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Executive Summary 

Greenhouse gas emissions from heavy duty vehicles (HDVs) must be drastically reduced. Battery 

electric trucks (BETs) are the main option for low-carbon road freight transport, but they require a 

recharging infrastructure. However, a thorough cost analysis of public charging is lacking, especially 

for the Megawatt Charging System (MCS). Here we review existing individual MCS studies and add 

cost estimates for MCS. Our analysis shows that utilisation is the most important metric for MCS 

infrastructure costs. Individually, the levelized cost of MCS charging infrastructure in 2050 can be 

reduced to €0.03-0.07/kWh for MCS. A fleet-wide public and depot infrastructure for Europe would 

cost about €6.6-10.8 billion (or 2.9-4.7 €cents/km) per year for BETs.  Our results quantify the 

infrastructure costs of HDVs to support policy decisions between competing low carbon road transport 

technologies. 
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1 Introduction 

 

1.1 Motivation  

Heavy duty vehicles (HDV) are responsible for a large share of greenhouse gas emissions from road transport. 

In the European Union (EU), heavy-duty trucks and buses (> 3.5 t GVW) are responsible for 7% of greenhouse 

gas emissions [1]. Battery electric trucks (BET) are currently considered the most promising option for zero-

emission HDV [2,3]. However, they require a dedicated fast charging infrastructure. The Megawatt Charging 

System (MCS) standard, currently under development, would enable BETs to operate over long distances by 

charging at over 500 kW during regulated breaks. MCS charging would thus complement the expected depot 

charging [4]. 

 
1.2 Existing Literature  

The international standard for the technical specification of the megawatt charging system is currently under 

development and expected to be finalized by 2025. For interim charging for trucks, approximately 400 kWh to 

be charged in 30 to 45 min, 750 kW average power or up to 1.5 MW peak power are sufficient [4]. The MCS 

standard is planned to cover up to 3.75 MW peak power (3,000 A, 1,250 V) [5]. However, simulations with 

different charging strategies show that a maximum power of 2.8 MW per charging point will probably be 

sufficient for trucks, even in demanding scenarios [6].  

Megawatt charging infrastructure will require extensive electricity grid connection, making energy management 

and potentially buffer batteries necessary. Typically, charging locations will be connected to the medium-

voltage grid (10 - 30 kV) with a corresponding transformer. One charging location with several charging points 

will be a local low voltage grid (0.4 kV). Each charging point will contain an AC/DC converter to supply direct 

current to the vehicles via an actively cooled cable. As most charging processes are likely not to require 

megawatt charging [4], megawatt charging could be combined with charging infrastructure for lower charging 

capacities, e.g. 100 to 350 kW, at one location. 

The expected price per kWh to be paid for charging a truck is the sum of various components. These include 

the cost for electricity (energy price and power price from grid operator), the cost for the initial connection of 

the charging stations to the grid (CAPEX), the cost for the chargers themselves (CAPEX and OPEX) as well as 

taxes, levies, and a profit margin for the charge point operator (CPO). In addition, further real-life costs usually 

not included when building charging stations can include the purchase of land, building of a roof and other 

costs. In the existing literature, vehicle costs have received considerable attention, e.g. as total cost of ownership 

(TCO) for vehicles [7], but infrastructure costs have received little interest so far [8]. For BETs, several studies 

have calculated the required number of public fast chargers and fast charging stations, e.g. Shoman et al. [12] 

and Speth et al. [13] for Europe, Speth et al. [14] and Hurtado-Betran et al. [15] for the USA. Other studies have 

focused on optimal locations [16] and station sizing [17]. However, none of them analysed the total costs of 

refuelling and charging infrastructure for BET.  

 
2 Data and Methods 
2.1 Simulating MCS Demand 

We analyse all daily trips from 2400 HDV in Germany including starting time, trip purpose, distance and 

duration as well as stop duration. We simulate each HDV as BET with fixed battery capacity and the minimal 

required charging power during stops of at least 30 min duration to fulfil all daily driving. The data and method 

are taken from [4] are described therein. 

 

2.2 Calculating MCS charging station cost 

To ascertain the total energy per year, it is necessary to make assumptions regarding the average utilisation of 

HRS or MCS pools over a period of many years. One complexity arises from different notions of “utilisation” 

in the literature. For example, fast charging station utilisation may refer to “time utilisation”, i.e., the share of 

hours per year a vehicle is connected to the chargers, or to “energy utilisation”, i.e. the share of energy delivered 

compared to the energy that could theoretically be delivered if all chargers were operating at full power all the 
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time. 

We include one-time investments, such as CAPEX and annual operational and OPEX. The OPEX values 

comprise two distinct aspects: a fixed component pertaining to the maintenance of the technologies and a 

variable component that incorporates the operational costs. To make the technologies comparable we follow 

standard economical modelling [58] and distribute to costs over the good’s lifetime in T years with an interest 

rate i:  

𝑆𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑛𝑢𝑎𝑙 𝑐𝑜𝑠𝑡𝑠 = 𝐶𝐴𝑃𝐸𝑋 ∗
(1+𝑖)𝑇+𝑖

(1+𝑖)𝑇−1
+ 𝑂𝑃𝐸𝑋    (1) 

We use an interest rate i = 3.5 % throughout with technology specific lifetimes (15 years) for depot and MCS 

charging points. This assessment aims to consider the MCS network costs along different time horizons. To 

ascertain the costs associated with the MCS infrastructures, it is necessary to compare the total costs per year 

with the total energy delivered per year. The resulting values will be expressed in €/kWh electricity. Thus, the 

levelized cost of stations (LCOX), that can be H2 (LCO H2) or electric (LCO kWh), has been defined as: 

𝐿𝐶𝑂𝑋 =
𝑆𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑛𝑢𝑎𝑙 𝑐𝑜𝑠𝑡𝑠

𝑦𝑒𝑎𝑟𝑙𝑦 𝑋
        (2) 

In Equation (2), 𝑋 stands for the yearly refuelled H2 or kWh depending on the respective station.  

The key assumptions for the MCS charging stations including several charging points are summarised in the 

following table. 
Table 1: Assumptions for MCS charging stations 

 

Parameter Unit 2025 2030 2035 2040 2045 2050 

Number of Chargers - 4 8 8 8 8 8 

Power kW 1000 1000 1000 1000 1000 1000 

Permanently available power kW 500 800 900 1000 1000 1000 

Hardware Costs - low k€/MW 336.6 3030 273 245 221 199 

Hardware Costs - high k€/MW 460 437 415 395 375 356 

Installation - low k€/MW 94.5 85.1 76.5 68.9 62.0 55.8 

Installation - high  k€/MW 114 108 103 98 93 88 

Grid Connection k€ 900 900 900 900 900 900 

OPEX share of CAPEX - 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 

Energetic Utilization  - 4% 5% 10% 11% 12% 12% 

Demand Utilization - 16% 20% 40% 44% 48% 48% 

 

Table 1 outlines key cost and utilization assumptions for megawatt charging systems (MCS) from 2025 to 2050, 

providing insight into both infrastructure development and economic evolution over time. The number of 

chargers increases initially from 4 in 2025 to 8 by 2030 and remains constant thereafter, each offering 1000 kW 

of charging power. However, the permanently available power grows progressively from 500 kW in 2025 to a 

full 1000 kW by 2040, reflecting upgrades in grid capacity and electrical infrastructure. 

Hardware and installation costs show a steady decline in both the low and high scenarios. For instance, low-

case hardware costs drop from 336.6 k€/MW in 2025 to 199 k€/MW by 2050, while high-case values fall from 

460 to 356 k€/MW. Installation costs follow a similar downward trend. The grid connection cost remains fixed 

at 900 k€ across all years, corresponding to a one-time investment and follows the recommendations of the 

German Federal Grid Agency [18] to use the typical grid fee power price component for the grid connection 

fee and we use 150 €/kW as typical value with maximally 60% simultaneity in power demand. Operational 

expenditures (OPEX) are estimated as a consistent 3% of capital expenditures (CAPEX). Utilization improves 

markedly over time, with energetic utilization rising from 4% in 2025 to 12% by 2045, and demand utilization 

increasing from 16% to 48% in the same period. These improvements reflect greater charging demand and 

better load management as the electric truck fleet grows. 
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3 Results 
3.1 Future MCS demand 

Figure 1 shows the simulation results for minimum required charging power. All 2400 truck driving profiles 

were simulated as BET and the lowest power required to charge during existing breaks (of at least 30 min 

duration) to fulfil all driving as BET. Please note that about 10 % of trucks were not electrifiable with the 

assumed range of 400 km and left out of the picture.  

 

Figure 1: Simulation results for minimum required charging power 

The diagram illustrates the daily activity and charging behaviour of electric trucks across three categories: all 

electric trucks, those actively charging, and long-haul electric trucks. For the overall electric truck population, 

most activity is concentrated in the daytime, with most trucks driving between 6:00 and 16:00. Outside of these 

hours, trucks are typically parked, but only a small portion of this idle time is used for charging, primarily via 

slow charging (≤44 kW). This suggests a significant currently unused potential for controlled flexible charging 

during long overnight parking periods. 

When focusing on electric trucks that are charging (central panel), it becomes evident that slow charging 

dominates, accounting for over 90% of charging events, with approximately 80% of this occurring in depots. 

Fast charging using CCS (≤350 kW) and megawatt charging (MCS, ≤1 MW) plays a minor role and mainly 

occurs during midday. This indicates that current operational patterns and depot infrastructure are largely 

sufficient to support most electric truck use cases without high dependency on fast public charging, at least for 

short- and medium-haul operations. 

In contrast, long-haul electric trucks show a markedly different charging profile. In Figure 1, “long-haul” is 

defined das vehicles with more than 500 km per day. While slow depot charging remains significant, fast 

charging with CCS is more common, and megawatt charging becomes substantially more relevant. Around 

75% of MCS charging for long-haul trucks occurs at public stations, highlighting the critical need for a widely 

distributed high-power public charging network to support continuous, long-range operations. This segment of 

trucking, therefore, requires targeted infrastructure deployment to ensure operational reliability and efficiency. 

Overall, the chart underscores the diversity of charging needs in the electric truck sector and the importance of 

segment-specific planning for infrastructure and grid integration. 

In summary, depot charging with less than 100 kW can be expected to be the dominating charging option, but 

that MCS will be needed for long-haul BET. 

 

3.2 MCS station costs 

Figure 2 shows the results for the expected long-term per kWh cost for MCS charging based on the 

assumptions shown above.  
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Figure 2: MCS annual station cost in M€ for high- and low-cost assumptions (left) 

and MCS station costs in €/kWh for 2025 to 2050 (right). 

The line chart illustrates the projected development of the levelized cost of charging (LCOC) via Megawatt 

Charging Systems (MCS) from 2025 to 2050 under two scenarios: one with low utilization and one with high 

utilization of the charging infrastructure. The LCOC, measured in euros per kilowatt-hour, represents the 

average cost of providing electricity via MCS over the system's lifetime, incorporating both investment and 

operating costs. 

In 2025, costs are significantly higher in the high-utilization scenario (€0.27/kWh) than in the low-utilization 

case (€0.173/kWh), reflecting the higher upfront investment and relatively limited usage in the early 

deployment phase. However, as utilization improves over time and infrastructure costs are amortized over a 

growing user base, both scenarios show a strong decline in LCOC. By 2035, costs converge, with the high-

utilization scenario reaching €0.10/kWh and the low-utilization scenario dropping further to €0.056/kWh. This 

downward trend continues at a slower pace toward 2050, when LCOC levels off at around €0.07/kWh for the 

high-utilization scenario and €0.034/kWh for the low-utilization scenario. 

The chart highlights two key conclusions. First, early deployment phases are cost-intensive, especially under 

high infrastructure rollout scenarios. Second, higher infrastructure utilization over time is critical to achieving 

lower charging costs. The sharp cost decline suggests significant economies of scale and technological 

improvements, underlining the importance of coordinated deployment and increasing vehicle adoption to ensure 

the economic viability of high-power charging networks for electric trucks. 
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Figure 3: MCS annual station cost in M€ for high- and low-cost assumptions (left) 

and MCS station costs in €/kWh for 2025 to 2050 (right). 

 

Figure 3 shows the results for the annual MCS station costs in two scenarios from 2025 to 2050, 

distinguishing between capital expenditures (Capex) and operational expenditures (Opex). For each five-year 

interval, the costs are shown under two scenarios: low and high-cost assumptions for MCS. In all years and 

scenarios, capital costs constitute the dominant share of total annual costs, indicating that upfront investments 

in infrastructure and equipment are the most significant financial component of deploying MCS charging 

networks. 

In the short term (2025–2035), high-cost scenarios lead to higher annual costs, with total values approaching or 

exceeding €0.7 million per year, while low-cost scenarios are closer to €0.5 million. However, after 2035, a 

notable trend emerges: in several years, such as 2040 and 2045, the low-cost scenarios show relatively constant 

or even decreasing total costs, while high-cost scenarios show more variability but also a relative plateau or 

slight decline in Capex. By 2050, the difference between low and high scenarios becomes less pronounced, and 

overall costs slightly decrease compared to earlier years. 

This suggests that while early-stage deployment requires large investments, economies of scale, technological 

improvements, or more efficient deployment strategies might reduce per-unit infrastructure costs over time. 

Additionally, as infrastructure matures, the relative share of Opex becomes slightly more important in later 

years, emphasizing the need for operational efficiency and maintenance strategies to manage long-term cost 

sustainability. Overall, Figure 3 highlights that MCS infrastructure deployment will be capital-intensive in the 

coming decades but may stabilize or become more manageable as the market matures. 
 

4 Summary and Conclusion 

This paper assesses the cost dynamics of megawatt charging systems (MCS) for electric trucks in Europe through 

two key indicators: annual system costs and levelized cost of charging (LCOC). The analysis considers both low 

and high-cost scenarios from 2025 to 2050. Results show that annual MCS costs are initially 0.5 – 0.8 M€ per 

year and decrease over time. The LCOC declines substantially in both scenarios, dropping from €0.27/kWh to 

€0.07/kWh in the high case and from €0.173/kWh to €0.034/kWh in the low case. These trends underline the 

long-term cost competitiveness of high-power charging infrastructure as electric truck adoption increases. 

The findings suggest that early investment in megawatt charging infrastructure is economically justified, if 

utilization increases over time. Achieving low charging costs by 2035 and beyond depends on a coordinated 

rollout strategy and sufficient demand aggregation. Therefore, policy support and targeted infrastructure planning 

are essential to unlock the cost-saving potential of MCS in heavy-duty transport. 
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