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Executive Summary

This paper presents an integrated simulation framework that combines agent-based transport modeling
with probabilistic power flow analysis to assess the grid impact of heavy-duty vehicle electrification.
The approach is applied to a case study of fully electrified long-haul road freight in the Skåne region of
Sweden, using high-resolution transport demand data and an actual power grid model. The agent-based
model produces probabilistic charging demand profiles for each station, which are then used as input to
a probabilistic load flow simulation. The simulation estimates the resulting loading of substation trans-
formers, including the probability of transformer overload. The simulation results show that in one-third
of the studied substations, the maximum transformer loading exceeds 100% following the introduction
of truck charging. Peak charging demand typically occurs from late morning to noon, aligning with the
early stages of logistics operations. Interestingly, truck charging can reduce reverse power flows and
mitigate the risk of curtailment in areas with high wind power penetration. These findings highlight the
value of integrated transport–energy simulations for planning resilient infrastructure and guiding targeted
grid reinforcements.

Keywords: Electric Vehicles, Heavy Duty electric Vehicles & Buses, Fast and Megawatt charging infras-
tructure, Modelling & Simulation, Power Electronics system

1 Introduction
To realise a zero-emission transportation fleet, a potent action is to electrify. Electrification can be
realized through various energy carrier technologies (e.g., batteries or fuel cells) and re-energization
(e.g., plug-in fast charging, charging while driving, battery swapping, or hydrogen refilling). According
to EU regulation AFIR [1], member states must deploy plug-in fast-charging stations along the Trans-
European Transport Network (TEN-T) core and comprehensive road network by 2025. Projecting the
future charging demand generated by a fully electric transport fleet requires comprehensive datasets
regarding transport movement, valid assumptions for vehicle energy consumption, and potential route
changes imposed by fewer charging opportunities compared to refueling with conventional fuels, as
well as shorter driving ranges. Due to the system-level impacts of electrification — such as changes in
vehicle routing behavior, infrastructure usage, and energy demand patterns — agent-based simulation
and modeling are essential tools for assessing and providing detailed guidance on charging and power
grid infrastructure planning.
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1.1 Literature review
The electrification of transportation introduces new demands on the electric grid, particularly due to
the potential for concentrated and unpredictable charging loads [2]. To address this, some studies have
coupled detailed electric vehicle modeling with power system simulations to assess grid impacts under
different charging scenarios, such as Hu et al. [3]. Another study by Zhou et al. [4] integrates travel
demand estimation and grid constraints into optimizing charging infrastructure. These studies demon-
strate the effectiveness of using detailed transport models to understand the impact of electrification on
the power grid; however, they rely on simplified or aggregated representations of vehicles. This limits
their ability to capture the spatial and temporal variation of a large-scale real-world scenario.
Additional studies have explored the interaction between truck charging profiles, electromobility trans-
port behavior, and their impact on the power grid. From a transportation modeling perspective, Shoman
et al. [5] assess the infrastructure needs for truck charging within a European context, using transport de-
mand models to estimate charging demand requirements. Similarly, Walz et al. [6] present a probabilistic
approach to constructing truck-charging load profiles, offering insight into demand variability. However,
both studies omit power grid simulations, thereby limiting their applicability to integrated infrastructure
planning.
Some studies address this by combining charging demand modeling with grid simulations. Safdarian et
al. [7] integrate power grid analysis with the estimated charging demand of both light- and heavy-duty
vehicles derived from travel surveys and trip data, illustrating the potential of coupling transport and grid
domains. However, their approach lacks detailed transport simulation and energy consumption modeling
at the vehicle level, as the study relies on a simplified energy consumption model that uses constant
values of energy use per mile rather than accounting for variations due to vehicle speed and road slope.
In contrast, Borlaug et al. [8] simulate charging demand from depot-based freight operations and analyze
its impact on the distribution grid, particularly at the substation level. While this work offers detailed
insights into depot charging, it does not extend to en-route charging estimation or broader freight travel
behavior.

1.2 Paper contribution
Previous studies have highlighted the value of integrating the transport and energy domains while also
pointing to a research gap: the need for detailed simulations that account for trip-level energy con-
sumption, en-route charging patterns, and spatial-temporal impacts on the electric power system. This
motivates further research that couples high-resolution transport models, which capture charging demand
for a given charging infrastructure, with power grid simulations to support planning for large-scale truck
electrification.
Several studies explore charging infrastructure planning and demand modeling using both empirical data
and simulation-based approaches. However, challenges remain in capturing the detailed movements of
electrified vehicles and addressing the availability of existing charging infrastructure.
This paper addresses these challenges by introducing a novel combination of two methods: an agent-
based simulation of transportation flows and a probabilistic power grid load simulation, which together
provide a detailed understanding of the impact of electrified vehicles on the total power grid load.
Given the level of detail required in the underlying data and the authors’ access to it, this study focuses
solely on the effect of long-distance, heavy-duty trucks on a specific region in Sweden, namely Skåne.
The method is, however, easily replicable for other regions if sufficient data is provided. The main
contributions of this paper are:

• The integration of an agent-based transport simulation with a one-to-one representation of long-
haul truck transport and a probabilistic load flow (PLF) model for the actual power grid.

• The generation of high-resolution, probabilistic charging demand profiles for heavy-duty vehicles
at the station level.

• A regional case study of Skåne, Sweden, demonstrates how spatially distributed charging demand
from electrified freight transport affects average and peak transformer loading in a real power grid
model.

• A modeling approach can be adapted to other regions or vehicle segments, given suitable transport
and grid data.
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2 Methodology
This paper utilizes two separate models to simulate both the goods transportation and the power grid. In
this section, both methods and their combined interaction are described.

2.1 Agent-based modeling and simulation
To generate a comprehensive spatio-temporal power demand for the probabilistic power grid simulation,
a model providing a detailed insight into goods transport in Sweden is needed. Creating a synthetic
representation of the transport flow enables a realistic simulation of daily transportation patterns.

2.1.1 Modeling a fully electrified Swedish goods transport
The modeled population, representing a fully electrified daily long-haul transport of long-haul truck
agents, is produced from the Swedish Transport Administration’s Swedish National Goods model, Sam-
gods [9], output. Samgods generates optimized goods transport flows based on data on aggregated mon-
etary flows between companies in Sweden. Goods are categorized, and the model selects the most cost-
efficient transport mode for every monetary flow within a category. The resulting output specifies the
annual number of trips for origin-destination (OD) pairs related to goods transportation, including both
domestic and international (imports and exports) transports. In this study, trips originating from foreign
positions are relocated to the most suitable border entry point into Sweden, considering both road and
ferry options.
To convert these aggregated annual transport flows into daily trips for synthetic agents, enabling transport
simulation of a typical day, OD pairs are first filtered and then assigned probabilistically to individual
agents based on the likelihood of their occurrence. This process generates a statistically likely average
day from the annual data. All OD pairs with a daily number of trips higher than once daily will always
be included in the typical day. There are, however, two limitations arising from using yearly data. Firstly,
since no data on day-to-day variations is available, there is no accurate description of how one day af-
fects the next. This makes it impossible to simulate a statistically correct sequence of days accurately.
Secondly, the temporal variation of departure times during a day is unavailable when converting annual
trips to daily ones. The second limitation has successfully been mitigated by obtaining data containing
probability distributions of vehicle type and trip length-specific departure times, provided by truck man-
ufacturers Scania CV AB and Volvo Trucks AB. Since the case study is limited to the Skåne region in
Sweden, a regional filter is applied to the dataset to include only those trips that intersect the area at any
point along their route.
Using available information and a dynamic vehicle simulation model created in MATLAB and Simulink,
vehicle characteristics, such as battery capacity and energy consumption maps dependent on speed and
road inclination, are assigned to each agent. All agents’ OD trips are processed simultaneously, generat-
ing detailed data on energy consumption and battery levels in space and time. Since no data is available
to statistically link one day to the next, variations in the modeled population are introduced by simulat-
ing agents across multiple versions of an average day, each with different battery capacities (i.e., driving
ranges) and initial states of charge (SOC). A conditional assignment of initial SOC values is based on
the trip origin. For trips originating domestically, the initial SOC is drawn from a range of 80% to 100%,
reflecting the possibility of overnight charging. In contrast, the initial SOC is more uncertain for trips
entering the system from foreign origins. It is therefore drawn from a broader range of 20% to 100%,
representing variability in charging conditions prior to border entry. Thereby, the agents’ conditions alter
from one day to the next. A reconstruction of the modeled population is performed at every rerun of the
transport simulation, ensuring that trips not occurring daily are assigned probabilistically according to
their likelihood of occurring. Each simulated day produces a detailed time series of charging power for
each charging station. An overview of the general approach to simulate variations of an average day is
seen in Fig. 1.
The modeled population is processed on the Swedish road network, with information gathered from
OpenStreetMap. The agents are allowed to charge at the locations where truck charging stations are built
or will be built in 2025 as part of the governmental subsidy program ”Regionala Elektrifieringspiloter”
[16]. Since the scenario investigates the impact of public charging infrastructure for a fully electrified
long-haul transport sector, the current infrastructure in 2025 is assumed to be insufficient regarding the
number of available charging points. Therefore, only the planned station locations are considered, and
each station is assumed to have an unlimited number of charging points, each rated at 1 MW. This
ensures that every truck requiring a charge will always be able to do so without waiting. It will also give
the necessary charging demand at each charging station. While analyzing the effects of queuing or power
grid limitations is undoubtedly relevant, it requires assumptions about both the number of charging points
per station and the capacity of the local electricity grid. Estimating the former is challenging given the
limited available data and detailed information about grid capacity, which is classified in Sweden, making
such an analysis infeasible at this stage.
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Figure 1: Simulation procedure showing the process of varying the modelled population to create daily variations.

2.1.2 Simulation of Swedish goods transport
The modeled population of agents is simulated for a total of 24 hours in a mesoscopic transportation
simulation environment called MATSim [10]. MATSim is a simulation framework capable of handling
large-scale transport simulations while also keeping a high level of detail for each simulated transport.
The daily plans of all modeled truck drivers are simulated simultaneously. They are iteratively refined
based on predefined behavioral rules, converging toward a stable state where agents no longer benefit
from changing their plans. The iterative simulation process does not aim for a global optimum and
instead focuses on optimizing individual agents. This makes the simulation process particularly suitable
for this paper’s study, which aims to simulate the self-interested decision-making of truck drivers. The
MATSim runs are iterated until convergence in daily plans is observed, with an additional buffer of
iterations applied afterward, resulting in a total of 20 iterations.
Each agent’s behavior can be mathematically described using a scoring function S as follows:

S =

n∑
i=1

Ufreight −
m∑
j=1

Ptravel,j − Pbattery − Pdelay (1)

where:

• Ufreight,i is the truck activity i at the start or end of the day during loading or unloading (n = 2).

• Ptravel,j represents the penalty incurred by traveling along route segment j from origin to desti-
nation. This is summed for all m route segments. This penalty incentivizes minimizing travel
time.

• This work uses a Pbattery to apply a discrete penalty, which is put relative to one hour of travel
time. This ensures that no plans with detours longer than one hour will be chosen over a plan with
battery depletion.

• Pdelay inflicts a discrete high penalty if the agent fails to reach its second activity on time. This
standard feature of MATSim ensures that the agent is penalized if it never leaves its first activity,
which is possible in rare circumstances.
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In this work, charging activities are pre-planned in a pre-simulation phase, where the agent’s SOC is
estimated spatially along the road network. When the estimated SOC reaches below a randomly selected
threshold between 15% and 40%, which applies to the first 80% of the MATSim iterations. This approach
ensures that multiple charging station options are explored. In the final 20% of iterations, charging
decisions are fixed based on the five highest-scoring plans.
For each MATSim run, each agent will create a route that includes the most efficient charging activities,
provided that sufficient charging infrastructure is available. Each charging activity’s energy transfer and
time are logged. This information is aggregated for all agents, and hourly power demand curves are
generated for each charging station. These demand curves are used as input to the power grid simulation.

2.2 Interface between simulation models
The interface between the simulation models is described in Fig. 2, which describes the ingoing data and
the resulting outputs from the transportation simulation feeding the probabilistic load flow simulation.
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Figure 2: Total overview of the data inflow and outflow when combining the simulation procedures.

2.3 Power grid simulation
A probabilistic load flow (PLF) simulation is run using the simulation tool DIgSILENT PowerFactory
[11] to analyse how truck charging impacts the grid capacity. The grid model used is the actual transmis-
sion (400 kV) and sub-transmission (135 kV) grid model used by the grid owners in the study area. Due
to security constraints, the model can not be shared openly, but some key statistics are listed in Table 1.
The grid has a meshed topology.

Table 1: Grid elements in grid model used.

Element Type Elements in Study Area Element Type
Bus 378 Static
Load 150 Input
Generator 79 Input
Line 198 Output
Transformer 169 Output

The inputs to the PLF simulation are distributions of truck charging loads, base case loads, and generators
in the system. The bootstrapping method [12] is applied to draw random values from the truck charging
load time series generated by the MATSim simulation. For the base case loads, 10 years of historical
hourly data is available, on which the bootstrapping method is applied to draw random values.
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The generators in the study area mainly consist of distributed wind power and combined heat and power
(CHP) plants. Parameterized probability distributions to model wind power plants have been developed
in [13] and are used as input in this study. Wind power generators are modeled using Weibull distribu-
tions, as in:

f(x) =
k

λ
· (x
λ
)k−1 · exp

(
−(x/λ)k

)
(2)

where λ = 0.22 · Prated (Prated being the rated power of the wind power plant) and k = 0.85. These
parameters were calculated in [13] based on historical wind power data in the study area. The CHP plants
are modeled using uniform distributions as described by:

f(x) =

{
1

Pmax−Pmin
, if Pmin ≤ x ≤ Pmax,

0, otherwise.
(3)

where Pmax is the maximum and Pmin the minimum power of the plant.

The different input parameters to the PLF simulation can not be assumed to be independent. Studies have
previously shown that EV charging loads from cars are highly correlated to other loads in the system [15],
which implies that the same may be true for truck charging loads. This is considered by calculating a
correlation matrix from the generated truck charging profiles and the 10-year datasets of basecase loads.
The correlation is then captured in the PLF simulation by using Gaussian copulas [14]. Based on Sklar’s
theorem, a copula C links the random variables X and Y, which have continuous cumulative distribution
functions (CDFs) FX and FY , if their joint distribution can be expressed as

FXY (x, y) = C(FX(x), FY (y)). (4)

The PLF simulation uses 5000 iterations, and the adequacy of this number was decided based on a visual
convergence test.

3 Results and discussion
The combined simulations provide detailed information regarding the charging demand for each agent
and station, as well as the impact of charging stations on the nearest primary substation transformer.

3.1 Charging Load Profiles
As the conditions of the simulated population vary, so does the demand for charging. The resulting
charging demand across all stations is shown in Fig. 3. Peak demand occurs between 9:00 and 12:00,
driven by differences in initial battery levels and vehicle ranges. This time-resolved charging demand
data, capturing within-day variations, is used as input to the power grid simulation.
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Figure 3: Charging demand for long-haul trucks for all stations across all iterations. The hour of peak power
demand is highlighted in red.
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It is important to note that passenger car data is omitted primarily due to the lack of detailed statistics on
departure times for trips. Origin and destination matrices are available for long-distance travel and light-
duty transport. Whilst an essential addition to understanding the full scope of the impact of electrification
on the power grid, assumptions made without a statistical basis for agents’ departure times will dilute
the accuracy of the presented results. This statistical basis could be reached, for example, through a
comprehensive travel survey or the gathering of mobile phone data.

3.2 Grid Capacity Impact
The PLF simulation generates results in the form of probability distributions of transformer and power
line loading. To check the convergence of the PLF simulation, a visual convergence check was made of
the rolling average and standard deviation of the loading of all transformers in the study area. This is
presented in Fig. 4, which shows converging results already at 2 000 PLF simulation iterations.

Figure 4: Convergence plot of the rolling average loading of analyzed transformers.

The PLF simulation shows that the introduction of public truck charging will increase the average and
maximum loading of the primary substation transformers in most cases. Fig. 5 shows the substation
transformers’ maximal loading before and after introducing truck charging. In 6 out of the 18 transform-
ers where truck charging is introduced, the maximal loading exceeds 100 %. However, there are also
two cases (Substations H and R) for which the introduced truck charging results in a lower substation
loading. This can be explained by the presence of distributed wind power generation at those substations,
which causes a risk of high reverse power flows. In this study, some of that power is used to charge the
trucks, thus lowering the loading on the substation. In other cases, the distributed generation may need
to be curtailed to prevent overloading. The simulation in this study does not capture this curtailment but
instead quantifies these risks of high transformer loadings. Fig. 6 plots the average transformer loading,
which increases in all of the substations after the truck charging is introduced.
The grid capacity impact is highly dependent on the size of the primary substation transformer and its
base case loads and generation. This can be seen in Fig. 7, which compares the average truck charging
load per substation with the average loading of the substation transformer. From this graph, it is evident
that the transformer loading does not depend only on the truck charging load. The three substations with
the highest average truck charging load (A, C, and L) do not directly correspond to the three substations
with the highest average transformer loading (G, B, and A). This highlights the need for power systems
simulations and good knowledge on the power grid studied when assessing the grid impact from new
loads on the system.
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Figure 5: Maximum loading of transformer stations in with introduced truck charging (gray) compared to the
reference case (white).

Figure 6: Mean loading of transformer stations in with introduced truck charging (gray) compared to the reference
case (white).

Figure 7: Comparison of average truck charging load (grey) and mean transformer loading (black).
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4 Limitations and future work
The data source represents today’s goods transport demand, and it is vital to understand how this might
change in the future. The Swedish Transport Administration has, since the simulation work of this
paper was conducted, presented prognoses for the evolution of goods transport until 2045. A natural
improvement on this work would be to update the dataset to contain their projected future goods transport
demand. Moreover, this combined modeling approach presents several branching research directions.
The impact of different technologies on the power grid can be analyzed by introducing other charging
possibilities, such as electric road systems and battery swapping. Altering the logistic flows to minimize
charging peak power demand to understand what could be done is also a topic to expand this work upon.

5 Conclusion
This study demonstrates a combined simulation approach that integrates detailed agent-based transport
modelling with a probabilistic power system load flow analysis to assess the impact of large-scale truck
electrification on the power grid. The approach enables a detailed estimation of spatial and temporal
charging demand from electric long-haul trucks, which is an essential input for power grid impact as-
sessments.
The transport simulation results reveal that the charging demand varies significantly depending on the ini-
tial SOC and driving range assumptions. The peak charging demand occurs mainly during the late morn-
ing hours until noon. The method captures possible charging patterns for a detailed origin-destination set
with a supplementary dataset with departure times. These are subsequently used as input to a regional
power grid PLF analysis.
The PLF simulation results show that introducing public truck charging leads to increased average and
peak loading in several primary substation transformers, with six out of eighteen transformers experi-
encing loadings exceeding 100%. However, the study also identifies instances where truck charging
mitigates reverse power flows caused by local wind generation, highlighting the complex interactions
between new loads and existing distributed generation. These results reinforce the need for localised,
data-driven power system modelling when evaluating the grid impact of transport electrification.
The analysis highlights the importance of accurate and detailed input data. While the current study
focuses on long-haul freight due to available statistical support, including passenger vehicle demand
would be a valuable next step, requiring more robust data on departure times. Additionally, incorporating
future goods transport forecasts, as the Swedish Transport Administration provided, would strengthen the
relevance of such simulations for long-term infrastructure planning.
Finally, the modelling framework presented here is extensible and opens several branches for future
research, including the evaluation of alternative charging strategies (e.g., battery swapping or electric
road systems), logistic adaptations to reduce power peaks, and coordinated planning between transport
and energy sectors. These directions will be crucial in supporting a resilient and scalable electrification
of heavy-duty transport.
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