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Executive Summary 

Integrating modular, scalable battery management systems introduces an additional layer of complexity, 

especially when managing applications with heterogeneous cell chemistries. To address this, this paper 

proposes an effective architecture of state-of-X (SoX) estimators for monitoring two different battery 

chemistries: Nickel Manganese Cobalt Oxide (NMC) and Lithium Titanate Oxide (LTO). The SoX 

algorithms—based on Extended Kalman Filter and least squares estimation—are developed, simulated, 

implemented, and tested to estimate state-of-charge (SoC), state-of-health (SoH), state-of-power (SoP), and 

state-of-energy (SoE). These algorithms are implemented on an automotive-grade series production 

microcontroller. The software is designed to be scalable and reconfigurable, capable of handling up to 512 

cells, individually. The paper presents and discusses the algorithms’ accuracy, real-time computational 

load, and memory requirements. The results confirm the effectiveness of the proposed structure in 

managing the complexities associated with mixed-cell battery packs and the challenges posed by large-

scale cell integration. 
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1 Scalable and modular heterogeneous batteries 

The application of different battery cell chemistries has been increasingly studied in recent years as a 

strategy to optimize production and leverage economies of scale. This approach enables the use of 

standardized battery module housings—with identical external dimensions—equipped with different cell 

chemistries [1]. Introducing such a novel degree of flexibility allows for better optimization of the battery 

pack’s gravimetric and volumetric power and energy densities. 

Several concepts have been explored, including the integration of power electronics at the cell or module 

level. While these solutions offer flexibility, they introduce efficiency losses due to multiple energy 

conversion stages and lead to increased bill-of-materials (BOM) costs. To balance flexibility, scalability, 

and modularity, the battery pack architecture studied in the HELIOS project is adopted [2]. This architecture 

minimizes the use of power electronics while enabling energy exchange between two cell chemistries: 

Lithium Titanate Oxide (LTO) cells, which enhance the power density of the pack and support high current 

peaks to the high-voltage traction network; and Nickel Manganese Cobalt Oxide (NMC) cells, which 

contribute to energy density and support extended driving range. This modular concept facilitates 

adaptation to different applications and requirements using same-sized battery modules - from passenger 

cars and light electric mobility to electric bus applications. Fig. 1 shows an overview of the HELIOS battery 

pack composed of the NMC-based and LTO-based subpacks connected using a DC-DC converter. Current 

Sensing Monitoring (CSM) device measures high voltage across the external contactors, and current 

flowing into/out the battery pack, as well as tracks the high voltage insulation of the battery. Cell 
Supervision Controllers (CSCs) are placed inside each module whose data is then communicated to the 
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central Battery Management Controller (BMC), wirelessly. The CSCs are designed to measure and transmit 

voltages and temperatures of 16 series connected cells considering both high-energy (HE) and high-power 

(HP) modules with NMC and LTO cells, respectively. The State-of-X (SoX) algorithms are integrated into 

the BMC. The multi-sensing unit (MSU) is responsible for measuring and monitoring other critical values 

in the battery pack including the inner pressure, level of critical gases, and temperature. The key challenge 

in this context lies in the integrated monitoring of a large number of cells. The HELIOS battery pack for 

the e-bus demonstrator consists of 4 HE sub-packs, each containing 4 HE modules configured as 16s1p (16 

cells per module connected in series), and 4 HP sub-packs, each containing 4 HP modules configured as 

16s2p (16 series cells per module). This results in a total of 512 individual cell voltages to be monitored 

using the CSCs. This introduces a twofold challenge.  

• First, there is the algorithmic complexity of adapting state estimation algorithms to 

heterogeneous cell chemistries. NMC and LTO cells exhibit different nonlinear characteristics 

and dynamic behaviors, which must be accurately captured and accounted for in a unified SoX 

software framework to ensure reliable estimation of SoC, SoH, SoP, and SoE. 

• The second challenge is the management of state estimation for 512 individual cells in real-time. 

Performing SoC, SoH, and SoP calculations at the cell level introduces embedded system 

challenges, including processing limitations and memory constraints. Therefore, the BMS 

software must be carefully designed to be computationally efficient, scalable, and capable of 

real-time performance across many heterogeneous cells. 

These challenges are rarely addressed in literature, as most battery pack designs assume a single-cell 

chemistry. This paper presents the implementation details and performance evaluation of a dual-chemistry 

BMS software developed for the HELIOS project. The rest of this paper is organized as follows: in Section 

2, the design of state estimators and algorithmic details are presented. Section 3 presents the implementation 

steps of the algorithms into the automotive embedded system. The test results are presented and discussed 

in Section 4. Conclusions and some remarks about future steps are included in Section 5. 

2 State estimators for heterogeneous battery packs 

An overview of the SoX algorithm interfaces is shown in Fig. 2. The SoX algorithms are designed to use 

battery measurements—current, voltage, and temperature—as inputs. As illustrated, the implementation is 

carried out at the cell level, where individual state estimations are performed. These cell-level estimations 

are then aggregated to derive the corresponding states at the pack level. All algorithms are implemented in 

the discrete domain to facilitate efficient digital deployment. The descriptions of the SoX algorithms are 

presented in the following subsections. Due to the broad scope of the SoX framework, the algorithms are 

described in a condensed format to keep the paper concise. 
 

2.1 SoC Estimation 

The SoC estimation is based on the well-known Extended Kalman Filter (EKF) algorithm and is fulfilled 

 
Figure 1: Hybrid heterogeneous battery pack based on LTO and NMC battery modules 
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as a number from 0 (fully discharge state) to 1 (fully charge state). The EKF relies on a state-space model 

derived from the widely used Thevenin equivalent circuit model (ECM), where the dynamic behavior of 

the battery cell is represented using electrical circuit elements as depicted in Fig. 3. The state-space model 

of the battery is formulated as in (1)-(2). 
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Here, k is the sample index, 𝑇𝑠 denotes the sampling time, η is the charge efficiency, Q represents the cell 

capacity, 𝐼𝐿 denotes the cell current, and VECM is the voltage across the dynamic section of the ECM. VL 

denotes the cell terminal voltage, while VOCV refers to the open-circuit voltage. The parameters k0 to k2 are 

 
(a) 

 
(b) 

Figure 2: (a) Signal flow diagram of state estimators based on measured and calculated signals (b) Pack-

level SoX estimations are calculated from cell-level estimations 

 
Figure 3: Thevenin-based equivalent circuit model of the battery 
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model coefficients and they can be mathematically derived from the ECM’s circuit parameters 𝑅0, 𝑅1, and 

𝐶.  
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This state-space model is employed within the EKF framework to estimate the SoC. The detailed 

equations of the EKF are well-established in the literature and are therefore omitted here [3]. To enhance 

estimation performance, the covariance matrices—representing process and measurement noise—are 

optimized using a genetic algorithm. The covariance matrices have a crucial role in the EKF algorithm by 

determining the uncertainties lying within the cell model and measurement noises. The entries of these 

matrices are treated as optimization variables, and the cost function is defined to minimize the root mean 

square error (RMSE) of the SoC estimation. Model parameterization is performed separately for NMC and 

LTO cells, and the corresponding parameters are provided to the algorithm through dedicated lookup tables. 

This includes model parameters related to the OCV-SoC characteristics curves (VOCV), entries of covariance 

matrices, etc. To reduce computational load, the SoC estimation block is applied iteratively across different 

cells rather than in parallel. 
 

2.2 RLS algorithm 

In practice, the parameters of the ECM change over time due to battery degradation and varying operating 

conditions. Since the cell model is directly embedded in the EKF-based SoC estimation, these parameter 

variations can introduce modeling errors, leading to a reduction in estimation accuracy. To resolve this, a 

Recursive Least Squares (RLS) algorithm is employed to continuously estimate and update the ECM 

parameters used within the EKF framework. The RLS algorithm is formulated based on the following 

regressor equation, derived from the Thevenin-based ECM under the assumption that:𝑉𝑂𝐶𝑉(𝑘)~𝑉𝑂𝐶𝑉(𝑘 −
1) (which is reasonably valid since we don’t expect SoC to change too much within Ts). 
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where y is the output (terminal voltage), U is the regressor, and 𝜃 is the vector of unknown parameters to be 

estimated. The regressor can be built from the sensor values (values at the current sample and the previous 

sample). Upon formulation of the regressor, the RLS algorithm can be applied to estimate the unknown 

parameter vector, recursively. 
 

2.3 SoH estimation algorithm 

The cell capacity and its internal resistance are the most used indices to characterize the health of the 

battery. The capacity of a battery indicates its energy capability while the battery's internal resistance 

determines the battery's power capability. Both are important to ensure the effective operation of the EV to 

meet the driving range and acceleration requirements. The SoH is defined as a number from 1 (new cell) to 

0 (end of first life) using the below equation: 
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where 𝑋 could be the capacity 𝑄 or the internal resistance 𝑅0. Likewise, 𝑋𝑎𝑐𝑡𝑢𝑎𝑙 denotes the actual value of 

Q or 𝑅0, 𝑋𝑟𝑎𝑡𝑒𝑑 denotes the nominal value, and 𝐸𝑜𝐿𝑋 denotes the related EoL criteria. Generally, the EoL 

will be reached for a capacity drop of 20% compared to the fresh battery or when internal resistance increases 

by 150% compared to the fresh cell, whichever is met first. In HELIOS, both health indicators are estimated 

using the algorithms described in the following subsections. 

2.3.1 Internal resistance estimation 

The internal resistance of the battery increases with battery aging. HELIOS deploys a simple algorithm 

that can estimate the internal resistance based on the available measurements at any given time (battery 

current, voltage, and temperature). We consider the so-called R-int cell model composed of the VOCV term 

and the DC internal resistance R0 leading to 𝑉𝐿 = 𝑉𝑂𝐶𝑉 − 𝑅0𝐼 = [1 −𝐼][𝑉𝑂𝐶𝑉 𝑅0]
𝑇. Considering 𝑈′ =

[1 −𝐼] and 𝜃′ = [𝑉𝑂𝐶𝑉 𝑅0]
𝑇, the parameter vector is estimated using the sliding window LS algorithm 

leading to estimations of the DC internal resistance. 

2.3.2 Capacity estimation algorithm 

To estimate the capacity, we consider the well-known Coulomb equation for batteries as follows: 
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The above equation can be used to predict the battery SoC (up to the sample (𝑘2 − 1)) with the 

assumption of known battery SoC at the sample 𝑘1. We can rewrite (8) as follows: 
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(9) 

Equation (9) has a regression form 𝑦 = 𝜃𝑥, allowing battery capacity estimation via simple methods 

like LS, using stored SoC variation and accumulated Ah data. However, accurate capacity estimation 

relies on precise SoC values, typically with errors below 2%. Since EKF-based SoC estimation used 

here yields RMSE below 2%, this requirement is met. Traditional LS assumes noise-free inputs, which 

isn't realistic, as both SoC and current measurements (i.e., x and y) are affected by noise and estimation 

errors. This can introduce bias in capacity estimation. One workaround is to use SoC values from OCV 

measurements during rest periods (𝐼𝐿= 0), but this is limited to offline conditions. To address this more 

robustly, a Total Least Squares (TLS) method is adopted in this work, which accounts for noise in both 

input and output, offering a more accurate and realistic capacity estimation framework [4]. 

2.4 SoP Estimation 

The purpose of the SoP estimation algorithm is to determine the maximum permissible power output 

or input of the battery within a defined time horizon. This ensures that the battery is not charged or 

discharged beyond safe operational limits, particularly preventing premature violations of voltage 

thresholds due to transient current spikes—such as those occurring during rapid acceleration. This is 

especially critical near the SoC limits to guarantee safe operation under high-load conditions. To achieve 

this, a standard approach is employed that considers constraints related to charge/discharge current, 

SoC, and terminal voltage. The implementation approach follows the methodology described in [5]. For 

SoP estimation, other state estimates including SoC, SoHR (SoH based on resistance), and SoHC (SoH 
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based on cell’s capacity) are considered as inputs. The SoP is estimated in kW of available charge or 

discharge power. 

2.5 SoE Estimation 

The SoE refers to the remaining Ah in the cell. The SoE can be estimated in Ah from the estimated 

values of SoC, SoH, and the cell’s actual capacity. 

Upon completing the cell-level estimations, the pack-level state estimates are aquired. For HP modules 

configured with two parallel cell strings (16s2p), each pair of parallel cells is treated as a single 

equivalent unit for estimation purposes. The overall pack performance is constrained by the weakest 

cell, as it determines the pack’s safe operating limits. Furthermore, the HELIOS battery pack includes 

two distinct types of sub-packs: HE and HP. These sub-packs differ not only in cell chemistry (NMC 

versus LTO) but also in their dynamic behavior and aging characteristics, adding another layer of 

complexity to the aggregation of SoX estimations at the pack level. The SoC for the hybrid pack is 

obtained as follows: 

HE HE HP HP

HE HP

SoC C SoC C
SoC

C C

+
=

+
 

(10) 

To accommodate the distinct behaviors of LTO and NMC cells, separate experimental 

characterizations are conducted. These include capacity tests to determine the reference capacities, 

Hybrid Pulse Power Characterization (HPPC) tests to identify model parameters, OCV characterization 

tests to establish the OCV-SoC relationship, and driving cycle tests for model validation. The model 

design, order selection, and parameterization are carefully tailored to accurately reflect the behavior of 

each cell type. Additionally, the use of the RLS algorithm ensures that model parameters are individually 

updated for each cell during operation, allowing for real-time adaptation to aging and changing 

conditions. Figure 4 illustrates the typical Reference Performance Tests (RPTs) used for model 

parameterization.  

 

3 Implementation into automotive embedded system 

Development in automotive industry follows Automotive SPICE® [6] following Software Engineering 

Process Group (SWE). As part of this process, an architecture tool for software architectural design 

(SWE.2) is used for generation of an AUTOSAR container [7], which will be synchronized in the software 

detailed design and unit construction (SWE.3) and software unit verification (SWE.4) under 

MATLAB/Simulink® environment, tool used for the implementation of the algorithms. Once simulations 

   
        (a)                                                                          (b) 

Figure 4: (a) Cell RPTs carried out for separate parameterization of SoX for HE and HP cells (b) 

Experimental setup used for data collection 
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are validated, code is automatically generated following AUTOSAR settings. Software is designed in such 

way, that all relevant variables are scalable, allowing the use of the same code automatically generated for 

all possible configurable configurations within the system, reducing the development effort by reusing other 

scenarios. During autocode generation, first static checks for code quality are usually performed, as e.g. 

linting the code following MISRA rules [8], as well unitary tests are performed, testing the model in Model-

In-Loop (MIL), the code as Software-In-Loop (SIL), as well as Processor-In-Loop (PIL). 

In software component verification and integration verification (SWE.5), software is compiled under 

project environment tool, and specifically configured for tree applications, demonstrating the scalability 

and modularity of the designed software architecture. Three scenarios are selected for this investigation: 

HIL test setup consisting of 2 HP and 2 HE modules; a passenger car size, consisting in 8 HP and 4 HE 

modules; and maximum size for e-bus application, consisting in 16 HP and 16 HE modules. 

These three scenarios are being compiled, calibrated and tested in the following software testbench shown 

at Figure 6. In such scenario, the number of CSCs required for the setup can be added and removed easily, 

allowing a quick validation phase and dynamic architecture validation of the SoX algorithms, without 

needing real cells. Such software testbench can be further developed soon as a HIL testbench, adding battery 

ell simulators and high voltage and current signals, achieving a complete simulation of a battery system. 

 
Figure 6: BMS system tested on Software Testbench for static and dynamic validation of algorithms. 

 
Figure 5: AUTOSAR arxml file (left) imported by MATLAB/Simulink® (middle) used for code 

generation and integration into software project (right) 
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4 Results and discussions 
4.1 Static and Dynamic Performance Measurements 

Software implemented for handling the heterogeneous battery packs is kept scalable and modular until 

the final configuration is applied and compilation for the application is started. Different parameterization 

files can be tracked separately for the different final applications, reducing the effort of handling several 

software projects in parallel. Additionally, additional instrumentation software is enabled during 

compilation time to facilitate the measurements of the dynamic behavior of the SoX algorithms within the 

embedded platform. 

As a static key performance indicator (KPI) for the state estimator features embedded, software is 

measured in terms of RAM, ROM and calibration needs. Target is to detect in advance any potential issue 

in terms of resource capabilities of the selected target embedded platform microcontroller. Usually, a series 

approach application tends to define memory budgets for the allocation of the features. In following Figure 

7, a presentation of the measured performance of different parts of the state estimators is shown, indicating 

the memory resource needs.  

 
Figure 7 ROM/RAM/Calibration memory for different heterogeneous battery configurations with same 

software [Bytes] 

It is observed that while the increase in the number of cells does not proportionally impact ROM or 

calibration memory, it does affect RAM usage. As the core algorithms are similar for both chemistries, and 

different performance behavior on cells for the SoX will be reflected during calibration time evaluation. It 

can be pre-located for each of the SoX algorithms a memory budget in the next future, answering the static 

memory needs when scaling the concept to a desired target platform in advance. This enables the best cost 

decision making approach for the embedded platform microcontroller, capable of covering these algorithm 

needs. 

As a dynamic KPI for the state estimator features, software is measured under real operation at software 

testbench, measuring the minimum, average and maximum timing execution, as well as the overall 

execution time of each of the microcontroller’s cores. Target is to detect any potential execution 

performance in embedded platform, which could add the risk of losing the real time execution of the 

microcontroller, essential for an embedded platform under a real time environment (RTE). Any 

performance issue which might affect the normal behavior of a safe critical system BMS, classified as ASIL 

C(D), is essential to be avoided and is preliminary step to test the hardware with real battery cells. 

The test is defined as follows: it will be measured at least 32 iterations of the control function, 

programming a time out for protection about 10 % of the expected calculation time. SoX Features are 

implemented as a 1 second periodic task. Tests will be performed automatically and executed for all 

execution tasks within the SoX feature set. To ensure real-time operation of the embedded software, 300 us 
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are set as a default limit window for triggering a warning and 600 us are defined as a critical threshold in 

execution. If any of the algorithms exceed this execution times, it shall be observed the overall 

microcontroller load, evaluating whether a real risk of loosing real time execution is present. 

In the following Table 1, measurements are presented for each of the relevant SoX features. It is to be 

noticed that the differences of the configuration of the battery packs (HIL, passenger car, e-bus) reflect 

directly in the execution time of the desired platform. No major inconsistency can be found between the 

minimum, maximum and average measurement values. It can be observed that for the passenger car and e-

bus application, some parts of the SoX algorithm exceed the warning and critical level. A maximum 

execution time evaluation is done at  

Table 1: Profiling of SoX execution performance in target embedded platform [us] 
  RLS EKF-SOC EKF-SOH SOP SOE 

  LTO NMC LTO NMC Pack LTO NMC Pack LTO NMC Pack Pack 

 

HIL Setup 

 

Min 

Max 

Avg 

104 104 93 102.8 9.2 37.3 37.4 0.12 30.5 31 0.3 1.4 

106 106 96.4 105.6 9.3 37.8 37.9 0.14 31.3 32 0.3 1.5 

105 105 93.7 103.9 9.2 37.4 37.5 0.13 30.8 31.3 0.3 1.4 

Passenger Car Min 

Max 

Avg 

413 207 357 201 25 147 76 0.12 113 60 0.3 1.5 

420 210 367 207 25 149 78 0.16 114 62 0.4 1.7 

415 208 362 204 25 148 76 0.14 116 61 0.3 1.6 

Electrical Bus Min 

Max 

Avg 

825 819 737 265 65 303 294 0.13 240 254 0.3 2.1 

836 834 750 275 67 306 295 0.18 246 260 0.4 2.2 

824 824 742 269 66 304 297 0.15 242 256 0.3 2.2 

 

 

Figure 8 Maximum execution time of SoX algorithms within a core of the microcontroller [us] 

Microcontroller overall execution performance in Table 2 presents an acceptable scenario, as the 

execution times of the overall software inside the BMC do not exceed 20.5% of overall capability in the 

worst-case scenario, as the e-bus would be. Overall execution time of the SoX algorithms executed in the 

Core 0 represent only 0.39% of the overall microcontroller load. 
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Table 2: Overall microcontroller core load KPI [%] 
  Core 0 Core 1 Core2 SoX on Core 0 

HIL Setup 

 

Min 

Max 

Avg 

10.1 6.9 0.9  

15.0 13.0 1.5 0.058 

14.3 7.7 1  

Passenger Car Min 

Max 

Avg 

11.7 6.9 0.9  

16.6 12.5 1.4 0.173 

14.9 7.8 1  

Electrical Bus Min 

Max 

Avg 

14.8 6.9 0.9  

20.5 8.2 1.5 0.390 

15.9 7.3 1  

 

This ensures confidence in continuing the tests with real cells, after the definition of countermeasures for 

improving the execution performance of the SoX algorithms. 

 

4.2 SoX Algorithm Validation 

To validate the effectiveness and real-time feasibility of the SoX algorithms, a series of tests have been 

planned. The first round of testing focused on algorithmic validation, including the accuracy of state 

estimation, convergence behavior, and the stability of the estimated states. For this purpose, two cell types 

were evaluated under dynamic mission profiles in laboratory conditions at HELIOS partner facilities, 

including the Danish Technological Institute (DTI), Denmark. The tested cells included an NMC pouch 

cell rated at 3.65 V and 73 Ah, and an LTO prismatic cell rated at 2.3 V and 20 Ah. A comprehensive test 

matrix was developed to generate the required data for algorithm development and validation under various 

operating conditions, including different temperatures, SoC ranges, and load profiles. The battery states are 

co-estimated under a dynamic mission profile test called Aarhus Driving Cycle Profile or ADCP shown in 

Fig. 4(a). The results of co-estimations under this profile are summarized in Table 3. 

Table 3: RMSE of SoX co-estimation under ADCP at 25℃ 

 SoC SoHR SoHC SoPCh SoPDch 

NMC ~0.008 ~0.041 ~0.015 ~ 10 W ~ 8W 

LTO ~0.012 ~0.052 ~0.021 ~15 W ~ 18W 

 

Typical SoC estimation results related to the NMC cell at 25℃ are shown in Fig. 6 demonstrating the 

effectiveness of the EKF-based approach under various operating scenarios. These include multiple ADCP 

cycles to evaluate the stability of the estimates, as well as tests with different initial SoC values to validate 

the convergence behavior of the algorithm. The results demonstrate that co-estimation algorithms are 

applicable to different cell chemistries, requiring only calibration of the software—such as updating lookup 

tables and model parameters—for each specific cell type. 
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4.3 Real system validation 

Initial hardware setup integration is performed with a system consisting of one battery module equipped 

with LTO chemistry cells, which is measured for validation of the measured signals acquired by the BMS 

and later used for virtual validation of the proposed algorithms before testing real cells in a bigger setup. 

  
Figure 10: a) Setup of HIL for validation of first prototype based on LTO cells, b) Measurement of cell 

voltages, current and temperature 

 

5 Conclusions and future work 

This paper presents a modular and scalable framework of SoX estimators designed for heterogeneous 

battery packs integrating multiple cell chemistries. The developed SoX algorithms—including SoC, SoH, 

SoP, and SoE—work in synergy to co-estimate key battery states in real time. They are implemented on an 

automotive-grade microcontroller within a flexible BMS architecture capable of managing up to 512 

individual cells. The algorithms are adapted for the unique characteristics of NMC and LTO cells and 

validated using experimental cell data on dynamic test profiles emulating actual driving situation. The 

results demonstrate that the proposed SoX estimators operate effectively under heterogeneous battery 

configurations and are well-optimized in terms of memory and computational requirements. Real-time 

checks confirm the embedded viability of the solution, with algorithm execution adhering to the resource 

constraints of ASIL C(D)-level safety-critical systems. Countermeasures are scheduled to be implemented 

for further robustness of execution of algorithms. 

Future work will focus on the functional validation of the SoX algorithms using actual battery modules 

and full battery packs developed under the HELIOS project, after improving the performance of the 

algorithms due to introduced countermeasures. Empirical measurements and performance benchmarking 

are projected to be done on both passenger car and electric bus applications. These results will further 

validate the robustness, accuracy, and scalability of the proposed estimators in real-world operational 

environments. 

      
(a)                                                      (b)                                                     (c)  

Figure 9: (a) SoC estimation of NMC cell under ADCP (b) SoC estimation over several cycles of ADCP 

demonstrating SoC stability (c) SoC estimation with different initial values showing the convergence of 

SoC filter. 
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Additional future work is to evaluate the migration of these SoX algorithms towards a more powerful 

platform, enabling the concept of software defined vehicle, adapting the implementation done in Autosar 

classic to adaptive. Additionally, as the execution of the algorithms for SoX prediction are array based, the 

potential of SIMD and vector processing will be investigated with aim of understanding the performance 

increase potential of the introduction of these parallel processor units available. 
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