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Executive Summary 

Dynamic wireless charging (DWC) plays an important role in addressing range anxiety for electric vehicle 

(EV) owners and achieving extensive EV propulsion revolution. With real-time electricity prices and traffic 

conditions, DWC navigation is necessary for EVs to reduce the total cost. This paper first formulates a two-

layer dynamic charging routing model to minimize EVs’ travel and charging costs. Then, a shortest-path-

based method is proposed to solve the model and extract low-dimensional features from real-time stochastic 

information. The optimal charging navigation strategy is finally obtained under unknown system 

uncertainties by feeding the system state containing extracted advanced features into the popular deep 

reinforcement learning algorithm, proximal policy optimization. Numerical results on a test traffic network 

demonstrate the effectiveness of the proposed method. 
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1 Introduction 

Wireless power transfer (WPT) technology has witnessed remarkable advancements over the past decades, 

enabling efficient and contactless energy transmission. Breakthroughs in magnetic resonant coupling [1], soft-

switching techniques [2, 3], and multi-frequency configurations [4, 5] have significantly enhanced the 

reliability, efficiency, and flexibility of WPT systems. These technical improvements have laid a strong 

foundation for expanding WPT into diverse domains. WPT has found applications across various sectors 

beyond consumer electronics. In manufacturing and healthcare, WPT has enabled contactless heating [6] and 

actuation [7]. In industrial automation, wireless motor drives [8, 9], lighting systems [10], and industrial 

wireless networks [11] have been successfully deployed. Furthermore, innovations in impedance control [12], 

misalignment reduction [13], and long-range power transmission [14], have extended WPT’s usability in 

complex environments. These applications collectively demonstrate WPT’s growing maturity and readiness 

for large-scale integration [15]. 

Among the most promising frontiers for WPT is the electrification of transportation. Wireless charging offers 

an attractive alternative to plug-in methods, particularly for electric vehicles (EVs), by enabling automation, 

reducing wear, and enhancing user convenience [16−18]. With the rise of smart mobility, researchers have 
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explored efficient voltage balancing [19], magnetic quasi-resonant coupling [20], frequency modulation [21], 

and cyber-secure protocols [22] to ensure robust wireless EV charging solutions. One of the most 

transformative applications is dynamic wireless charging (DWC), which allows EVs to be charged while in 

motion. DWC systems overcome the limitations of short driving ranges and long charging times by providing 

energy on the go [23−26]. Recent innovations include quasi-omnidirectional charging systems [23], frequency-

autonomous controls [24], and sizing of inductive power pads [25], which enable seamless power delivery 

during vehicle transit. The integration of magnetic extenders [14] and energy-encrypted transmitters [27] 

further enhances the adaptability and safety of DWC infrastructures. 

The evolution of DWC reflects a broader shift toward sustainable, uninterrupted electric mobility. As EV 

adoption accelerates, DWC not only offers a scalable solution to charging infrastructure gaps but also plays a 

pivotal role in achieving zero-emission transportation goals [28]. It is therefore foreseeable that dynamic 

wireless charging systems (DWCS), particularly those based on charging lanes, will become an essential 

component of the electrified transportation network (ETN) in future smart cities. To ensure EV owners enjoy 

efficient and convenient travel and charging experiences, it is crucial to investigate user-oriented dynamic 

charging navigation problems that integrate route planning with real-time charging decisions in a complex 

urban environment. 

Existing studies have focused on EV charging navigation to static charging stations. For example, [29] 

proposes a rapid-charging navigation system for EVs, which is modular to protect drivers’ privacy. 

Crowdsensing and queue theory are utilized in [30], aiming at reducing travel costs and addressing waiting 

time at charging stations. [31] presents a distributed algorithm for the joint routing and charging scheduling 

problem, which reduces computational complexity and protects user privacy. [32] proposes a two-stage 

algorithm to optimize EV routing and charging while reducing computational complexity by decomposing the 

problem into linear programming problems. However, due to the characteristics of DWCS, dynamic and static 

charging routing models are significantly different in terms of charging facility modeling, path constraints, and 

objective functions [33]. These differences require researchers to build new models and solution methods 

tailored specifically to the characteristics of DWC. 

On the other hand, under uncertain charging prices and traffic conditions, real-time EV charging navigation is 

a challenging sequential decision-making problem with uncertainty. Traditional optimization approaches rely 

heavily on prior knowledge about these uncertainties [34, 35], which is often not available or accurate in 

practice. Reinforcement learning (RL) methods that do not rely on explicit models have emerged as effective 

tools for handling sequential decisions, especially in environments characterized by uncertainty. Therefore, 

some work in recent years has applied it to EV applications in smart grids, including the EV charging 

navigation problem [36, 37]. However, directly using raw high-dimensional data can make it difficult for the 

agent to learn the underlying patterns and relationships necessary for effective decision-making [38]. Existing 

RL algorithms are desired to be combined with efficient feature extraction methods. 

Based on these gaps, we formulate a two-layer dynamic charging routing model to minimize EVs’ travel and 

charging costs. Then we prove that the lower-layer problem can be decomposed into two single-source 

shortest-path (SP) problems. Accordingly, an SP-based method is proposed to efficiently solve the model while 

extracting low-dimensional features from stochastic information. The extracted features are then fed into the 

RL network, and proximal policy optimization (PPO) is utilized to adaptively learn optimal charging and 

routing strategies for EVs without prior system uncertainty data. 

2 Problem Formulation 

2.1 Two-Layer Optimization Problem 

The UETN can be represented by the directed graph ( ),= , where  is the set of nodes (traffic 

junctions) and {( , ) | ( , ) , }i j i j i j     is the set of edges (roads). Adjacent nodes are always 

bidirectionally connected in the studied network, meaning that if ( , )i j  , then ( , )j i  . Let 
ch   

denote the set of edges with charging lanes. Fig. 1 shows the configuration of an edge 
ch( , )m n  . 

By utilizing real-time information from power and transportation systems (i.e., charging prices and average 

velocity on edges), the EV manages to minimize both travel and charging costs. Enumerating the charging 

lanes in the set 
ch

, we formulate a two-layer optimization problem to be solved at the beginning of each step 

t . A charging lane ( , )m n  is selected at the upper layer, and the SP from the current node tloc  to the ending 
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node 
endn  passing the selected charging lane ( , )m n , the corresponding optimal travel cost 

tr ,

,mn tC 
, and the 

battery level 
me  at the entry m  of the charging lane ( , )m n , are determined at the lower layer. 

Underground

Converter, energy 

storage, and controller
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grid

Charging lane
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Figure 1: Configuration of an edge with charging lane 
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Constraint (2) defines the charging cost 
ch

,mn tC  on charging lane ( , )m n , where ch [ ]mn t   is the predicted value 

of the fluctuating charging price on edge ( , )m n  at time t  and 
ch

mne  is the charging energy on edge ( , )m n . 

Constraint (3) requires 
ch

mne  to be the smaller of the EV battery consumption 
max

me e−  and the max charging 

capacity 
ch,max

mne  of edge ( , )m n . As calculated in (8), me  is the battery level when the EV arrives at node m, 

the entry of the charging lane ( , )m n . Constraint (4) gives the definition of 
ch,max

mne , where 
chp  is the DWC 

power and [ ]mn tv   is the predicted value of the random vehicle speed on edge ( , )m n  at time t . Constraint 

(6) and (7) ensure a connected route from current node tloc  to the ending node passes the selected charging 

lane ( , )m n . The binary decision variables ijx  and ijy  indicate the driving route before and after charging, 

respectively. 

2.2 Shortest-Path-Based Solution 

Theorem: Given the selected charging lane ( , )m n  and the values of ( , ){ [ ]}ij t i jv   , LLP is equivalent to two 

single-source SP problems with nonnegative edge weight. 

Proof: Let  
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be the weight of edge ( , )i j , for each ( , )i j  . Since all the components are non-negative, we have 0ijw  . 

Then LLP can be decomposed into the following two sub-problems: 
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which are two single-source shortest-path problems in the same direct graph  with non-negative edge weight 

ijw . The single sources for (11) and (12) are node tloc  and node endn , respectively. Both of the problems can 

be solved by Dijkstra’s algorithm. 

Based on the above theorem, an SP-based method is proposed to solve LLP before the EV arrives at the 

charging lane. Let the sequence 

 ( )1 2

, , , ,, ,..., end

m t m t m t m tL L L L=  (13) 

with ,

end

m tL m= , denote the optimal path from the current location 
1

,m t tL loc=  to the start of the charging lane 

( , )m n  determined at step t. Therefore, the battery level of the EV upon its arrival at the charging lane ( , )m n  

can be calculated as follows: 
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2.3 Markov Decision Process Formulation 

With collected uncertainty data updated, DWC navigation can be formulated online via a finite Markov 

decision process (MDP) with unknown transition probability. The event-driven control is adopted since the 

EV selects the next route when it arrives at a node. Let t  denote the step of the MDP and 
t  be the time at the 

beginning of step t . 

1) State: The system state at step t  is given by: 
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2) Action: Given the system state at step t , the EV takes an action by selecting a charging lane ( , )m n  in 
ch

: 

 ( , )ta m n=  (16) 

and taking a step en route ,m tL  to the selected charging lane. 

3) Transition process: The state transition of the first two elements of ts  is controlled by the action ta : 

 2 2

1 , ,tt a t m tloc L L+ = =  (17) 

 1

1 max

t tloc loc

t t

d
SoC SoC

e


+

+ = −  (18) 

where 
2

,m tL  is the second node on the optimal path ,m tL  as defined in (13). The state transition of other elements 

in ts  are not only controlled by the action ta , but also influenced by the uncertain data. It is challenging to 

learn the system uncertainties and establish the analytical transition model from ts  to 1t+s . Therefore, RL is 

adopted in Section 3 to learn the state transition probability implicitly. 

4) Reward: The reward at step t  corresponding to state ts  and action ta  can be defined as: 
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where 
1tloc +
 is derived from (17). When the EV has not arrived at m , the start of the target charging lane, the 

reward is the negative equivalent weight of edge ( )1,t tloc loc + , i.e., the travel cost; when the EV has arrived at 

m , the reward is the sum of the negative charging cost on edge ( )1,t tloc loc +  and the negative travel cost from 

node 
tloc  to the ending node (using the data obtained at step t ). 

3 Proposed RL-Based Method 

3.1 Overview of the Scheme 

PPO is an online policy gradient-based RL algorithm that has gained significant attention in recent years. It 

strikes a favorable balance between sample complexity, simplicity, and wall time. In the absence of prior data 

on system uncertainties, PPO updates the policy parameters based on the observed rewards and states. The 

policy learned by PPO determines the probability distribution of actions, which the agent uses to choose the 

next action to take. The overall scheme of the proposed PPO-based method is shown in Fig. 2. 
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Figure 2: Overall scheme of the proposed method 

At each step t , the smart EV observes the basic states and receives updated predicted data from power and 

transportation systems (the green arrows in Fig. 2). The SP-based solution for LLP extracts advanced feature 

states from the collected predicted data (the red arrow in Fig. 2). After necessary data preprocessing (cf. the 

next section), basic states and advanced features are together fed into the deep neural network (the purple arrow 

in Fig. 2). PPO updates the network weights (the blue arrow in Fig. 2) based on the reward signal and processed 

states. The action to be taken, i.e., the charging lane to be passed through, is then selected by sampling from 

the probability distribution generated by the policy network. Following the optimal route to the selected 

charging lane, the smart EV travels to the next node. The data from power and transportation systems will be 

updated and the process will be repeated until the EV arrives at the entry of a designated charging lane. 

3.2 SP-PPO Algorithm 

The PPO algorithm alternates between sampling data through interaction with the environment, and optimizing 

a surrogate objective function using stochastic gradient ascent. To avoid stepping too far with each update and 

accidentally causing performance collapse, specialized clipping in the objective function is given as follows: 
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where the expectation  ˆ ...t  indicates the empirical average over a finite batch of samples, and   is the 

clipping hyperparameter. ( )tr   is defined as the probability ratio of the current policy to the old policy, i.e., 
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ˆ
tA  is an estimator of the advantage function, and here we use the Generalized Advantage Estimate (GAE) to 

obtain it [39]. The total loss is combined with the value function error VF
tL  and the exploration term S  to 

enable parameter sharing and ensure sufficient exploration, which is written as: 

  ( )1 2
ˆ( ) ( ) ( )CLIP VF S CLIP VF

t t t tL L c L c S    + +  = − + s  (22) 

where 1c  and 2c  are coefficients. The proposed SP-PPO algorithm is summarized in Algorithm 1. 

Algorithm 1 SP-PPO Algorithm 

  1:  Initialize policy and value function parameters   

  2:  for episode = 1: M  do 

  3:      Randomly pick up startn  and endn , satisfying start endn n  and ch
start end,n n  −  

  4:      Generate the initial state 0s  

  5:      while EV not in ch  do 

  6:          Select a charging lane as action ta  from the policy network and get corresponding route ,m tL   

  7:          Take a step along route ,m tL , observe reward tr , receive updated data,  

              and generate new state 1t+s  

  8:          Store transition ( )1, , ,t t t ta r +s s  in buffer   

  9:          if   is full do 

10:               Calculate loss function according to (22) 

11:               Update   via stochastic gradient ascent 

12:               Release   

13:          end if 

14:      end while 

15:  end for 

Algorithm 1 follows the general training structure of PPO, and our major work is further illustrated as follows. 

In line 3, the locations of the starting node and ending node are randomly selected among the non-charging 

nodes, which provides diversity to training samples. In line 4 and line 7, the advanced features in both the 

initial state 0s  and the subsequent state 1t+s  are generated by the SP-based solution. It should be noted that 

before feeding the updated and extracted features into the network, necessary data prepossessing, especially 

data alignment, must be performed. For example, since the current node tloc  may be adjacent to a different 

number of nodes, , ( , ){ [ ]}t tloc j t loc jv    can have variant lengths while iterating over the state. The length of the 

optimal route ,m tL  depends not only on the locations of the starting and ending nodes but also on the EV 

movement. Therefore, appropriate padding or truncating needs to be applied for input data alignment. Suppose 

the length of , ( , ){ [ ]}t tloc j t loc jv    is set to a  and the first b  elements of ,m tL  are selected, the dimension of the 

input state should be ch( 2) | | 3b a+ + + . 

4 Performance Evaluation 

4.1 Implementation Details 

To evaluate the effectiveness of the proposed method, we simulate it on the main road network of Beijing, 

China, which includes 41 nodes and 12 charging lanes (comprising 6 bi-directional segments equipped with 

wireless charging, as illustrated in Fig. 3). Specifically, red segments have limits of either 50 km/h or 60 km/h, 

orange roads allow speeds up to 80 km/h, green ones permit 90 or 100 km/h, and blue routes accommodate up 

to 120 km/h. The travel speeds on these roads are sampled from truncated normal distributions whose means 

and standard deviations are proportional to their speed limits. 

Additionally, the dynamic charging prices are also modeled using truncated normal distributions with different 

statistical characteristics for each charging lane. The considered EV is assumed to have an 80 kWh battery, 

where the initial state of charge iniSoC  is randomly sampled from a uniform distribution in the range of 0.4 to 

0.6. The wireless charging power 
chp  on each charging lane is taken as 30 kW [40]. The starting and ending 

locations startn  and endn  are drawn randomly from the set of all nodes excluding the charging lane network. The 

probabilistic parameters used in the experiments are listed in Table I. We assign  = 0.15 kWh/km [37] and 
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set e = 0.7673 CNY/kWh, which reflects the average charging price applicable to non-local residents in 

Beijing. Moreover, based on the statutory minimum hourly wage in Beijing as of July 1, 2023, the EV user’s 

time value tq  is estimated at 25.3 CNY/hour. 
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Figure. 3: Main road network of Beijing city with charging lanes equipped 

 

Table 1: Probabilistic parameters 

 Distribution Boundary 

Speeds on red segments (km/h) 
2

red red red~ (0.5 ,(0.15 ) )v N v v  red red0 v v   

Speeds on orange segments (km/h) 
2

orange orange orange~ (0.5 ,(0.15 ) )v N v v  orange orange0 v v   

Speeds on green segments (km/h) 
2

green green green~ (0.5 ,(0.15 ) )v N v v  green green0 v v   

Speeds on blue segments (km/h) 
2

blue blue blue~ (0.5 ,(0.15 ) )v N v v  blue blue0 v v   

Dynamic charging prices 
ch 2~ (0.5 ,(0.15 ) )mn N c c  0.3 0.7c   

Initial SOC of the EV 
ini ~ (0.4,0.6)SoC U  ini0.4 0.6SoC   

 

In RL-based methods, the deep neural network consists of three fully connected layers of 128 units with the 

ReLU activation function. We set the discount factor 0.99 = , the learning rate 0.0003 = , the batch size 

| | 64B = , and other hyperparameters as in [41]. All experiments are implemented in Python 3.9 and executed 

on a workstation configured with an Intel Core i9-13900K CPU and an NVIDIA GeForce RTX 4090 GPU. 

The deep learning models are developed using the PyTorch library, ensuring compatibility with CUDA 

acceleration for efficient training and inference. 

4.2 Benchmark Case Studies 

In this section, we benchmark the performance of various methods in solving the DWC navigation problem of 

EVs. The notation and explanation of each method are as follows. 

(1) SP-PPO: the method proposed in this paper; 

(2) SP-DQN: the SP-based deep Q-learning (DQN) method; 

(3) SP-A2C: the SP-based advantage actor-critic (A2C) method; 

(4) Regular PPO: the PPO method adopting high-dimensional raw data as network inputs; 

(5) Regular DQN: the DQN method adopting high-dimensional raw data as network inputs; 

(6) SP-RHO: the SP-based rolling horizon optimization (RHO), which solves the two-layer optimization 

problem in an online event-triggered manner but only takes the computed action for the current timestep. 

4.2.1 Training Process 
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Given t 25.3q =  CNY/hour, the learning curves of the first 40,000 episodes of the RL-based methods are 

shown in Fig. 4, in which each method converges to its optimal value. Note that across different tq  

configurations, the learning curves display consistent patterns. 
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Figure. 4: Smoothed learning curves of the first 40,000 episodes of the RL-based methods 

In Fig. 4, the SP-PPO and SP-DQN methods converge to better solutions than their regular versions, 

demonstrating the advantage of integrating SP-based solutions into RL algorithms. For the three SP-based RL 

methods, SP-PPO and SP-DQN converge to almost the same point and outperform SP-A2C. However, if we 

look at the entire learning curve, the training process of SP-PPO is quite stable while SP-DQN starts learning 

from a very poor policy. 

4.2.2 Testing Results 

The larger the value of tq , the greater the urgency of time the EV owner has. After training under different tq  

settings, the performance of the various methods on the testing set is compared in Fig. 5. 

10 20 30 40

Time value  (CNY/h)

0

10

20

30

40

50

60

SP-PPO SP-DQN SP-A2C

Regular PPO Regular DQN RHO

T
o

ta
l 

c
o

st
 (

C
N

Y
)

tq
 

Figure. 5: Total cost vs. time value for different methods 

Compared to the regular PPO method, SP-PPO reduces the mean and standard deviation of cost by 

approximately 33% and 25%, respectively; similarly, SP-DQN reduces the mean and standard deviation of 

cost by about 26% and 20%, respectively, compared to the regular DQN method. The performance gap between 

regular RL methods and SP-based RL methods demonstrates the advantage of adopting SP-based solutions to 
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extract effective features and reduce the dimensionality of the state space for RL algorithms. Compared to the 

SP-RHO method, SP-PPO exhibits a 21% reduction in the mean value of cost, with the standard deviation 

remaining largely unchanged. The advantage of employing PPO to learn the dynamics of system uncertainties 

is evident in the significant performance gap observed. For the three SP-based RL methods, the proposed SP-

PPO has almost the same mean reward as SP-DQN, but the standard deviation of reward is slightly smaller, 

indicating that it is more stable and reliable. SP-A2C performs relatively poorly and may not be suitable for 

this numerical setting. 

4.3 Adaptability to Dynamic Charging Prices 

In Fig. 6, we change the mean of charging price distribution at each charging lane every 200,000 timesteps. In 

Stage 1, SP-PPO starts training with randomly initialized parameters, and after almost the entire period of 

training, the total reward finally rises to about −19 CNY. At the beginning of Stage 2, the total reward sharply 

drops to −22.5 CNY with a sudden charging price change and converges to −21 CNY at a much faster speed 

than in Stage 1. Similar patterns appear in Stage 3, verifying that the proposed SP-PPO is robust enough to 

adapt to real-time charging price changes after pre-training with initial parameters. 

 
Figure. 6: Learning curve of SP-PPO method under dynamic charging prices 

4.4 Real-World Validation on Large-Scale Network 
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Figure. 7: Learning curve of SP-PPO method using real-world data 

To examine the real-world effectiveness of the proposed method, a simulation environment is built using actual 

road layouts and EV-related data. A central urban region in Beijing, consisting of 506 intersections and 1,348 
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roads, is selected as the ETN under study [42]. The area is assumed to include 19 charging lanes, with charging 

prices aligned with charging piles based on time-of-use rates [43]. Real-time traffic data [44] for five weekdays 

(Dec 7, 8, 10, 11, and 14, 2015) are used, where the first four days serve as training data and the last day for 

testing. 

As shown in Fig. 7, SP-PPO converges within 5,000 episodes, achieving a reward of −4.25 CNY; on a test set 

of 10,000 episodes, the average reward and standard deviation are −4.30 CNY and 1.87 CNY, respectively. 

The training process and testing results are both quite satisfactory, which verifies the scalability of the proposed 

SP-PPO on large-scale networks. 

5 Conclusions 

This paper studies the DWC navigation problem under unknown uncertainties for individual EVs in UETNs 

deployed with charging lanes. A two-layer dynamic charging routing model is formulated to minimize the 

travel and charging costs for EVs. Then, an SP-based method is proposed to solve it efficiently. To overcome 

the curse of dimensionality, low-dimensional solutions containing stochastic traffic and electricity information 

are incorporated as part of the system state. Finally, an event-triggered MDP is constructed, and PPO is utilized 

to learn the system dynamics and generate the optimal DWC navigation strategy. Numerical results 

demonstrate the effectiveness of the proposed method. Compared with directly using raw data as RL input and 

the traditional rolling-horizon optimization algorithm, the proposed method reduces costs by 32−35% and 

20−22%, respectively. Its adaptability to dynamic charging prices and scalability on large-scale networks are 

also analyzed, showing the potential for practical operation in the real world. 
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