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Executive Summary 

This study explores the potential of using a model-free Reinforcement Learning (RL) approach to optimize 
Electric Vehicle (EV) charging scheduling for participation in the Belgian imbalance market, on the use case 
of an office parking. Motivated by changing regulations enabling smaller assets like EVs to participate in 
ancillary markets, the study aims to develop a smart charging strategy that minimizes charging costs by 
leveraging imbalance price volatility. The proposed problem was formulated as a Markov Decision Process 
(MDP), and an RL agent was subsequently trained to optimize the charging schedule. The proposed approach 
balances economic gains with considering the target SOC, offering promising benefits for grid flexibility and 
revenue generation. Results demonstrate that the proposed RL strategy outperforms uncoordinated and smart 
charging in the day-ahead market with respect to charging cost, achieving negative average charging costs 
by leveraging price fluctuations.  
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1 Introduction 
With the rapid global adoption of EVs, the increasing number of vehicles poses potential challenges to the 
grid demand and stability if not properly managed. However, these challenges also present opportunities, 
particularly through the use of Electric Vehicles’ (EVs) battery capacities for ancillary services [1]. European 
regulations are changing to allow smaller assets with fast responses times, like EVs and Battery Energy 
Storage Systems (BESSs), to participate in ancillary markets [2]. In response, Elia, Belgium's transmission 
system operator (TSO), is adjusting its framework to make this possible [3]. In the context of various ancillary 
markets, promising options for EVs to actively participate as new players include Frequency Containment 
Reserve (FCR), automatic Frequency Restoration Reserve (aFRR), and the imbalance market. The imbalance 
market is particularly promising due to its lower regulatory barriers and the potential for direct contracts with 
Balance Responsible Parties (BRPs). Additionally, it is an attractive market because there is no minimum 
capacity requirement, making it accessible for more participants. A BRP is a privately owned legal entity 
responsible for managing and balancing one or more access points on the transmission grid [4]. With the 
liberalization of the European electricity market, BRPs have taken on increased responsibility for their system 
balancing, although TSOs continue to play a role in this process [4]. The TSO ensures overall grid reliability 
by monitoring, coordinating, and taking corrective actions to maintain a balanced and stable power system 
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[4]. An imbalance for BRPs stands for the discrepancy between the planned and actual energy consumption 
or generation during a specified time frame. Smart charging strategies offer a solution for BRPs to improve 
grid stability and flexibility inside their portfolios [5]. This research aims to evaluate the economic feasibility 
of EV participation in the Belgian imbalance market and to assess the potential of model-free RL in learning 
optimal policy for smart charging to adapt efficiently to the dynamic of this market. 

 
2 Literature Review 
Integrating EVs and BESSs to provide ancillary services has gained significant attention in research [5], with 
authors formulating stochastic and optimization models for BESS [6] [7]. In [6], authors developed a service 
stacking strategy for residential BESS to enhance renewable energy sources integration by leveraging 
flexibility in ancillary services markets. Paper [7] introduces a stochastic Model Predictive Control (MPC) 
methodology for BESS that enables implicit balancing in European balancing markets by optimizing out-of-
balance decisions in real-time. However, it is argued in [8] that model-based methods are not suitable for this 
problem due to their nonlinear and nonconvex nature, so they proposed model-free solutions. Additionally, 
the uncertainty in integrating BESS and EVs into ancillary markets is important because the accuracy of 
these model-based methods relies on how precise their approximations are. This means that sudden changes 
in market dynamics can impact the accuracy of these predictions and, as a result, affect the outcomes. 

Moreover, on top of the imbalance price volatility, EVs, as non-stationary assets, have additional 
uncertainties such as arrival time, departure time, initial state of charge (SOC), required energy, and the 
number of available EVs in the parking lot, which need to be addressed.. While paper [9] addresses 
uncertainty in future energy demand within a day by using scenario modeling for EV charging schedules, it 
also acknowledges a key limitation, the reliance on past requests to predict future demands. This dependence 
can lead to scheduling inefficiencies, particularly when unforeseen changes in user behavior arise. In this 
study, the model does not predict future market prices; instead, it relies solely on current market data and 
EVs information.  

 
3 Methodology 
 
3.1 Model-Free Reinforcement Learning 

Model-free RL methods do not require prior knowledge or an explicit model of the environment. Instead, by 
interacting directly with the environment, the agent learns to adapt itself to the system dynamics and 
accommodate for inherent uncertainties through experience to maximize cumulative reward [10]. This 
method simplicity is especially useful when the environment is complex, stochastic, or partly observable 
since it does not require an understanding of how actions affect the environment. Although it comes at the 
cost of reduced sample efficiency, meaning the agent may need more interactions to learn an effective policy. 
Model-free RL is depicted in Figure 1. In contrast, model-based RL simulates future states and rewards using 
a model of the environment's dynamics and reward function, allowing the agent to plan and make decisions 
without solely relying on direct interaction experience.  

Some popular model-free RL methods are Q-learning, Deep Q-Networks, policy gradient methods, and 
Actor-Critic methods. Proximal Policy Optimization (PPO), as a member of policy gradient category, is 
chosen among these due to its balance of stability, sample efficiency, and ease of implementation, making it 
suitable for a wide range of applications [11]. The policy gradient method's purpose is to directly optimize 
the policy, which is the strategy the agent uses to decide what action to take in each state by adjusting the 
parameters to maximize the anticipated cumulative reward. The set of interactions of an agent with its 
environment (actions, states, rewards) from a starting state to an ending state is called an episode. PPO is 
developed to address the instability and high variance inherent in earlier policy gradient methods, which 
frequently resulted in unstable learning processes and suboptimal performance. By incorporating a clipping 
mechanism within the objective function of the new policy, PPO ensures that policy updates are significant 
enough to yield meaningful improvements while remaining sufficiently constrained to prevent instability. In 
PPO, deep neural networks are utilized as function approximators to represent both the policy and the value 
function, allowing the algorithm to efficiently navigate complex environments and large state spaces. A 
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detailed explanation of the objective function employed for policy updates can be found in [7]. 

 
3.2 Markov Decision Process Formulation for EVs Smart Charging 

The EV smart charging can be formulated as Markov Decision Process (MDP) which provides a 
mathematical structure for stochastic sequential decision-making problems. The MDP is formally defined as 
a 5-tuple (𝒮,𝒜,ℛ,𝒫, 𝛾). Here 𝒮 represents the state space, 𝒜 denotes the discrete action space, ℛ: 𝒮 ×𝒜 →
ℝ indicates the immediate reward function, 𝒫: 𝒮 × 𝒮 ×𝒜 → [0,1] signifies the unknown state transition 
probability distribution. The discount factor 𝛾 ∈ (0,1] indicates the importance placed on future rewards 
relative to immediate ones [12]. At each time step 𝑡, the agent observes the current environment state 𝑠! ∈ 𝒮 
and selects an action 𝑎! ∈ 𝒜 in response. As a result of this action, the agent receives a reward 
value ℛ(𝑠! , 𝑎!) and transitions to a new state 𝑠!"# ∈ 𝒮 according to the state transition probability 
distribution 𝒫(𝑠!"# ∣ 𝑠! , 𝑎!). The MDP formulation for EV smart charging within the imbalance market can 
be structured as follows: 

 
3.2.1 State: 

In this study, these selected episode for the RL is a randomly selected  specific day and charger. Once training 
is completed, the developed policy is implemented across all chargers, enabling efficient management of the 
EV charging process based on the learned strategies. At each timestep, the observation space, referring to the 
set of possible inputs or states the agent can perceive from its environment, is defined as follows: 
𝑆! = #𝑇! , 𝑇"#$, 𝑆𝑂𝐶! , 𝜋)!%&'*      (1) 

Where 𝑇! is the timestep on that day, 𝑇$%& represents the specific timestep during the day when the EV, is 
scheduled to depart. 𝑆𝑂𝐶! is the SOC of the EV at the timestep t, and the 𝜋;!'() is the forecasted imbalance 
price of the system. A forecast of the imbalance price is used because TSO calculates it at the end of each 
quarter-hour based on the activated balancing resources. It is assumed that EV users provide their 𝑆𝑂𝐶!*+,%! 
and departure time (𝑇"#$) when they connect their car to the charger, and that this information is known in 
advance. 
 
3.2.2 Actions 

It requires defining appropriate actions that the agent can select during its interaction with the environment. 
For this study, a discrete action space is considered, containing three possible actions, as detailed below: 

𝑎! ∈ 𝐴, 	 𝐴 = {0,
1
2 × 𝑃&()

*+ , 𝑃&()*+ } (2) 

Where 𝑃(*-./  is the maximum rate of the EV charger in kW. Thus, 𝑎! represents the action chosen by the 
agent, which can be idle, charge at half rate, or charge at the maximum rate. While the two actions (0 and 
𝑃(*-./ ) are straightforward—indicating whether the EV is charging with maximum rate or not—introducing 
a third action (#

0
× 𝑃(*-./ ,) allows for more nuanced control over the charging process. Selecting the half-rate 

charging option allow the agent to charge during periods of slightly elevated electricity prices without 
completely forgoing the charging process.  

 

Figure 1. Model-Free reinforcement learning diagram 



4 EVS38 International Electric Vehicle Symposium and Exhibition  

3.2.3 Reward function 

The reward function is depicted in equation (3). It consists of a cost-based term and a term to capture the 
degree to which the charge is successfully completed. The complexity of the reward function (Equations 3-
10) is a direct consequence of the multi-objective nature of the EV charging problem in the context of 
imbalance market participation, where the  primary objective is to maximize charging revenues (minimize 
charging cost), while trying to fulfill the charging needs of the driver, meaning the EV reaches its target SOC 
by the departure time set by the driver. Simple reward functions, such as those based solely on imbalance 
price cannot adequately capture this essential trade-off. Therefore, a well-designed reward system with a 
clear reward-penalty structure is implemented to promote desirable behaviors, such as achieving the target 
SOC and minimizing expenses, while also discouraging adverse outcomes like excessive costs or insufficient 
energy delivered to EVs. This is particularly important, given the complexities of EV smart charging in the 
imbalance market, which include stochastic imbalance prices, varying EV arrival and departure times, and 
differing initial SOCs.  

The reward at each timestep (3), comprises two components: the stepwise cost and energy delivery-related 
term, reflecting the agent's need to align with the EV driver's charging preferences. The weighted factors α 
and β are employed to adjust the influence of each respective term. 

𝑟! =	𝛼 × 𝐶𝑜𝑠𝑡! 	+	𝛽 × 𝐸𝑛𝑒𝑟𝑔𝑦_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦_𝑓𝑎𝑐𝑡𝑜𝑟!  (3) 

𝐶𝑜𝑠𝑡! = −
𝑎!
𝑃&()ch ×

𝜋)!imb 

𝜋)&()imb × 𝑏! 							 ∈ [−1, 1] 
(4) 

The cost formula in equation (4) is the  chosen action 𝑎! by the agent at time t , normalized by the maximum 
charging power 𝑃&()ch , multiplied with the imbalance price 𝜋)!imb  , normalized by the maximum imbalance 
price (𝜋)&()imb ) observed in the dataset,  and 𝑏!, which is a binary variable that takes the value of 1 when the 
EV is connected to the charger and 0 when it is not connected. is Normalization is done to ensure 𝐶𝑜𝑠𝑡! 
ranges from [-1, 1]. The imbalance price can be either negative or positive: a negative price means money is 
received from the TSO, while a positive price indicates a payment to the TSO is required. To respect this 
convention, a negative sign is added to the cost formulation in equation (4). 

The 𝐸𝑛𝑒𝑟𝑔𝑦_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦_𝑓𝑎𝑐𝑡𝑜𝑟 component, as outlined in Equation (5), comprises two essential terms: 
charging progress (6), which measures the change in the EV SOC, and the penalty component (10), which 
measures the deviation of the SOC (𝑆𝑂𝐶!) to the target SOC (𝑆𝑂𝐶,-./0,), both at each time step 𝑡 and at the 
end of the charging session (𝑡 = 𝑇102 ). The charging progress term component quantifies the increase in the 
SOC of the EV by calculating the change in SOC over time, scaled by an urgency factor. The 
𝑇𝑖𝑚𝑒_𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒_𝑈𝑟𝑔𝑒𝑛𝑐𝑦_𝐹𝑎𝑐𝑡𝑜𝑟	in (7) is a dynamic metric that quantifies the urgency based on the 
remaining time until departure. It acts as a crucial gauge of urgency, facilitating decision-making in time-
sensitive situations. Without considering the remaining time, the RL agent might prioritize minimizing cost 
too heavily in the early stages, leaving insufficient time to reach the target SOC as the departure time 
approaches. In the equation (7), ρ represents a baseline level of urgency, while μ indicates the sensitivity to 
time, defining how urgency increases as the departure time approaches. Equation (7) is normalized in (8) by 
dividing by 𝜌 + 𝜇, which represents maximum possible value of (7). These values were calculated based on 
trial and error in this study. Also 𝛥𝑆𝑂𝐶! divided by 𝛥𝑆𝑂𝐶(*-	equation (9) to normalize the SOC change. 
Where 𝐶%1 is the maximum capacity of the EV battery and 𝜂./ is the efficiency of the charger in equation 
(9). 

𝐸𝑛𝑒𝑟𝑔𝑦_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦_𝑓𝑎𝑐𝑡𝑜𝑟! =		Charging_Progress!
345& + 𝑃𝑒𝑛𝑎𝑙𝑡𝑦!345& (5) 

𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔_𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠! 	= 	∆𝑆𝑂𝐶! 	× 	𝑇𝑖𝑚𝑒_𝑆𝑒𝑛𝑠𝑠𝑖𝑡𝑖𝑣𝑒_𝑈𝑟𝑔𝑒𝑛𝑐𝑦_𝐹𝑎𝑐𝑡𝑜𝑟	 (6) 

𝑇𝑖𝑚𝑒_𝑆𝑒𝑛𝑠𝑠𝑖𝑡𝑖𝑣𝑒_𝑈𝑟𝑔𝑒𝑛𝑐𝑦_𝐹𝑎𝑐𝑡𝑜𝑟	 = 	𝜌 +	
𝜇

𝑚𝑎𝑥(1, 𝑇"#$-	𝑡) (7) 

Charging_Progress!
345& =

𝛥𝑆𝑂𝐶!
𝛥𝑆𝑂𝐶&()

×
𝜌 + 𝜇

𝑚𝑎𝑥(1, 𝐼dep − 𝑡)
𝜌 + 𝜇 							 ∈ [0,1] (8) 

𝛥𝑆𝑂𝐶&() =
𝑃&()*+ × 𝜂*+ × 𝛥𝑡

𝐶#6  (9) 



5 EVS38 International Electric Vehicle Symposium and Exhibition  

𝑃𝑒𝑛𝑎𝑙𝑡𝑦! =

⎩
⎪⎪
⎨

⎪⎪
⎧−

#𝑆𝑂𝐶!(57#! −	𝑆𝑂𝐶!* × 𝑏!
𝛽 × 𝑆𝑂𝐶!(57#!

							 if 𝑡 < 𝑇102

−	
#𝑆𝑂𝐶,-./0, − 𝑆𝑂𝐶8!"#*	

𝑆𝑂𝐶!(57#!
			  if 𝑡 = 𝑇102 and 𝑆𝑂𝐶8!"# < 𝑆𝑂𝐶,-./0,

	1				  if 𝑡 = 𝑇102 and 𝑆𝑂𝐶8!"# = 𝑆𝑂𝐶,-./0,

 (10) 

The penalty component designed as equation (10), when the time t has not yet reached the departure timestep 
(𝑇234), the penalty is calculated as the normalized deviation from the requested 𝑆𝑂𝐶!*+,%!. This time 
dependent signal allows the RL model to receive feedback every action step, in contrast to the other 
component which is a single penalty at the departure time which would not offer sufficient opportunity for 
the model to adjust its strategy. To avoid this component having disproportionate influence due to being 
calculated at every connected timestep before departure, the first condition is divided by β, the scaling factor 
of the full 𝐸𝑛𝑒𝑟𝑔𝑦_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦_𝑓𝑎𝑐𝑡𝑜𝑟 . Upon reaching timestep 𝑇234, the penalty factor assumes a negative 
value if the departure SOC is less than the level requested by the EV driver, and a positive value of 1 if the 
SOC satisfies the specified threshold. The penalty factor falls within the range [-1, 1]. 

 
3.2.4 State Transition 

Within the MDP framework, system dynamics are characterized by a state transition probability function, 
denoted as 𝛲. In the context of the EV smart charging problem, this probability function is unknown due to 
the uncertainties related to each EV presence and imbalance price. Consequently, the agent seeks to estimate 
the state probability distribution through its interactions with the environment. Nonetheless, the state 
transition for the 𝑆𝑂𝐶!	is governed by 𝑎! and can be explicitly represented as follows: 

𝑆𝑂𝐶!9: = 		𝑆𝑂𝐶! +	
𝑎! 	× 𝜂*+ × ∆𝑡

𝐶#6  (11) 

 
3.3 Benchmark charging methods 

 
3.3.1 Uncoordinated charging method 

Then uncoordinated charging method is the current charging method where EVs charge exclusively on the 
driver's preferences and schedule, disregarding any broader effects on the power grid or charging 
infrastructure. Typically, EVs begin charging at a maximum rate as soon as they connect to the charger and 
continue to consume energy until fully charged [13]. 

 
3.3.2 Model Predictive Control charging method 

The model predictive control charging method effectively addresses the challenges posed by the 
uncoordinated charging of EVs. Unlike uncoordinated charging, MPC utilizes a proactive approach by 
considering energy demands and optimizing charging schedules to minimize costs while reaching the desired 
SOC for users. At each timestep, MPC repeatedly solves an optimization problem that considers current 
conditions, including grid status, energy prices, and EV charging requirements future energy demand and 
consumption. We use the model developed in [13] applied to our use case. This smart charging control not 
only meets the energy demands of EV drivers but also achieves global minimization of charging costs. 

 
4 Case Study 
The proposed framework is depicted in Figure 2. The simulation consists of an office equipped with 10 EV 
chargers, operating under exposure to imbalance market prices. The historical data required for the imbalance 
and day-ahead markets was collected from the TSO, while the EV data consists of a historical dataset of 
charging sessions at a commercial office building in Belgium. After preprocessing, this data is divided into 
training and validation datasets to train and fine-tune the RL model. Finally, a test dataset is used to evaluate 
the final model's capabilities. 
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4.1 Dataset electricity market  

In this study, the electricity data comprises day-ahead and imbalance prices sourced from the Elia open data 
website, which can be accessed at [14] (the historical data section in Figure 2). The year 2023 was chosen to 
represent current market conditions due to its recent and relevant data. Elia publishes two types of imbalance 
prices: the 15-minute-based price and the 1-minute-based price. The 15-minute-based price serves as the 
reference for imbalance settlements for BRPs. It represents the real imbalance price calculated at the end of 
each quarter-hour period and is subject to a validation process by TSO to ensure accuracy. In contrast, the   
1-minute-based prices are derived from non-validated data. These prices reflect the instantaneous system 
imbalance and the cumulative activated regulation volumes on a minute-by-minute basis. They are intended 
to provide BRPs with additional insights into the grid’s real-time status and the adjustments being made [15].  

BRPs manage imbalances across their entire portfolios, and EV parking lots—whether through aggregators 
or direct contracts with BRPs—can actively participate in the imbalance market by offering flexibility 
services. There is no minimum size requirement, as it is dependent on the contractual agreement with the 
BRP. As depicted in Figure 3, the frequency of negative imbalance prices is particularly high during peak 
office parking hours (8:00–18:00), with the highest occurrence rate of 35% around noon. Most imbalance 
prices, in 2023, are concentrated in the pricing bin ranging from -69.95 €/MWh to 344.83 €/MWh, a range 
that spans approximately 414.8 €/MWh. With an appropriate strategy targeting this pricing window, there is 
significant potential to decrease the cost of charging. The maximum observed imbalance price during the 
simulation period was 1450 €/MWh, which was used to normalize the imbalance price data. 

Figure 3. Belgium’s market of imbalance price for 2023, Negative price frequency percentage in each hour  

Figure 2. Proposed framework for EV smart charging in the imbalance market 
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In electricity markets, a baseline refers to the scheduled level of energy consumption or generation, serving 
as a reference point to compare against actual levels and identify imbalances. In the use case, we define a 
zero-baseline consumption to be cleared day-ahead. By defining a zero-baseline scenario, every power of the 
EV parking facilities is considered a deviation from the baseline and will be exposed to the imbalance prices, 
and do not engage the day-ahead market. The setup allows for a focused assessment of the implications of 
relying exclusively on the imbalance market, giving insight into both its potential cost advantages and risks. 
Since the EV parking lot participates with a zero baseline and combining individual EVs does not yield 
additional advantages in this context, a unified smart charging strategy has been developed and applied to all 
chargers. The approach is scalable as it standardizes decision-making across the entire charging 
infrastructure, eliminating the need for individualized control logic. This uniformity enables integration and 
expansion, allowing the system to easily adapt to additional chargers and growing EV fleets. 

4.2 Dataset charging sessions 

The case study focuses on an office parking lot equipped with 10 charging points. The charging sessions, 
defined by their arrival times, parking durations, and energy requirements, are derived from a historical 
dataset of charging sessions at a commercial office building in Belgium, as detailed in [16]. The simulation 
used data from a 90-day period between July 1st and September 30th, 2023. It was trained on the first 70 days, 
validated on the following 10 days, and tested on the final 10 days. The chargers are considered to have 
maximum power of 11 kW (𝑃(*-./ ). The charger's efficiency (𝜂./) is considered at 90%. For simplicity, it is 
assumed that all EVs have a similar 70 kWh battery capacity (𝐶%1). It is also assumed that each charger can 
accommodate one charging session per day. The arrival and departure times, as well as the SOC, can assume 
any values in range of (0,1]. The 𝑆𝑂𝐶!*+,%! is set to 1, indicating that EV drivers aim to fully charge their 
vehicles. In this paper, after several trials and adjustments, the parameters α and β were set to 1 and 32, 
respectively. In equation (8) the 𝜌 and 𝜇 are 0.25 and 2, respectively. These values adjust the magnitude of 
rewards and penalties at each timestep, thereby considering that the impact of each component is balanced 
and proportionate within the optimization framework. 

 
4.3 Reinforcement Learning hyperparameter 

Reinforcement learning hyperparameters play an important role in training agents because they control how 
quickly and effectively an agent learns optimal policies. A fine-tuning of hyperparameters can enhance 
performance and convergence rates, whereas a poor choice may result in slow learning or suboptimal 
solutions. In this study, the Optuna library [17] is utilized to identify the optimal hyperparameters for this 
problem. Optuna is a robust framework for hyperparameter optimization that updates the search for the best 
parameters using advanced optimization techniques. The result of the hyperparameters is reported in Table 
1. The simulation is executed in a Python environment, utilizing Stable-baselines3 [18] for reinforcement 
learning. This framework provides a collection of reliable reinforcement learning algorithms in Python, 
offering a user-friendly and efficient interface for training and assessing RL agents. Given the complexity of 

Table 1. PPO Hyperparameters Optimized by Optuna 

Hyperparameter Explanation Range Optimal 
Value 

learning_rate The learning rate [1e-5 - 1e-2] 17e-5 

n_steps The number of steps to run for each environment per update [192 - 672] 576 

batch_size Minibatch size [192 - 672] 480 

clip_range Clipping parameter [0.1 – 0.5] 0.34 

gamma Discount factor [0.9 – 0.999] 0.985 

ent_coef 
controls the weight of the entropy term in the loss function, 
promoting exploration by encouraging a more diverse action 
distribution 

[0.1 - 0.8] 0.34 

vf Value Network hidden layer size [32 - 256] [32, 64] 
pi Policy Network hidden layer size [32 - 256] [128, 128] 
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the problem, the PPO model was trained for 20000 episodes, with each episode representing a full day. For 
each episode, the RL chooses a random day and a random EV on that day, then trains and gathers the required 
information to use as experience. 

 
4.4  Key performance indicator 

This subsection outlines the criteria used to evaluate the performance of charging strategies in both the day-
ahead and imbalance markets. To evaluate the technical and economic performance of the configurations, as 
well as the primary reward equation presented in equation (3), the following key performance indicators 
(KPIs) are utilized: 

• Charging cost: the total cost related to pay or receive from the market (€/kWh).  

• Energy delivery: Defined as the percentage of the total energy supplied to EVs during charging 
relative to the total energy required to achieve a fully charged state, expressed as a percentage (%). 

 
5 Results 

 
5.1.1  Day-ahead market 

To facilitate a comprehensive comparison, the first scenario is in the day-ahead market using two methods: 
uncoordinated and MPC charging. Table 2 presents the findings for the period from 21 to 30 September 2023. 
A total of 83 charging sessions took place during this period. The total cost for uncoordinated charging 
amounts to €216.60 for charging 2282.23 kWh. The MPC method achieved a price reduction to €170.4 while 
successfully charging all EVs, resulting in 100% energy delivery. 

 
5.1.2 Uncoordinated charging in the imbalance market 

This scenario is designed to assess the impact of exposing charging operations to the imbalance market price 
in the absence of smart charging algorithms. To ensure a fair comparison across all the scenarios, a simulation 
was also conducted over the same 10-day test period and reported in Table 2. As shown in Table 2, this 
scenario resulted in a slight reduction of 5.2% in total cost compared to uncoordinated charging in the day-
ahead market. Nonetheless, it is observed that it still could not outperform the MPC method in the day-ahead 
market. 

 
5.1.3 Imbalance market with knowledge of 15-minute prices 

As mentioned in Section 4.1, the actual imbalance price is revealed at the end of each 15-minute interval. RL 
method was tested under the assumption that only the next 15-minute imbalance prices were perfectly known 
in advance. This idealized scenario provided a simplified environment to demonstrate the RL model’s 
theoretical capabilities. The RL agent must develop an optimal policy without knowledge of future prices 

Table 2.  Comparative results of charging scenarios 

Charging Simulation Market kWh Charged Total Cost 
(€) 

Cost per kWh 
(€/kWh) 

Percentage of 
Energy delivery 

Uncoordinated charging Day-
Ahead 2282.26 216.76 0.094 100 

MPC method Day-
Ahead 2282.26 170.43 0.074 100 

Uncoordinated Charging 
in Imbalance price Imbalance 2282.26 205.38 0.09 100 

Knowing 15-min 
Imbalance price Imbalance 2206.93 -45.84 -0.027 96.7 

1-min imbalance price Imbalance 2079.14 -29.47 -0.01 91.1 
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while observing the state represented by 𝑆! = #𝑇!, 𝑇"#$, 𝑆𝑂𝐶!, 𝜋)!%&'*.  

In this scenario, each day consists of 96 timesteps (24 × 4). The simulation run on a MacBook Pro (with M3 
MAX CPU and 48 GB RAM) took 190 minutes. The total cost is €-45.84, indicating that the BRP receives 
money from the TSO. The total energy delivery is 2206.93 kWh, resulting in an energy delivery rate of 
96.7%. Among the 83 charging sessions, two EVs departed with SOC levels below 90%, registering values 
of 85% and 88%, respectively. 

In Figure 4, the policy developed by the RL agent using PPO is displayed. The heatmaps illustrate a dynamic 
charging policy in function of the imbalance price and SOC. To reduce the four-dimensional state space of 
Equation (1) to a 2-D plot based on SOC and imbalance price, the other two variables are fixed. For this plot, 
the arrival time is set at 8:00 AM and the departure at around 6:00 PM, reflecting typical office hours in 
Belgium. The probability distribution generated by the PPO algorithm (shown in Figure 4) reflects how likely 
the agent is to choose each possible action in a given state. This framework allows the agent to balance 
exploration and exploitation by giving higher probabilities to actions that are more beneficial, while still 
occasionally selecting less likely actions. The probability distribution refines over time as the agent 
accumulates experience, providing a more optimal policy through iterative learning processes. When the 
training phase is complete, the learned policy is used deterministically. At each time step, based on the SOC 
and the normalized imbalance price while also considering the known departure time, the agent consults the 
policy and selects the action with the highest probability. As it is seen from Figure 4, when the SOC is low 
(0% to ~30%) the model shows a preference for charging at the maximum rate (100%) even when faced with 
slightly positive prices (up to ~0.25). This aggressive charging behavior rapidly increases SOC to prevent 
energy deficits, possibly disregarding cost considerations. As the SOC increases, the model starts to adjust 
its charging strategy. It tends to reduce the charging rate in response to elevated prices. The width of the no-
charge charging also expands slightly during this stage, reflecting a more cautious approach. When the SOC 
exceeds 70%, the model shows a notable tendency to defer charging, even amid low positive or negative 
prices. This suggests a strategic wait for further price reductions before engaging in charging at the 100% 
charging rate. The model shifts from an aggressive, cost-neutral approach at low SOC to a balanced strategy 
at intermediate SOC, and finally to a conservative, price-conscious position at high SOC. 

Figure 5 illustrates the charging progress for a representative day, where the RL agent applies the policy 

Figure 4. Policy developed with PPO by knowing 15-minute imbalance price 

Figure 5. Charging progress of sample day (23/September/2023) 
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outlined in Figure 4 to make state-dependent decisions for a sample state. The left vertical axis of this plot 
shows SOC values in yellow and the EV presence with a green line. The right vertical axis displays the 
normalized imbalance price, which is depicted in purple. For instance, EV1, which connects to the charger 
with a moderately high SOC (75%), employs a cautious charging strategy by initially selecting a 50% 
charging rate. This approach enables EV1 to mitigate exposure to periods of marginally elevated imbalance 
prices, strategically deferring charging until more advantageous pricing conditions arise. Conversely, for 
EV7, which connects with a low SOC (21%), the agent adopts a full charging rate despite a moderately high 
positive imbalance price to promptly elevate the SOC to an intermediate level; when more favorable pricing 
conditions arise later, additional charging is implemented, resulting in a final SOC of 95%, which is deemed 
acceptable. The RL agent does not guarantee a globally optimal result; rather, it iteratively approximates the 
best possible pricing outcome by exploiting available observations and experiences. 
 
5.1.4 Imbalance market with knowledge of 1-minute prices 

Given that having prior knowledge of the exact next 15-minute imbalance price is unlikely, this section 
assumes that the 1-minute data discussed in Section 4.1 can be used as a prediction to participate in the 
imbalance market. These 1-minute prices offer an approximation of market conditions, allowing the model 
to account for real-world conditions. In this section, the RL agent makes decisions at one-minute intervals, 
consistent with the one-minute granularity of the forecasted imbalance prices. However, the real total cost is 
calculated using the actual imbalance price, which is validated at the end of 15-minute intervals with the 
TSO. Due to the increased number of timesteps, this scenario training took 280 minutes. 

Here, the final policy is similar to the 15-minute policy. It is depicted in Figure 6. At low SOC levels (0%–
30%), the agent predominantly selects a 100% charging rate, displaying insensitivity to moderately positive 
normalized imbalance prices (up to ~0.25) to quickly accumulate energy. In the intermediate SOC range 
(30%–70%), the likelihood of using the full charging rate declines under higher prices, with a shift toward 
either a 50% rate or no charging, reflecting growing cost awareness. At high SOC levels (above 70%), the 
agent mainly opts for no charging, even when prices are neutral or slightly negative, indicating a strategy to 
take advantage of potentially lower future prices. 

Figure 7 illustrates that for most of the time, the minute-based predictions (shown in black) closely track the 
actual imbalance prices (shown in purple) measured at the end of each 15-minute interval. However, 

Figure 7. Charging progress of sample day (23/September/2023) in minute granularity 

Figure 6. Policy developed with PPO for a 1-minute imbalance price 
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discrepancies do occur. For instance, between 10:00 and 11:00 AM, the predicted imbalance price was 
approximately 0.2 (normalized), while the actual imbalance price was negative. In this scenario, the agent 
refrained from charging to avoid high costs, thereby forfeiting an appropriate charging opportunity. As 
reported in Table 2, compared to the previous scenario, this approach resulted in an approximate 35% 
increase in cost. Nonetheless, it continues to exhibit clear advantages relative to uncoordinated charging or 
exclusive participation in the day-ahead market. Among the 83 EV charging sessions, nine vehicles departed 
with a state of charge (SOC) below 90%, ranging from 77% to 89%. To achieve a full charge, there's a trade-
off between penalty and cost optimization—a higher penalty can boost energy delivery but also increase 
overall costs. For example, when 𝛽 was raised from 32 to 50 in a simulation, the total cost increased by 
28.3%, while energy delivery increased by 2%. 

 
6 Discussion 
The results demonstrate the advantages of smart charging strategies in the day-ahead and imbalance markets. 
The MPC method in the day-ahead market reduced costs by about 22% compared to uncoordinated charging, 
highlighting its effectiveness in optimizing expenses without compromising energy delivery. In the 
imbalance market, uncoordinated charging yielded a total cost of €205.38, a decrease of 5.2% compared to 
the day-ahead market, but it was still outperformed by the MPC method. Furthermore, the scheduling 
charging with the RL using the 15-minute imbalance price data resulted in enhanced financial performance 
with a cost of €-45.84 and corresponding to an energy delivery rate of 96.7%. The RL based on using 1-
minute predictions of the imbalance price resulted in €-29.47 and the delivery rate of 91.1. Compared to the 
15-minute imbalance price scenario, this is an increase in costs of approximately 35%, and a reduction of 
energy delivery by 5.8%. These findings indicate that while costs increased in the scenario utilizing 1-minute 
predictions, this approach, which reflects more closely the real market conditions, still yields good results 
and thus provides a practical, usable framework. Despite the increased costs, this method still resulted in 
lower expenses compared to the uncoordinated charging and day-ahead market approaches. 

 
7 Conclusion 
This study explored the economic feasibility and technical viability of utilizing model-free RL to schedule 
EV charging to facilitate participation in the Belgian imbalance market. This research demonstrates that an 
RL-based smart charging strategy effectively employs EV battery flexibility to minimize charging costs and 
generate revenue by using imbalance price volatility. The approach enabled the RL agent to reduce costs and 
meet most charging needs by utilizing price fluctuations, especially negative imbalance prices during peak 
office hours. The proposed framework was tested using 2023 imbalance price data and simulated charging 
sessions at an office parking lot with 10 charging points under different scenarios, to the research compared 
the performance of uncoordinated charging and MPC-based smart charging in the day-ahead market, 
uncoordinated charging in the imbalance market, and two RL-based scenarios in the imbalance market, one 
with perfect 15-minute price knowledge and another using 1-minute forecasted prices on the specified use 
case. In the RL scenarios, negative average charging costs (-0.027 €/kWh and -0.01 €/kWh) indicate that RL 
agents can learn policies that make use of imbalance price volatility, transforming EV charging from a cost 
center to a revenue possibility. Compared to the higher costs of 0.074 €/kWh for the MPC method, 0.094 
€/kWh for uncoordinated charging in the day-ahead market, and 0.09 €/kWh for uncoordinated charging in 
the imbalance market, this approach offered greater cost-effectiveness. 

Despite the highest revenue generated by the scenario assuming perfect knowledge of 15-minute prices, the 
practical simulation based on 1-minute price data was still able to generate revenue, showing that the RL 
approach is capable despite inherent market uncertainty and forecast imperfections. However, this economic 
benefit came at the cost of slightly reduced energy delivery (~91-97%) compared to methods guaranteeing 
full charges (MPC and uncoordinated methods). This highlights an important trade-off between cost 
optimization and meeting user charging expectations, suggesting the necessity for further sensitivity analysis 
on reward parameters and structures, along with the potential for additional safety mechanisms. Multi-year 
analyses and simulations help to fully evaluate the performance of the developed RL method in the 
dynamically evolving Belgian imbalance market. With the rapid adoption of EVs and the increasing 
importance of grid flexibility, such smart charging and market-aware charging strategies are crucial to 
structure a resilient energy system. 
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