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Executive Summary 

This paper introduces a novel approach combining LTSF (Long-term Time-Series Forecasting)-Linear 

architecture with AsymLoss(Asymmetric Loss), the custom loss function designed to enhance 

directional accuracy for System Marginal Price (SMP) forecasting in electrical grids. Precise SMP 

prediction is essential for energy aggregators to effectively participate in electricity markets through 

electric vehicles vehicle-to-grid (V2G) technology, offering enhanced value propositions for electric 

vehicle users. We evaluate our proposed methodology against the commonly used time-series model, 

GRU (Gated Recurrent Unit), and the effectiveness of the proposed model is validated through 

implementation in real-world market conditions.  Along with GRU comparison, common loss functions 

in time-series problems which are MSE (Mean Squared Error) and DILATE (DIstortion Loss including 

shApe and TimE) loss compare were processed. Results demonstrate that our proposed approach is 

particularly well-suited for volatile time-series forecasting problems like SMP prediction. The 

synergistic effect of LTSF-Linear and AsymLoss shows promising improvements in forecasting 

accuracy, making it a valuable tool for V2G market participation. 

 

Keywords: AI – V2H&V2G, Smart charging, Artificial intelligence for EVs, Smart grid integration and 
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1 Introduction 
The System Marginal Price (SMP) represents the wholesale electricity price ($/kWh) in electrical grid 

systems, serving as a crucial indicator of the real-time equilibrium between electricity supply and demand. 

In the electricity generation landscape, various energy sources are utilized according to their economic 

efficiency, known as the merit order system. As illustrated in Figure 1 [1], in Korea, nuclear power plants 

operate as the primary base load due to their low operational costs, followed by coal-fired plants, while 

Liquefied Natural Gas (LNG) and oil represents the highest cost tier. The SMP mechanism is fundamental 

for all energy market participants, particularly for energy aggregators who not only facilitates the 

optimization of energy trading strategies but also enhances profitability by enabling participation in the 

market at advantageous times such as peak pricing periods.   

The global transition toward renewable energy sources presents both promising opportunities and significant 

technical hurdles. While this transition is essential for environmental preservation, it introduces 

unprecedented challenges to grid stability primarily due to the unpredictable nature of renewable energy 

generation. 
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Figure 1. Electricity Market Price Determination [1] 

In response to these challenges, the Republic of Korea has launched comprehensive government projects 

focusing on the integration of electric vehicles into the existing grid infrastructure through Vehicle-to-Grid 

(V2G) technology. This approach leverages bi-directional on-board chargers (OBC), enabling electric 

vehicle batteries to function as distributed energy storage systems (ESS), collectively forming Virtual Power 

Plants (VPPs) when aggregated in large numbers. Through VPPs, these electric vehicles can provide grid 

services such as Demand Response (DR) and Frequency Regulation (FR). DR programs incentivize power 

consumers, including EV fleet operators, to adjust their electricity consumption during peak demand periods 

in exchange for financial compensation. This helps alleviate grid stress, improve system reliability, and 

optimize energy costs. FR services, on the other hand, are essential for maintaining grid stability by 

continuously adjusting power supply to keep the frequency at its nominal value, typically 50 or 60 Hz, thereby 

preventing system imbalances that could lead to power outages. In this market structure, Independent System 

Operators (ISOs) and Power Exchanges (PXs) provide day-ahead electricity demand forecasts, forming the 

basis for market participation. Since energy aggregators rely on the sale of electricity back to the grid, their 

potential profits are directly tied to the System Marginal Price (SMP). Accurate SMP forecasting is crucial, 

as it allows aggregators to optimize their bidding strategies, maximize revenue, and mitigate financial risks 

associated with price volatility. Given that SMP values fluctuate based on real-time supply and demand 

conditions, effective forecasting ensures that VPP operators can strategically schedule energy dispatch, 

enhancing both economic returns and grid efficiency. 

As illustrated in Figure 2, the proposed VPP framework aggregates EVs at scale and implements a 

sophisticated 24-hour scheduling strategy that optimizes charging and discharging patterns based on 

predicted SMP fluctuations. This optimization process strategically schedules charging during periods of low 

SMP and discharging during high SMP periods, while simultaneously ensuring that each State-of-Charge 

(SoC) of electric vehicle remains within acceptable bounds to accommodate predetermined user mobility 

patterns and plug-in/out schedules. This dual-objective optimization approach effectively balances the 

competing demands of maximizing aggregator profits through market participation while maintaining 

reliable vehicle availability for EV owners. 

 
Figure 2. Optimized EV Scheduling According to SMP 

2 Literature Review 

Time-series forecasting in volatile markets such as electricity has been extensively studied over the past 

decades, with approaches ranging from classical statistical methods to advanced deep learning 

architectures. This section reviews notable contributions across this spectrum while highlighting persistent 

challenges in accurate prediction of highly dynamic data. Traditional statistical models such as the 
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Autoregressive Integrated Moving Average (ARIMA) [2] and its seasonal extension with acceptance of 

exogenous variable, SARIMAX, have been widely applied due to their interpretability and ability to 

capture linear trends and seasonality. For instance, SARIMAX has been employed in various energy 

market studies for forecasting electricity demand and pricing with relatively strong performance in stable 

conditions. However, these models often fall short in volatile contexts, as they are not designed to handle 

non-linearities [3] or complex temporal dependencies that frequently arise in SMP data. Machine learning 

algorithms have emerged as powerful alternatives, offering improved capabilities in non-linear 

relationships. Boosting-based methods such as Random Forest, XGBoost, and CatBoost not only offer 

greater flexibility and often outperform linear models by capturing non-linear interactions between input 

features but also have shown promising results in various range of forecasting competitions and real-world 

applications [4,5]. Yet even these models may struggle to capture the sequential dependencies inherent in 

time-series data, especially for long-term forecasts or under conditions of rapid fluctuation. The advent of 

deep learning has introduced more sophisticated architectures specifically in tasks requiring the modeling 

of temporal dynamics. Recurrent Neural Networks (RNNs), and more specifically their advanced variants 

such as Gated Recurrent Units (GRUs) and Long Short-Term Memory (LSTM) networks, are capable of 

learning complex temporal dependencies. The Long Short-Term Memory (LSTM) network, introduced by 

Hochreiter and Schmidhuber [6], addresses the vanishing gradient problem of standard RNNs, allowing 

the model to capture longer-term dependencies. Similarly, Gated Recurrent Units (GRUs), a simplified 

variant of LSTMs proposed by Cho et al. [7], have shown comparable performance with reduced 

computational complexity. These architectures have been applied with considerable success in energy price 

forecasting and load prediction tasks. In parallel, WaveNet, a deep generative model originally designed 

for audio data [8], has been adapted for time-series forecasting. Its use of dilated causal convolutions allows 

for the modeling of long-range temporal dependencies without recurrence, making it highly suitable for 

multistep and multivariate time-series applications [9]. In recent studies, the LTSF-Linear (Linear 

Transformer for Time Series Forecasting) model has gained attention for its notable performance in 

multistep forecasting tasks. Unlike complex recurrent or convolutional architectures, this approach 

leverages simply designed linear transformations that capture temporal dependencies while maintaining 

computational efficiency. Zeng et al [10]. demonstrated that this streamlined architecture outperforms 

state-of-the-art models on standard benchmarks, challenging the conventional wisdom that increased 

model complexity necessarily yields better performance. 

Along with research in time-series forecasting models, recent studies have explored combining deep 

learning architectures with specialized loss functions tailored for time-series data. Conventional loss 

functions used in model training, such as Mean Squared Error (MSE) and Mean Absolute Error (MAE), 

prioritize point-wise accuracy without adequately considering the temporal alignment of predictions. This 

limitation is particularly problematic for energy market forecasting, where accurate prediction of trend 

changes and extreme values is crucial for effective bidding strategies. To address this shortcoming, The 

DILATE (DIstortion Loss including shApe and TimE) loss function, proposed by Le Guen and Thome 

[11], represents an advancement in this direction. By decomposing the loss into shape and temporal terms, 

DILATE encourages predictions that preserve both the magnitude and timing of significant pattern changes. 

Therefore, the integration of DILATE within deep neural networks demonstrates improved performance 

in modeling non-stationary signals and predicting multiple future time steps. However, it still exhibited 

notable weaknesses in accurately capturing critical signal features such as peaks and valleys, values that 

are particularly important for energy aggregators when formulating market bids. 

In the context of SMP forecasting, achieving satisfactory prediction involves more than simply minimizing 

standard error metrics. The accurate capture of temporal dynamics and structural patterns within the SMP 

trajectory is essential for optimizing electricity market trading strategies. Time-series forecasting 

challenges temporal misalignment such as time offset and time warping, as illustrated in Figure 3, can 

significantly degrade the quality of strategy formulation and must therefore be explicitly addressed. 

Building on this motivation, we propose a hybrid approach that integrates the lightweight yet highly 

effective LTSF-Linear model with a custom-designed loss function, AsymLoss. This asymmetric objective 

combines DTW-based temporal alignment penalties with mechanisms that emphasize structural reliability. 

Specifically, AsymLoss penalizes large prediction errors more heavily in a temporally aware manner, 

reinforces directional consistency by aligning the gradient signs of predictions and targets, and highlights 

critical points such as SMP peaks and valleys to preserve key structural patterns in the time series. This 

integrated approach shows promise in handling non-linear and volatile time-series forecasting challenges 

such as characteristic of electricity markets. 
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Figure 3. Time-Series Forecasting Error Types  

 

3 Methodology 

 

3.1 Time-Series Analysis 

 

Time Series Prediction Models use k historical data points y(i,t-k:t) at time t, along with exogenous variables, 

x(i,t-k:t) and static metadata 𝑠𝑖 (e.g., SMP classification: mainland, Jeju) to derive the predicted value, 

𝑦̂(i,t+n) along n, the forecast horizon as shown in (Eq.1).  Based on the usage of exogenous variables, these 

models are classified into univariate and multivariate time series, while they are further categorized as 

single-step or multi-step predictions depending on the size, n, of the prediction horizon. 

 
𝒚𝒊,𝒕+𝒏̂ = 𝒇(𝒚𝒊,𝒕−𝒌:𝒕, 𝒙𝒊,𝒕−𝒌:𝒕, 𝒔𝒊, 𝒏)      (1) 

 

In this study, for simplicity, we adopted a univariate multi-step forecasting approach using only historical SMP 

(System Marginal Price) values. A look-back window of 7 days (k=168 hours) was used as input, and the 

forecasting horizon was set to 24 hours (𝑛=24 hours) to support next-day bidding decisions. The model was 

designed to generate forecasts with an hourly stride, producing updated predictions every hour. 

 

3.2 Datasets 
 
The SMP data analyzed in this study were acquired from the Korea Power Exchange (KPX) [13]. Recordings 

spanning from January 1, 2021, to December 31, 2023, at a frequency of every hour, resulting in a total of 

26,280 data samples. As shown in Fig. 3, we utilized three years (2021-2023) of Jeju Island SMP data. This 

testbed was chosen for its dynamic SMP fluctuations due to high reliance on renewable energy. The model 

was trained using data from 2021-2022, and its performance was validated by predicting the entire period of 

2023. 

 
Figure 4. Jeju Island SMP 2021 – 2023 Data  
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Comprehensive statistical analyses were conducted to examine the characteristics of the SMP data and 

determine the selection of appropriate forecasting models and loss functions. In this analysis, we utilize price 

returns, defined as Returns = SMP(t) - SMP(t-1), which are commonly preferred in time-series analysis as they 

facilitate the identification of patterns in price movements and volatility. Furthermore, the following statistical 

measures were utilized to analyze the data: standard deviation to quantify the dataset's variability and 

dispersion, skewness to measure distributional asymmetry, and kurtosis to evaluate the heaviness of the 

distribution tails. The metrics reveal significant deviations from normal distribution characteristics, as 

illustrated in Figure 5. The distribution exhibits a slight positive skewness (0.1023) and extremely high kurtosis 

(23.0798), far exceeding the kurtosis value of 3.0 typically associated with normal distributions. This high 

kurtosis indicates a fat-tailed distribution, meaning extreme price movements occur more frequently than 

would be expected under normal distribution assumptions. Furthermore, the standard deviation of 11.7498 

demonstrates considerable price volatility in the market. These statistical characteristics provide compelling 

evidence for the necessity of an asymmetric approach to SMP forecasting, as conventional symmetric loss 

functions would prove inadequate in capturing these distinctive distributional properties and asymmetric risk 

patterns. 

 

 
Figure 5. Statistical Plots of SMP 

 
3.3 LTSF-Linear Model 
 
Our study employed the LTSF-Linear model [1], which exhibited notably strong performance in multi-step 

time-series forecasting tasks when compared to more complex transformer-based architectures, while 

maintaining architectural simplicity.  The LTSF-Linear model challenges the conventional assumption that 

complex architectures such as deep recurrent networks or attention-based Transformers are necessary to 

achieve high forecasting accuracy. 

 

The core idea behind LTSF-Linear is simple: it replaces heavy architectural components with a single linear 

layer that directly maps historical input sequences to future predictions. Despite this simplicity, the model 

performs competitively, and often outperforms more sophisticated alternatives, particularly in multistep 

forecasting tasks. This is achieved through its direct modeling of temporal dependencies using a learned 

projection matrix that transforms input sequences of shape [𝐵, 𝐶, 𝑇𝑖𝑛]  into output sequences of shape  
[𝐵, 𝐶, 𝑇𝑜𝑢𝑡] where:  

• B represents the batch size which indicates how many sequences are trained at once. 

• C denotes the number of channels. (i.e. the number of variables. For univariate forecasting C = 1) 

• 𝑇𝑖𝑛 is the length of the input window. 

• 𝑇𝑜𝑢𝑡 is the length of the forecast horizon. 

 

For each batch, the model learns a set of linear weights that operate independently on each channel to map the  
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temporal information from 𝑇𝑖𝑛, in this case past 168 hours of SMP values, to 𝑇𝑜𝑢𝑡, in this case next 24 hours 

SMP predictions.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Illustration of the LTSF-Linear Model 

  

As illustrated in Figure 5, the LTSF-Linear model essentially applies a channel-independent linear 

transformation over the time dimension, capturing temporal patterns through weight matrices trained to 

estimate future values based on past trends. This structure is not only computationally efficient but also less 

prone to overfitting due to fewer parameters than conventional deep learning models, making it particularly 

well-suited for practical forecasting scenarios with limited data or high volatility, such as the electricity market. 

 

3.4 AsymLoss Function 
 

While the LTSF-Linear model demonstrates strong performance in long-term forecasting tasks, it is commonly 

paired with conventional loss functions such as Mean Squared Error (MSE). MSE minimizes the squared 

differences between predicted and true values, placing greater emphasis on larger errors, whereas MAE 

computes the average of absolute differences, treating all errors equally regardless of magnitude, making it 

effective for optimizing point-wise accuracy. However, both do not account for temporal alignment or 

directional consistency, often leading to forecasts that fail to preserve important structural patterns in the time 

series, such as trend shifts or peak positions. 

 

To address limitations in traditional loss functions and construct a shape-preserving loss function to enhance 

directional accuracy in time series forecasting, we introduce Asymmetric Loss (AsymLoss), a custom designed 

loss function which combines three key components for robust temporal pattern matching. The structure of 

AsymLoss is composed of 3 different components: Temporal Dynamic Time Warping (DTW) component, 

directional component and peak-valley component, as illustrated in Fig 5. 

 

 
Figure 7. Illustration of the AsymLoss Structure 
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3.4.1 Temporal DTW Component 

 
Dynamic Time Warping (DTW) is an algorithm that measures similarity between two temporal sequences by 

finding the optimal alignment between them. Traditional DTW treats all differences equally. Unlike traditional 

DTW, the temporal DTW component incorporates asymmetric alignment costs with temporal coherence. Given 

input sequences X = {x₁, ..., xₙ} and target sequence Y = {y₁, ..., yₘ}, the distance matrix D is computed using an 

asymmetric cost function (2). 

 

𝐷(𝑖, 𝑗) = (𝑥𝑖 − 𝑦𝑗)
2

∙ 𝑓𝑎𝑠𝑦𝑚(𝑖, 𝑗)     (2) 

𝑤ℎ𝑒𝑟𝑒   𝑓𝑎𝑠𝑦𝑚(𝑖, 𝑗) = 1 + max (0, 𝑦𝑗 − 𝑚𝑒𝑎𝑛(𝑌)) ∗ (1 + max (0, −(𝑥𝑖 − 𝑦𝑗))     (3) 

 

The first term applies an adaptive penalty proportional to the magnitude of target values, ensuring greater 

emphasis on significant observations and the second term adds extra penalty for underestimation. To maintain 

temporal consistency within the alignment, a temporal penalty term is incorporated: 

 
𝜏(𝑖, 𝑗) = 𝑤|𝑖 − 𝑗|   (4) 

 

where 𝑤 denotes the temporal weight coefficient and |𝑖 − 𝑗| represents the temporal distance between indices in 

the respective sequences. This constraint discourages excessive warping that would violate the inherent temporal 

structure of the data. The optimal alignment is computed using soft-DTW recursion (5):  

 
𝑅(𝑖, 𝑗) = 𝐷(𝑖, 𝑗) + minᵧ(R(i − 1, j − 1), R(i − 1, j), R(i, j − 1)    (5)  

 

where minᵧ represents a smoothed minimum operation controlled by parameter γ (6).  

 

minᵧ(𝑎1, … , 𝑎𝑛) = −𝛾𝑙𝑜𝑔(∑ exp (−
𝑎𝑖

𝛾

𝑛
𝑖=1 )    (6)  

 
As γ approaches 0, the operation approaches a regular minimum, while larger γ values produce a smoother 

approximation. The resultant soft-DTW distance provides a differentiable measure of temporal alignment quality 

that accounts for both value differences and temporal distortion, thereby enhancing capacity of the model to 

preserve structural patterns in forecasted sequences. 

 

3.4.2 Directional Component 

 
The directional component of AsymLoss addresses a fundamental limitation in conventional error metrics by 

explicitly quantifying trend alignment between predicted and target sequences. This component is designed to 

penalize directional inconsistencies that may persist even when point-wise error metrics indicate satisfactory 

performance. Initially, for each time step t, two gradients are computed: ∇xₜ = xₜ₊₁ - xₜ for predicted sequence 

gradient and ∇yₜ = yₜ₊₁ - yₜ for target sequence gradient. Direction matching is evaluated through two binary 

indicators: a general mismatch indicator and a critical error indicator. I_(mistmatch(t)) = 1 if sign(∇xₜ) ≠ sign(∇yₜ) 

which is 1 when the gradients have opposite signs. A critical error indicator, I_(critical(t)), equals 1 when the 

model predicts a decrease while the target increases (1 if ∇yₜ > 0 and ∇xₜ < 0). The directional penalty combines 

both indicators with different weights: P_(dir(t)) = I_(mistmatch(t))+ 2·I_(critical(t)). To account for the varying 

significance of directional errors based on the magnitude of target movements, we employ a local importance 

weight: 

 

w(t) =  
|∇𝑦𝑡|

𝑚𝑒𝑎𝑛(|∇𝑦|
     (7)  

 
This weighting scheme ensures that deviations during sharp transitions are penalized more heavily than those in 

flat regions. The final directional loss is then computed as the summation of the weighted directional penalties 

across the entire sequence: 
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𝐿𝑑𝑖𝑟 =  ∑ 𝑤(𝑡) ∙𝑇−1
𝑡=1  𝑃𝑑𝑖𝑟(t)     (8)  

 
where T represents the sequence length. This formulation effectively captures the directional patterns in time 

series data, providing a complementary optimization objective to the temporal alignment component.  

 

3.4.3 Peak-Valley Component 

 
The peak-valley component is designed to enhance the model sensitivity in time series data, specifically turning 

points such as local maxima (peaks) and minima (valleys). To explicitly penalize misalignment of these turning 

points, this component first identifies peaks and valleys in both the predicted and target sequences by analyzing 

the directional change of consecutive gradients. Peak and valley features are detected using gradient sign 

changes:  

peaks(t) = max(0, ∇xₜ ·  (−∇xₜ+1))    (9)  

𝑣𝑎𝑙𝑙𝑒𝑦𝑠(𝑡) =  max(0, (−∇xₜ) ·  ∇xₜ+1)   (10)  

Consequently, the alignment score between detected features are computed as: 

 

𝐿𝑝𝑒𝑎𝑘−𝑣𝑎𝑙𝑙𝑒𝑦 =  mean (|𝑝𝑒𝑎𝑘𝑠𝑥 − 𝑝𝑒𝑎𝑘𝑠𝑦|) +  mean (|𝑣𝑎𝑙𝑙𝑒𝑦𝑠
𝑥

− 𝑣𝑎𝑙𝑙𝑒𝑦𝑠
𝑦

|)    (11)  

 

where 𝑝𝑒𝑎𝑘𝑠𝑥 , 𝑝𝑒𝑎𝑘𝑠𝑦 , 𝑣𝑎𝑙𝑙𝑒𝑦𝑠𝑥  and 𝑣𝑎𝑙𝑙𝑒𝑦𝑠𝑦  represent the detected peaks and valleys in predicted and 

target sequences respectively. By incorporating this feature, the component explicitly encourages the model to 

preserve crucial structural characteristics of the time series, ensuring more interpretable and contextually 

meaningful forecasts. This is particularly advantageous in applications where the timing and magnitude of 

turning points are of high operational or economic importance, such as SMP bidding case. 

 

3.4.4 Final Loss 

 
The final AsymLoss combines the above three components with weighted contributions. Each component 

addresses a distinct aspect of temporal prediction quality: structural alignment, trend consistency, and pattern 

sensitivity, respectively. The combined loss is expressed as a weighted sum of the individual components: 

 

𝐿𝐴𝑠𝑦𝑚 = 𝛼 ∙ 𝐿𝐷𝑇𝑊 + 𝛽 ∙ 𝐿𝑑𝑖𝑟 +  𝛾 ∙ 𝐿𝑝𝑒𝑎𝑘−𝑣𝑎𝑙𝑙𝑒𝑦     (12) 

 

The hyperparameters, α, β and γ control the relative influence of each component and are selected based on 

the volatility regime of the target domain. To maintain consistent performance across SMP market, two distinct 

hyperparameter sets are implemented: α = 0.8, β = 0.14, γ = 0.06, placing greater emphasis on global temporal 

alignment for stable periods and α = 0.6, β = 0.28, γ = 0.12, enhanced sensitivity to directional trends and 

structure inflections for volatile periods. To seamlessly adapt across varying temporal dynamics, a volatility-

aware ensemble weighting mechanism is introduced. This approach allows the model to interpolate between 

stable and volatile configurations based on real-time market variability, enhancing flexibility and 

generalization across fluctuating regimes. 

 

4 Simulation Results 

To evaluate the effectiveness of the proposed LTSF-Linear model and asymmetric loss (AsymLoss) in 

sequence forecasting, extensive experiments were conducted comparing multiple time-series state-of-the-art 

models using diverse loss combinations. The experiments were designed to assess both prediction accuracy 

and the ability to capture essential structural dynamics of SMP. 

 

4.1 Experimental Setup 
 

We compared five distinct model-loss combinations to isolate the effects of both architectural choices and loss 

function designs. These include: (1) gated recurrent unit architecture (GRU) with the standard mean squared 

error (MSE), serving as the baseline with a conventional recurrent architecture and standard loss, (2) LTSF-

Linear model with MSE, allowing us to isolate the effect of model architecture using the same conventional 

loss, (3) LTSF-Linear with  DILATE loss function, introducing a shape-aware loss for comparison with 

AsymLoss, (4) GRU + AsymLoss, allowing us to isolate the effectiveness of AsymLoss, and finally our 
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primary interest, (5) LTSF-Linear with AsymLoss configuration to evaluate the synergistic effect.  

For all experiments, we maintained consistent hyperparameter settings across all model-loss combinations to 

ensure fair comparison. The number of epochs was set to 30, a choice driven by practical application 

requirements that constrained training and inference to complete within an hour. All models were trained with 

a batch size of 32 and a learning rate of 0.001, using the Adam optimizer with default beta parameters 

For the evaluation, we employed multiple evaluation criteria to provide a comprehensive performance 

assessment. Mean Absolute Percentage Error (MAPE) was used to measure relative prediction error. Mean 

Squared Error (MSE) and Root Mean Squared Error (RMSE) were utilized to quantify absolute error with 

higher penalties for larger deviations. Additionally, Dynamic Time Warping (DTW) was applied to capture 

temporal alignment between predicted and actual sequences. A lower DTW value indicates a closer alignment 

and higher structural similarity between predicted and actual sequences, while a higher DTW value reflects 

poorer alignment and greater temporal distortion 

 

4.2 Comparative Analysis 

 
A comprehensive evaluation using one year of SMP data was conducted and Table 1 summarizes the 

quantitative performance metrics across all model-loss combinations. The baseline (1) GRU + MSE model 

demonstrated moderate performance with MAPE of 8.76% and MSE of 341.30, representing conventional 

approaches in time series forecasting. When comparing architectures with the same loss function, the (2) 

LTSF-Linear + MSE outperformed the (1) GRU + MSE configuration across all error metrics, indicating the 

inherent advantage of the linear transformer architecture for SMP forecasting tasks. While the (3) LTSF-Linear 

+ DILATE configuration achieved improved accuracy in terms of MAPE and MSE (compared to standard loss 

functions, it registered the highest DTW value among all tested models. This suggests that despite its shape-

aware design, DILATE loss struggled to capture temporal alignment effectively in SMP forecasting 

applications. 

 

The effect of the AsymLoss function is evident when comparing models with the same architecture but 

different loss functions. (4) GRU + AsymLoss showed notable improvement over (1) GRU + MSE, particularly 

in DTW, demonstrating AsymLoss effectiveness in enhancing temporal alignment even in recurrent 

architectures. Especially the (5) LTSF-Linear + AsymLoss configuration achieved the highest performance 

across all metrics and the remarkable reduction in DTW (58.6% lower than the DILATE configuration) 

highlights the exceptional capability of our proposed approach in maintaining structural and temporal fidelity 

in SMP predictions. 

Table 1: Performance Comparison of Model-Loss Combinations  

Model-Loss Combination MAPE (%) MSE RMSE DTW 

(1) GRU + MSE 8.76 341.30 18.47 94477.87 

(2) LTSF-Linear + MSE 7.63 230.71 15.19 104219.33 

(3) LTSF-Linear + DILATE 6.44 202.47 14.23 110075.08 

(4) GRU + AsymLoss 8.04 304.68 17.46 73681.83 

(5) LTSF-Linear + AsymLoss 5.07 ▲ 146.71 ▲ 12.11 ▲ 43162.98 ▲ 

 

To validate practical utility, forecasted SMP values from models were implemented in the real-world market 

conditions. While optimal EV scheduling typically involves complex algorithms with numerous variables, a 

simplified bidding strategy is applied in this experiment: EVs charge when SMP is at or below the 30% and 

discharge when SMP reaches or exceeds the 80% of daily SMP prices (13, 14). Constant power rate was 

assumed acroos all time periods. A volatile test case was selected from the dataset and it is characterized by 

large variance and significant differences between local peaks and valleys, a pattern commonly associated with 

inaccurate charge-discharge decisions due to misaligned or poorly predicted SMP trajectories. Such conditions 

emphasize the importance of directional accuracy and peak-valley alignment in real-time applications.  

 

𝐶ℎ𝑎𝑟𝑔𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 𝑆𝑀𝑃𝑡 ≤  𝑃𝑟𝑖𝑐𝑒30 𝑓𝑜𝑟 𝑡 = 0,1 … , 23    (13) 

𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 𝑆𝑀𝑃𝑡 ≥  𝑃𝑟𝑖𝑐𝑒80 𝑓𝑜𝑟 𝑡 = 0,1 … , 23    (14) 
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Figure 7 illustrates the forecasted SMP trajectories for each model-loss configuration alongside the actual 

market data, offering a qualitative comparison of predictive fidelity under a volatile scenario. The baseline 

model, (1) GRU + MSE, fails to effectively capture temporal dynamics, resulting in misaligned trends and 

inaccurate peak timings that directly lead to wrong charge-discharge decisions. In contrast, (LTSF-Linear 

models combined with both (2) MSE and (3) DILATE demonstrate improved temporal structure recognition. 

However, they still exhibit notable misalignment around local extrema and inaccurately detect trend reversals, 

which compromises decision reliability. The (4) GRU + AsymLoss configuration successfully identifies 

directional changes, yet the predicted variances diverge significantly from actual values, reducing their 

reliability for real-time strategies. Notably, the proposed (5) LTSF-Linear + AsymLoss model exhibits superior 

ability in capturing overall trend structures, key inflection points, and directional shifts. Although certain 

sudden changes remain partially over or underestimated, this configuration achieves the best balance between 

structural consistency and temporal precision. 

 

   

①GRU + MSE ②LTSF-Linear + MSE ③LTSF-Linear + DILATE 

  

④GRU + AsymLoss ⑤LTSF-Linear + AsymLoss 

Figure 8. Forecasted SMP for Each Model-Loss Configuration Compared to Actual Market Prices 

 

Table 2 presents the resulting charge and discharge SMP prices derived from forecasted outputs of each model 

under the rule-based strategy. While all models managed to produce at least one reasonably aligned charging 

or discharging price, most exhibited imbalances or inconsistencies that limit their reliability for practical 

application. Notably, with the exception of the (3) LTSF-Linear + DILATE configuration, one of the predicted 

SMP values deviated by more than 10% from the actual values, raising concerns about their real-time 

applicability. In contrast, the proposed (5) LTSF-Linear + AsymLoss model demonstrated closer alignment 

with actual SMP prices, providing a economical benefit. These results reinforce the practical value of the model 

in V2G market operations, where accuracy directly impacts profitability.  
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Table 2: Determined SMP Price for Each Model-Loss Configuration  

 
 

5 Conclusion 

 
As renewable energy adoption increases to reduce greenhouse gas emissions, maintaining real-time balance 

between electricity supply and demand has become increasingly challenging. Electric vehicles, through 

vehicle-to-grid technology, offer a promising solution by providing flexible, distributed energy resources 

capable of dynamic market participation. 

 

Our LTSF-Linear model with AsymLoss function outperformed conventional approaches, particularly during 

volatile market periods. By accurately capturing directional changes and predicting turning points, the model 

delivers substantial economic benefits for EV scheduling strategies, demonstrating its practical utility for V2G 

implementation in dynamic electricity markets. 

 

This work supports ongoing national efforts in advanced energy demand management, including participation 

in the “2024 First Energy Technology Development Program” led by the Korea Institute of Energy Technology 

Evaluation and Planning (KETEP). The developed SMP forecasting model will serve in real-world V2G 

markets to determine optimal bidding prices for thousands of EVs, positioning our approach as a core 

technology for energy demand management.  

 

Future work will focus on developing lightweight versions of the loss function for more practical applications 

and incorporating additional exogenous variables to enhance forecasting accuracy. Through these continued 

efforts, we aim to advance V2G implementation and contribute to the sustainable integration of renewable 

energy resources into power systems. 
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