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Executive Summary 
This paper analyzes the decision-making process in electrifying delivery vehicle fleets, focusing on minimizing 

Total Cost of Ownership (TCO) through strategic and operational decisions. Based on a case study of a Swiss 

parcel logistics company, we utilize two quantitative models: A strategic model for optimizing infrastructure 

(e.g., PV systems, battery storage, grid connections) and an operational model for daily fleet management (e.g., 

charging schedules, state-of-charge management). The paper at hand examines the decisions taken at both 

levels and how they interact. It further explores how their integration can enhance performance and resilience. 

The findings highlight the importance of aligning strategic and operational decisions to create a cost-effective, 

scalable fleet electrification framework that enables partial grid independence and resilience through strategic 

infrastructure decisions and intelligent operations. This research provides logistics companies with strategies 

to lower electrification costs, boost efficiency, and improve resilience. 
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1 Introduction 
Electrifying freight transport is a promising strategy to support net zero goals, yet it faces significant technical 
and economic challenges [1]. Critical considerations are the costs associated with infrastructure investments, 
such as grid connection expansion, compared with those of alternative electricity supply solutions like 
photovoltaic (PV) systems and battery storage [2]. Full grid connection reinforcement, while sometimes 
necessary, can be costly or even unfeasible, requiring innovative approaches to manage energy demands 
effectively [3].  
 
Currently, it is unanswered which decision dimensions need to be considered on strategic and operational level 
to decide whether it makes sense to invest in infrastructure to gain higher levels of autonomy from the grid and 
what contribution a (partly) autonomous electricity system can make to resilience increase in delivering the 
orders to customers. To close this gap, the paper at hand develops a strategic and an operational decision 
support model and will show how these models can be used to derive decisions in PV and battery sizes in 
relation to fleet size and grid connection costs.  
 
This research is based on a single case study within an ongoing project in Switzerland, where multiple 
stakeholders — including a site owner, a logistics operator, an energy provider, and a charging infrastructure 
partner — collaborate to develop scalable and cost-effective electrification strategies. The case study provides 
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the practical foundation for building and applying the strategic and operational models proposed in this paper. 
 
2 Literature Review 
The electrification of vehicle fleets presents substantial opportunities and challenges, particularly in balancing 
operational costs, energy system integration, and resilience. Recent research increasingly emphasizes the 
importance of coupling fleet electrification with local energy systems and optimizing the use of electric vehicle 
(EV) batteries beyond mobility purposes. 
 
Flexible charging strategies, such as controlled (V1G) and bidirectional (V2G) charging, have been identified 
as essential for enhancing grid flexibility and renewable energy integration. Andersen and Powell [4] highlight 
that well-designed electricity tariffs and policy tools are critical to incentivize small-scale V2G deployments, 
addressing profitability challenges for aggregators and enabling broader distributed flexibility services. The 
need for supportive tariff structures and reduction of double taxation on V2G energy flows is a recurring theme 
for realizing the full potential of distributed V2G systems. 
 
Advancements in multi-use optimization strategies, where EVs simultaneously provide multiple services such 
as peak shaving, energy arbitrage, and frequency regulation, have shown significant potential to improve the 
economics of fleet electrification. Englberger et al. [5] developed a multi-use control framework combining 
behind-the-meter and front-of-the-meter applications for commercial EV fleets, demonstrating that stacking 
value streams can significantly boost annual revenues and enhance battery lifetime. Similarly, Biedenbach and 
Strunz [6] introduced an optimization model for heavy-duty electric trucks that jointly addresses self-
consumption, peak shaving, tariff optimization, and arbitrage trading, underlining the large potential savings 
achievable with bidirectional depot charging. 
 
The optimal integration of EVs into decentralized energy systems has also been explored through scalable 
frameworks, such as the REVOL-E-TION model by Rosner et al. [7], which enables flexible participation of 
EV fleets in local energy markets and grid services. This model emphasizes the importance of modular and 
scalable control architectures, particularly in settings with mixed charging and discharging objectives. 
 
At the household scale, Kern et al. [8] investigated combined vehicle-to-home (V2H) and vehicle-to-grid 
(V2G) applications, showing that V2H revenues are highly seasonal and that coupling V2G with V2H 
strategies can maximize economic returns. Their findings underline the broader principle that multi-seasonal 
and multi-service approaches enhance the viability of bidirectional EV integration. 
 
Focusing on heavy-duty applications, Razi et al. [9] demonstrated through a case study of electric trucks in 
factory settings that predictive smart charging algorithms can significantly lower grid-related costs, particularly 
when leveraging local renewable generation and dynamic pricing. Their work reinforces the necessity of smart 
energy management for high-power vehicle fleets to ensure both cost-efficiency and grid stability. 
 
Collectively, the literature establishes that optimal fleet electrification requires an integrated view of strategic 
infrastructure investments (e.g., PV, batteries, grid connection) and operational energy management (e.g., 
smart charging, V2G, tariff optimization). It also stresses that economic viability is highly sensitive to 
contextual factors such as tariff structures, station costs, and system design parameters. However, gaps remain 
regarding decision frameworks that jointly optimize strategic and operational dimensions for fleets, 
particularly under real-world boundary conditions—a gap that the present study aims to address. 
 
3 Case Study in Switzerland 
This research was initiated to explore cost-effective solutions for the electrification of delivery vehicle fleets. 
The project focuses on the single case study of a parcel logistics company, committed to fully electrifying its 
fleet by 2035. The company operates 12 parcel delivery hubs across Switzerland, each with different 
infrastructure situations and boundary conditions, presenting a unique opportunity to develop quantitative 
models to optimize TCO of the electric vehicle fleet and its corresponding infrastructure. 
 
The case study is situated at a former freight yard, located in a city in Switzerland and owned by a railway 
company, that spans 16.7 hectares and currently accommodates a variety of rail-related and logistics facilities, 
including an intermodal terminal, general cargo handling areas and a parcel distribution center. 
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Thanks to its central location adjacent to the main railway station, the site offers substantial urban development 
potential. Plans are underway to relocate much of the international freight traffic from this location to a newly 
developed facility further outside the city. This transformation opens opportunities to reorganize current 
logistics utilizations within the site. As a result, large areas—especially in the western and southern sections—
are expected to be repurposed for new developments, such as residential and commercial spaces. The 
northeastern section will remain in use as a container terminal. 
 
The logistics company has been operating from this strategically positioned site since 2021. Given the site’s 
ongoing transformation and the potential for pioneering urban development, the logistics company, the railway 
company and an energy provider have partnered to conduct a comprehensive case study at the site. The 
objective is to analyze the current operational setup, define future requirements for electrified fleets, and 
evaluate technical and economic measures to optimize operations. 
 

Table 1 - Available data from the case study 

The parcel logistics company currently operates a fleet of 10 electric delivery vehicles at the site, each assigned 
to a dedicated charging station. On average, the vehicles travel 39 kilometers per day over 7 hours and 40 
minutes and make 111 stops. The installation of a 60 kWp photovoltaic (PV) system and a 220 kWh stationary 
battery storage unit is currently in the planning phase to cater to the demand of the electric vehicles on site. 
Table 1 provides an overview of the available data for the study of this paper. 
 
The power supply for the site is currently managed through a site-wide electrical network operated by a train 
operator, with its own transformer stations and medium-voltage (level 5) connection to the energy company 
grid. One of these transformer stations is located at the freight yard under investigation itself. The train operator 
distributes electricity internally to site tenants via a low-voltage (level 7, 400V) system. Based on an agreement 
between train operator and energy company, tenants are billed directly by the energy company for their 
electricity consumption. 
 
Several tenants, including the parcel logistics company and another tenant company, are in the process of 
forming a local energy community (ZEV). The aim is to optimally integrate PV generation, stationary storage, 
mobile storage (vehicles), and consumers to minimize peak grid demand and limit PV surplus feed-in. With 
the site undergoing major redevelopment, the power infrastructure will also be completely redesigned. The 
existing transformer has reached the end of its technical life, and the future energy demand will significantly 
exceed current levels. As part of the new infrastructure planning, the power supply agreement between train 
operator and energy company will also be revised. It is likely that the site under investigation will be decoupled 
from the train operators medium-voltage grid and that the energy company will directly supply tenants or ZEVs 
going forward. 
 
Although planning is still in the early stages, the logistics company is expected to remain a part of the future 
ZEV and continue to operate within the restructured energy landscape of the current site. 
 
  

Data Description 
Vehicle operation data Distance, operating hours, idle times, delivery stops 
Vehicle battery & consumption data Battery limits, energy consumption, battery capacities 
Cost data Vehicle and e-truck costs, stationary battery costs per kWh 
Second-life battery data Storage capacity & charging power 
Fleet electrification planning Expansion plans, vehicle procurement timelines 
Power grid data Grid connection capacity, tariffs, flexibility levels 
Site power demand Base and peak loads 
PV yield per kW Daily PV yield curves 
Public data sources Incentive programs, road and infrastructure data, taxes 
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4 Methodology 
Building on insights from the case study, which incorporates real-world data such as operational schedules and 
energy consumption patterns, two quantitative models are developed to support strategic and operational 
decision-making in fleet electrification. 
 
4.1 Strategic Model 
The strategic model developed in this study addresses long-term investment decisions necessary for the 
electrification of delivery vehicle fleets. It focuses on optimizing the sizing of key infrastructure components, 
including the photovoltaic (PV) system, stationary battery storage, vehicle batteries, and the grid connection, 
while also incorporating considerations for fast and bidirectional charging capabilities. The overarching 
objective is to minimize the Total Cost of Ownership (TCO) by balancing capital investments, operational 
costs, and potential revenues from surplus PV electricity. 
 
At the core of this approach is a mathematical optimization model designed to capture the complex interactions 
between the electric vehicle fleet, on-site PV generation, stationary energy storage, and the grid connection. 
The model is implemented in Python using the Gurobi solver and formulated as a Mixed-Integer Linear 
Programming (MILP) problem. It optimizes not only the infrastructure dimensions but also the charging and 
discharging schedules of the vehicles, while adhering to physical constraints such as vehicle state-of-charge 
requirements, station capacities, and grid limitations. 
 
The model operates within a scenario-based framework, where different fleet compositions, PV system sizes, 
battery capacities, and other infrastructure parameters are systematically varied. Each scenario represents an 
independent optimization run, enabling comprehensive evaluation of different configurations. The results are 
saved in a centralized database to allow comparative analysis. The modeling pipeline structure is illustrated in 
Figure 1. 
 
Real-world operational data form the foundation of the model. Inputs include vehicle energy consumption 
profiles, detailed driving and rest schedules, PV production profiles based on hourly data over the past three 
years, battery specifications, and local electricity tariffs under dynamic pricing structures. This high temporal 
resolution allows for simulation across annual cycles or full three-year periods, ensuring that seasonal 
fluctuations in PV generation and energy demand are accurately represented. 
 

 
Figure 1 - Model pipeline of strategic model 

The model incorporates a detailed cost structure, accounting for investment and maintenance costs associated 
with PV installations, stationary batteries, and grid upgrades. Operational costs, including dynamic grid 
electricity charges and potential revenues from PV surplus feed-in, are also modeled. Depreciation of 
infrastructure investments is calculated within each scenario, and energy losses due to charging and 
discharging inefficiencies of vehicles and batteries are explicitly considered. 
 
The optimization results provide key outputs, including the economically optimal sizing of the PV system and 
stationary battery storage, optimal charging and discharging strategies for the fleet, and system performance 
indicators such as grid dependency, self-sufficiency rates, and cost savings potential. Visualizations of 
charging patterns, battery usage profiles, and energy sourcing breakdowns are produced to support 
interpretation and strategic decision-making for infrastructure planning. 
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Due to the interdependencies between system components, the optimization problem is inherently complex. 
For example, increasing PV capacity may reduce reliance on stationary batteries if vehicles return to the depot 
during periods of peak solar generation, allowing direct charging without intermediate storage. However, 
realizing this potential benefit depends on having sufficient vehicle charging power and appropriately sized 
charging infrastructure. An overview of the model’s most important input parameters is provided in Table 2. 
 

Table 2 - Data inputs for the TCO Optimization Model 

 
4.2 Operational Model 
The operational model focuses on optimizing daily fleet operations, based on infrastructure parameters defined 
by the strategic model. It responds flexibly to energy prices, load management, and operational requirements, 
and accounts for dynamic electricity tariffs, variable energy availability from local PV systems, and vehicle 
state-of-charge (SoC) requirements. To implement to operational model, sun2wheels energy management 
system has been advanced and extended for this project. 

Many energy management systems are built according to the “rule-based” principle. In this approach, an exact 
rule is defined for every situation that may occur in a building, specifying how loads — such as the load of a 
wall box — must behave. This type of control is particularly widespread among energy management systems 
for prosumers: as soon as surplus electricity is produced, flexible consumers like charging stations, storage 
systems, etc. are activated to avoid or reduce energy exports. 

For e-mobility, and especially for fleet applications, such “rule-based” approaches are only of limited use, as 
it is unclear in such modes at what point a vehicle has been sufficiently charged to drive the next route. The 
situation becomes even more complex when the tariff for energy procurement from the utility/DSO is variable 
or dynamically structured. 

The solution to this problem is therefore a predictive approach: for each vehicle, a Pick-Up State of Charge 
(SoC) is defined, which must always be met. Consequently, it is the task of the predictive algorithm to reach 
the Pick-Up SoC at minimal cost. 

sun2wheel has therefore developed such a predictive algorithm under the name “V2X Oracle”. The main input 
parameters for the V2X Oracle are defined in the following section.  

The most important output of the model is the required charging/discharging power for each vehicle at every 
15-minute interval. However, these values must be converted into discrete charging modes or "rule-based" 
commands that can be processed by a load management system.  
The load management system essentially acts as the instance that can perform exact load distribution. This 
ensures that, despite predictive control, the load management system can react to rapidly changing and poorly 
predictable residual loads (such as a sudden power drop from a PV system or the unexpected/unplanned 
activation of a large machine). 

Data Description 

PV-Performance Factor Time-dependent PV output. 
Grid Connection Limit (Current) Maximum charging power that can be drawn from the existing grid connection. 

Represents the upper limit for simultaneous vehicle charging. 
Grid Connection Limit (Upgrade 
Options) 

Potential upgrade levels of the grid connection and associated costs (site-specific data for 
the case study). 

Vehicle Charging Limit Maximum charging power for vehicle v (where v = vehicle 1 to 10). 
Vehicle Energy Consumption Electricity consumption of vehicle v in period t due to driving. 
Vehicle Battery Capacity Battery capacity of vehicle v. 
Grid Electricity Cost Cost per kWh drawn from the grid, including energy and power tariffs. 
PV Installation Cost Cost per installed kilowatt-peak (kWp) of solar capacity (fixed and variable). 
Battery Storage Cost Cost per installed kilowatt-hour (kWh) of stationary battery capacity (fixed and variable). 
Vehicle Costs Fixed and variable costs for the procurement and operation of the electric vehicle fleet, 

including charging infrastructure. 
Vehicle Charging Efficiency Efficiency for charging and bidirectional charging of vehicle batteries. 
Stationary Battery Charging 
Efficiency 

Efficiency for charging the stationary battery storage system. 
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Table 3 - Input parameters for operational model 
Input Name Description 
Grid Connection Size Maximum possible connection capacity to the public grid in kW 
Vehicle Battery Size(s) Size of the vehicle battery in kWh (can also be interpreted as stationary storage) 
Arrival and Departure Time Time period during which the vehicle is plugged in 
Pick-Up SoC State of charge in percent that must be reached by departure time 
Energy and Grid Tariff Time-varying grid and energy tariff 
Residual Load Time series of non-controllable loads (machines, lighting, etc.) 
Efficiency Curve Round-trip efficiency for charging/discharging the vehicle battery 
Multi-Vehicle Setup Definition of multiple vehicles 
Solar Forecast Forecast of solar production for at least the next 24 hours 
Integration into sun2wheel Backend Integration into existing load management system 
Algorithmic Parameters Various algorithmic parameters, such as learning rates and termination criteria 

The calculation of an optimal charging schedule while adhering to the grid connection capacity and considering 
variable and/or static tariffs as well as any excess PV power is the defined main task of the algorithm. The 
typical implementation of such algorithms is often done using "linear programming". In fact, the mathematical 
form of the problem is very well suited for optimizing the charging schedule, as it allows modeling the price 
times the average energy consumption per 15 minutes using linear relationships. Additionally, approaches 
from "Model Predictive Control" are very popular in the relevant literature. A major disadvantage of these 
methods is often long computation times, especially when the projection horizon is extended (e.g., weeks, 
months, or even years), as is necessary due to the annual variation in PV system electricity production. 
Although numerous libraries in various programming languages exist, implementing the solver with different 
levels of efficiency, they are often very cumbersome to integrate into existing backend systems, such as that 
of sun2wheel. 

Since the charging/discharging efficiency depends on the charging/discharging power, this represents a non-
linearity, which is difficult to handle using a linear programming approach. Therefore, sun2wheel decided to 
integrate the problem into such "classical" frameworks but to pursue a new approach that can be implemented 
independently of a numerical framework and even the programming language. This also allows for processing 
non-linear relationships, particularly to prefer high discharge powers over small discharge powers. 

As an additional method, sun2wheel developed its own algorithm, where the gradients of the mathematical 
problem are calculated to iteratively optimize the charging schedule until a stopping criterion is reached. This 
methodology is not new and is already applied in fields like machine learning to train neural networks and 
similar constructs but not really applied yet in practice for smart-charging. During implementation, the speed 
of the algorithm was consistently optimized, primarily to ensure that the optimized charging schedule for an 
entire calendar year can be calculated as quickly as possible. The first version required well over 30 seconds 
for a horizon of 96 x 15-minute slots (=24 hours). The best-optimized version now takes about 300 
milliseconds. 

5 Findings 
The preliminary results of the case study highlight the importance of the interaction between the strategic and 
operational models in achieving a cost-optimized electrification solution for delivery vehicle fleets. The key 
insight is that both models complement each other by addressing different levels of decision-making. Below, 
we outline how decisions are allocated between the two models and how their outputs interconnect, as well as 
some preliminary results of the respective models. 
 
5.1 Decisions at the strategic level 
The strategic model addresses long-term decisions that shape the overall infrastructure setup required for the 
electrification of the delivery vehicle fleet. Key decisions include: 
 PV system and battery storage size: Optimizing PV and battery sizes to minimize grid dependency, 

enabling charging during low PV output. It considers seasonal PV variations, potentially selling excess 
power to reduce TCO. 

 Grid connection: Balancing grid connection upgrade costs with investments in PV or battery storage. 
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 Configuration of vehicles and charging infrastructure: Considering the possibility of multi-day battery 
range, reducing daily charging demands. One charging station per vehicle is assumed, with options for fast 
charging or bidirectional functionality. 

The outputs of the strategic model constitute the system configuration for the operational model. 
 
The results presented in the following section are based on a single representative test scenario drawn from the 
broader set of scenarios evaluated in the strategic model. While the complete model configuration involves the 
simulation and comparison of multiple scenarios to support robust decision-making, this example illustrates 
the model’s functionality and key outcomes under defined conditions. 
 
In the specific test case, which is represented in the subsequent paragraphs, a photovoltaic (PV) system with 
an installed capacity of 98.4 kWp and a stationary battery storage system with a capacity of 220 kWh were 
assumed. The PV generation data used for the simulation corresponds to real hourly production profiles for the 
year 2024, thereby reflecting realistic seasonal and temporal variations. The vehicle fleet modeled consists of 
10 delivery vans, each operating on typical delivery routes based on operational schedules (9.00 - 15.00), 
alongside a supply truck responsible for replenishing the distribution center during the night (22.00 - 4.00). 
Energy consumption patterns and travel schedules for both the vans and the truck are incorporated based on 
real-world data. All vehicles are equipped with Vehicle-to-Vehicle (V2V) charging capabilities, enabling 
enhanced flexibility in energy management within the fleet. The grid charging limit and price is set to typical 
values at the case study location. In this scenario, no money is earned by selling energy to the grid. 
 
The optimization model determines the ideal charging and discharging strategies under these assumptions, 
aiming to minimize the total charging costs. It dynamically allocates available energy from the PV system, 
stationary battery, and grid connection, while considering operational constraints such as vehicle availability, 
battery state-of-charge requirements, and charging infrastructure limits. This scenario serves to demonstrate 
the capabilities of the strategic model to derive cost-effective and operationally feasible charging solutions 
under realistic boundary conditions. 
 
Figure 2 illustrates the timeline of the power flows across the entire simulation period. Although the figure 
provides an overall view rather than detailed resolution, general trends are clearly observable. The photovoltaic 
(PV) power generation curve, represented by green bars, is evident throughout the year, with peak production 
occurring during the summer months and significantly lower output during the winter. This seasonal variation 
directly influences the grid power draw (blue bar): during the summer, a greater share of the site’s energy 
demand is covered by PV production, resulting in a noticeable reduction in grid dependency. Consequently, 
the cumulative cost of grid electricity (red line) remains relatively flat over the summer period, as most of the 
fleet’s energy consumption can be supplied by the PV system. In addition to the grid and PV contributions, the 
figure also displays the bidirectional power flows (yellow bars). It is important to note that it only is given as 
directional inflow equivalent into the respective batteries and that charging from the stationary battery to any 
other vehicle is also counted as bidirectional charging. 
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Figure 2 – Power flows of exemplary scenario calculation over the full optimization time period 

Figure 3 presents an exemplary result showing the energy states of both the stationary battery system and the 
internal batteries of the vehicles over the course of the optimization period. As the supply truck remains parked 
at the depot during daytime hours, it is predominantly charged using photovoltaic (PV) energy. In contrast, the 
delivery vans are typically away from the depot during the peak sunlight hours, limiting their ability to directly 
utilize PV generation for charging. However, during the summer months, when the PV production curve 
extends over a broader portion of the day, the vans can capture more solar energy for charging upon their return 
to the depot. Notably, the stationary battery (blue line) is primarily charged during the summer months, as the 
photovoltaic (PV) system generates surplus energy beyond the immediate charging needs. In contrast, during 
the winter months, PV production is only sufficient to partially cover the direct vehicle charging demand, 
leaving no excess energy available for storage in the battery. 

 
Figure 3 - Preliminary result of optimization tool. Energy graph of all the vehicles and stationary battery over the 

yearly time span 
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As the strategic model is still under development, no further analysis can be provided at this stage. In future 
work, additional scenario iterations will be calculated and systematically compared to enhance the robustness 
of the results. In particular, variations in PV system sizing, battery capacities, grid connection upgrades, and 
dynamic energy pricing structures, as well as different fleet compositions, will be systematically analysed to 
identify optimal investment strategies under different boundary conditions. 
 
Validation of the model outputs against real-world operational data from the case study site is also planned, to 
assess the predictive quality and reliability of the optimization framework. This comparison will help ensure 
that the model results are not only theoretically sound but also practically applicable to the logistics company’s 
future electrification plans. 
 
5.2 Decisions at the operational level 
To better test the algorithm and later offer the possibility of providing a simple user interface for one-off 
simulations, a simple user interface was created. It was designed so that any change in the input variables 
triggers a recalculation. This is possible thanks to the fast computation time. 
 
The excerpt in Figure 4 shows a situation in which a vehicle must reach 80% SoC shortly before midnight. 
The black dashed line represents the local residual load ("Net Power excl. Vehicle"). The vehicle’s 
charging/discharging power (blue line) is added to the residual load, forming the "Net Power incl. Vehicle". It 
can be seen that the connection capacity (10 kW in this example) is not exceeded, and that charging is shifted 
to periods with low dynamic tariffs (green upper curve, source: Groupe E, Switzerland). Between 
approximately 5:00 AM and 10:00 AM, the battery is discharged (see yellow lower curve) to avoid expensive 
imports from the grid. The same happens, with lower power, from around 6:00 PM until midnight. The green 
dot marks the desired pick-up time with the targeted SoC. 
 

 
Figure 4 – Experimental user interface for algorithm testing 

 
5.3 Interactions between the decision levels 
Currently, the two models are not connected by a feedback loop but operate as a two-stage optimization 
process. However, it is planned to provide a quantitative analysis to demonstrate how the interaction between 
both models could enhance overall performance: 
 Input from strategic to operational model: The strategic model defines the boundary conditions for the 

operational model, such as number and capacity of charging stations, available energy from the PV system, 
size of the battery storage, size of vehicle batteries.  

 Potential feedback loop from operational to strategic model: Operational insights can refine strategic 
model assumptions, adjusting PV system sizing or grid connection requirements, leading to more accurate 
and cost-effective long-term planning. 
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Together, the models form a closed-loop system for continuous TCO reduction. For instance, operational data 
may reveal that initial assumptions about battery size are excessive, prompting strategic revisions for more 
accurate planning. 
 
6 Conclusion 
Preliminary findings highlight the value of integrating strategic and operational models to optimize 
infrastructure investment, daily fleet operations, cost minimization, and resilience. By clearly defining the roles 
of each model and ensuring integration of outputs and feedback loops, the decision-making process could 
become more holistic and aligned with the goal of minimizing TCO. The interaction between the models 
ensures that electrification decisions are not only theoretically sound but also practically viable, creating a 
robust framework for other logistics companies aiming to electrify their fleets. Further examples of companies 
requiring large-scale energy supplies could provide valuable insights for refining this framework. Continued 
discussions on the battery system integration remain essential for addressing grid stability challenges, ensuring 
that future electrification strategies are both efficient and scalable. 
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