of EVs on a daily basis. The model is then looped to assess a specific time period. The model
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Figure 1: Workflow in this study

considers an aggregated EV fleet and not each EV individually in order to solve the model more effi-
ciently.

2.1.1 Objective function
The objective function of the optimization model is to minimize the overall costs which is expressed as:

min

([∑
t

P ch
t (λDA

t + λT + λEC + λTR)− P ds
t (λDA

t + λT + λI)

]
+ λPPP

)
(1)

where P ch
t , P ch

t , PP is the respective charging and discharging power at time t and peak power in that
day, λDA

t , λT , λEC , λTR, λI , λP is the respective spot-market price in SEK/kWh, energy tax price, en-
ergy certificate price, tranmission cost, incentive price for selling energy back to the grid and the peak
power cost.

2.1.2 Constraints
Energy Fulfillment: Ensures that the total energy charged meets or exceeds the total requested energy for
all EVs and can be observed in Eqn. 2.∑

t

P ch
t η − P ds

t /η ≥
∑
t

Ereq
t (2)

where η is the charging and discharging efficiency and Ereq
t is the requested energy at time step t right

before the EV departure.

Departure Requirement: Guarantees that each EV receives its requested energy before departure for all
EVs and can be observed in Eqn. 3.

t∑
i

P ch
t η − P ds

t /η ≥
t∑
i

Ereq
t (3)
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Power Limit per Time Step: limits the charging/discharging to the installed capacity of chargers and the
connected EVs to the chargers. This can be observed in Eqn. 4.

P ch
t + P ds

t ≤ aEV
t P̄ (4)

where aEV
t is the number of connected EVs at time t and P̄ is the limit of charging/discharging power

of the EV charger.

State of Energy Balance: Tracks the total energy stored in the EV fleet, accounting for departures and
can be observed in Eqn. 5.

SOEt = SOEt−1 + P ch
t η − P ds

t /η − SOEdep
t (5)

where SOEt, SOEdep
t is the state of energy of the entire parking-lot at time t and the state of energy of

departing EVs at time t respectively.

State of Energy Bounds: Keeps the aggregated battery energy levels within operational limits and can be
observed in Eqn. 6.

aEV
t SOCEV

min ≤ SOEt ≤ aEV
t SOCEV

max (6)

where SOEEV
min, SOCEV

max is the minimum and maximum state of charge of an EV considered in this
study.

3 Case study

3.1 Public charger data
In this paper, a dataset containing charge sessions for public chargers in the city of Gothenburg has
been utilized to assess the flexibility from public EV chargers. The dataset contains data for the first
six months of 2023. During this timeframe, there were 684 EV charging stations and a total of 1,298
charging outlets in Gothenburg. This can be observed in Fig. 2.
Among the installed public chargers, there are four different maximum rated output power for charging
and can be seen in Table 1.

Table 1: Power levels and occurrences for charging

Rated Power
(kW) Occurrence

22 881
11 18
8.3 26
3.6 373

Total 1298

The data also includes the connection status of each charger and the total consumed energy for every day.
If a charger is connected for longer duration spanning more than one day for an EV, then its consumption
is provided in the day of start of the charging. For chargers with multiple charging sessions in a single
day, the dataset provides only the total daily energy consumption. To address this, the total energy is
proportionally distributed across sessions based on their relative durations.

The connection status of the public chargers in Gothenburg for the first six months of 2023 can be seen
in Fig. 3. It can be seen that there is typically more chargers connected during the day times and the
connection of chargers increases from January to July.

The requested energy before the time of departure can be observed in the Fig. 4.
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Figure 2: Public EV chargers in Gothenburg as of June 2023

Figure 3: Connection status of public chargers

3.2 Electricity cost
Sweden’s electricity market operates under the broader Nordic electricity market framework, governed
by Nord Pool, the world’s first international power market. The Swedish spot market plays a crucial role

EVS38 International Electric Vehicle Symposium and Exhibition 5



Figure 4: Requested energy before departure

in determining short-term electricity prices, reflecting the supply and demand dynamics for electricity in
real-time. The market operates on an hourly basis, where electricity prices are set for each hour of the
next day, with the spot price determined through competitive bidding from producers, distributors, and
traders.

Gothenburg, falls under the area SE3 price zone and hence the spot price for SE3 region is used for this
analysis in this paper. The SE3 prices for the first six month of 2023 can be observed in Fig. 5.

Figure 5: Spot price of SE3

The spot prices in Gothenburg during the first half of 2023 exhibited high volatility, ranging from nega-
tive prices to approximately 250 C/MWh.

In addition to the spot prices, consumers in Sweden have to pay energy tax cost, energy certificate cost,
transmission cost, and peak cost. If a consumer sells electricity back to the grid, they are compensated
by spot prices, energy tax and some incentive price. The values for the different cost components can be
seen in Table 2. Currently in Sweden, there is no incentive for consumers to sell electricity back to the
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grid from EVs, but in this paper, two scenarios are analyzed: one considering current regulations with no
V2G incentives, and another assuming a hypothetical incentive (0.018 C/kWh) to evaluate its potential
impact on cost reduction and grid participation.

Table 2: Cost Parameters for Energy Usage (without VAT)

Parameter Costs
Energy tax 0.03955 C/kWh

Energy certificate cost 0.00045 C/kWh
Transmission cost 0.01 C/kWh

Peak cost (monthly) 5.54 C/kW
Incentive cost 0/0.018 C/kWh

3.3 Assumptions
To ensure both the tractability and practical relevance of the proposed optimization model, several as-
sumptions are made regarding the operation of the charging infrastructure, market dynamics, and EV
user behavior. These are outlined below:

1. The optimization is conducted over an aggregated dataset of all public chargers, effectively mod-
eling them as a single virtual power plant. As a result, the physical location of individual chargers
is abstracted and not explicitly considered.

2. It is assumed that the departure time and energy demand of each EV are known at the time of
connection to the charger.

3. The overall state of energy in the parking lot is determined by the aggregated state of energy of the
connected EVs, taking into account their minimum and maximum allowable state of energy. For
modeling consistency, each EV is assumed to have a battery capacity of 65 kWh, with operational
limits set between 20% and 100% state of charge.

4. As the model aggregates all chargers into a unified system, inter-EV energy exchange is assumed
to be feasible without incurring any energy losses.

5. Although the charge stations are connected to the grid at different connection points, it is consid-
ered that the peak tariff will be based on the aggregated peak demand of all EVs.

6. The conversion rate of Euro (C) to Swedish Krones (SEK) is assumed to be fixed throughout the
horizon at 11.1 SEK/C.

7. The value added taxes (VAT) has been excluded in this analysis.

3.4 Scenarios
To evaluate the performance of the parking lot under various operating strategies, a range of scenarios
have been developed. These scenarios differ in terms of charging profiles, control strategies, and market
participation options. The defined scenarios are as follows:

1. Avg: For each charging session, the energy demand is averaged over its connection time. These
session-level profiles are then aggregated across all chargers.

2. DC11 (Direct Charging 11 kW): Charging begins immediately upon connection, drawing power
at a constant rate of up to 11 kW until the requested energy is delivered.

3. DC22 (Direct Charging 22 kW): Similar to DC11, but the charging power is limited to 22 kW.

4. DC50 (Direct Charging 50 kW): Similar to DC11, but the charging power is limited to 50 kW.

5. SC11 (Smart Charging 11 kW): Charging is optimized over the connection duration to minimize
electricity costs, with a maximum power of 11 kW. The requested energy is guaranteed to be
delivered before departure.

6. SC22 (Smart Charging 22 kW): Same as SC11, but with a maximum charging power of 22 kW.

7. SC50 (Smart Charging 50 kW): Same as SC11, but with a maximum charging power of 50 kW.
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8. V2G1 (Vehicle-to-Grid 1): Charging is optimized over the connection period with bidirectional
energy flow. The charger can both charge and discharge at a maximum of 50 kW. No additional
incentives are provided for energy fed back into the grid.

9. V2G2 (Vehicle-to-Grid 2): Similar to V2G1, but with a feed-in incentive of 0.018 C/kWh for
discharging energy back to the grid.

4 Results and Discussion
Based on the case study presented above, the optimization model is simulated for the different scenarios
and the overall results can be observed in Table 3 and the charging power for two typical days in 2023
for selected scenarios can be seen in Fig. 6.

Figure 6: Charging power in a typical day for selected scenarios

From Fig. 6, it can be observed that the SC50 and V2G2 scenarios are utilizing a lower charging power
in comparision to DC11, DC22 and DC50 cases in order to optimize the charging. The highest peak
was oberved for DC50 at 08:00 in this specific day highlightling the higher peaks of DC50 scenario in
comparsion to the other scenarios.

Table 3: Performance metrics under different charging strategies

Performance
Metric Avg DC11 DC22 DC50 SC11 SC22 SC50 V2G1 V2G2

Overall cost
(kC) 31.02 40.87 42.94 44.14 28.68 28.69 28.69 28.69 28.66

Peak cost
(kC) 1.39 2.13 2.21 2.25 1.96 1.96 1.96 1.96 1.96

Maximum peak
power (kW) 118.30 207.61 331.18 752.68 297.23 297.23 297.23 297.23 297.23

Total energy
charged (MWh) 948.8 948.8 948.8 948.8 948.05 948.8 948.8 948.8 1,260.63

Total energy
discharged (MWh) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 269.69

Total charge-
discharge (MWh) 948.8 948.8 948.8 948.8 948.05 948.8 948.8 948.8 990.93

Difference in costs
from DC50 (%) -29.7 -7.4 -2.7 0 -35 -35 -35 -35 -35.1

From Table 3, the overall costs of charging electric vehicles over the first six months of 2023 are summa-
rized for all considered scenarios. The DC50 scenario results in the highest total cost—approximately

EVS38 International Electric Vehicle Symposium and Exhibition 8



44.14 thousand C—due to its assumption of a charging the EV directly from the time of connection at
50 kW.

The costs in direct charging scenarios increase with the maximum rated power of the charger. Since
charging begins immediately upon connection without any scheduling or load optimization, these sce-
narios closely reflect typical real-world behavior. As a result, they experience significantly higher peak
loads, with DC50 reaching a peak power of 752 kW—the highest observed.

The Avg scenario achieves lower overall costs than the direct charging scenarios. By distributing each
EV’s energy demand evenly across its connection period, it reduces peak loads and smooths demand
profiles. This flexibility yields moderate cost savings.

Smart charging scenarios (SC11, SC22, SC50) offer even greater cost reductions compared to Avg, with
SC11 slightly outperforming the others. This difference is attributed to a lower total energy charged
(approximately 748 kWh less), which results from the charger’s lower power limit. Notably, SC22 and
SC50 yield identical outcomes, suggesting that increasing the maximum charging power from 22 kW to
50 kW offers no additional advantage under the optimization framework used.

In the V2G1 scenario, results are identical to SC22 and SC50, as no electricity is discharged back to the
grid. This is due to the lack of economic incentives, making discharging unprofitable. When a selling
incentive of 0.018 C/kWh is introduced in the V2G2 scenario, approximately 270 MWh is discharged,
but the overall cost reduction is minimal—only around 25 C. This marginal benefit likely results from
the difficulty in aligning discharging schedules with EV departure constraints, limiting the economic
value of V2G operations under the given assumptions. Additionally, the total charge-discharge is higher
for this scenario due to losses attributed to charging and discharging the vehicle.

4.1 Key takeaways
From the analysis of the presented results, four key takeaways emerge that are particularly relevant for
parking operators, policymakers, and energy sector stakeholders:

First, the findings clearly indicate that direct charging strategies (DC11–DC50) lead to significantly high
peak loads, posing challenges for both distribution system operators (DSOs) and parking infrastructure
operators. For instance, the DC50 scenario resulted in a peak demand of 752.68 kW, highlighting that un-
coordinated, simultaneous EV connections can cause substantial load spikes. As EV adoption continues
to rise and public charging infrastructure expands, these peaks are likely to become more severe, leading
to increased operational strain and higher peak tariffs. However, implementing smart charging or V2G
strategies can effectively mitigate this issue—reducing peak demand by nearly 60%, down to 297.23 kW.

Second, both smart charging and V2G scenarios offer notable economic benefits, demonstrating an ap-
proximate 35% reduction in total charging costs compared to DC50. This reinforces their potential as
cost-efficient strategies for optimizing public charger operations and leveraging the inherent flexibility
of EVs.

Third, the results also show that V2G without additional incentives (V2G1) yields no energy discharged
back to the grid, despite having the technical capability. This contrasts with existing literature, where
V2G participation in electricity spot markets is shown to generate 10–70% more revenue compared to
smart charging alone [10]. One reason for this could be the losses considered by the charge/discharge
cycle together with the limited connection time for many of the EVs, limiting the potential revenue that
could be achieved by discharging the EVs, making the smart charging strategy as effective as the V2G
strategy.

Fourth, while the V2G scenario with 0.018 C/kWh incentive does enable grid discharge and minor cost
reductions, the benefits appear limited. Nonetheless, V2G remains a promising long-term investment,
as it opens the door to participate in ancillary service and local flexibility markets, which are generally
more lucrative. This positions V2G not just as a load management tool, but as a strategic asset that can
enhance revenue streams and grid stability, especially as regulatory frameworks and market mechanisms
evolve.

4.2 Limitations and suggestions for future work
Despite the valuable insights generated by this study, several limitations must be acknowledged to accu-
rately interpret the findings and their practical implications.
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First, the optimization model aggregates EV charging loads across all chargers, fulfilling the requested
energy requirements before each vehicle’s departure. While this approach enables a tractable system-
level analysis and ensures feasibility within the model (i.e., no unfulfilled charging sessions were ob-
served), it may not capture individual-level charging failures that could arise in real-world operations.
In practice, localized constraints—such as charger availability or user preferences could lead to unmet
energy demands for specific vehicles, which are not reflected in this aggregated modeling approach.

Second, the treatment of peak cost estimation utilized in this optimization model acts as a simplification.
In Sweden, peak charges are determined monthly based on the single highest hourly power demand and
settled at the end of each month. However, in this study, the parking lot is optimized on a daily basis,
which limits the ability to optimize peak loads over a longer horizon. As a workaround, the model esti-
mates peak costs by applying a daily average peak charge based on each day’s maximum power usage.
While this method provides a useful approximation for comparative analysis, it likely underestimates the
true monthly peak cost, as the actual billing would be based on the single highest load point within the
month.

5 Conclusion
This study examined the operational performance and cost implications of various EV charging strate-
gies at a public parking facility, using real-world data and a series of realistic charging scenarios. The
results highlight key trade-offs between direct charging, average consumption methods, smart charging,
and V2G integration.

The findings demonstrate that direct charging methods, while straightforward and reflective of current
practice, result in significantly higher peak loads—up to 752 kW in the worst-case scenario—placing
stress on the distribution network and increasing monthly peak cost burdens for parking operators. In
contrast, smart charging and V2G strategies can reduce peak loads by approximately 60% and cut overall
costs by around 35%, offering a strong case for their adoption in future urban charging infrastructure.

However, the effectiveness of V2G is highly dependent on the availability of market incentives. Without
compensation for energy discharged back to the grid, V2G systems tend to behave similarly to smart
charging alone. With incentives in place, discharging can occur, but the economic benefits are marginal
under current assumptions, mainly due to the dynamic nature of EV arrivals and departures in urban
parking environments.

Ultimately, while smart charging emerges as the most practical and cost-effective solution in the short
term, V2G capability remains promising, particularly for participation in ancillary service markets. For
parking operators and policymakers, this study underlines the importance of coordinated optimization,
regulatory support, and well-designed incentives to unlock the full flexibility potential of public EV
charging infrastructure.
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