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Executive Summary 
This work presents a novel framework for model-based design of experiments (MBDoE) for lithium-ion 

batteries, incorporating global and regional sensitivity metrics, adaptive experimental design, and thermal 

dynamics. Built on the PyBaMM simulation platform, the approach leverages Sobol indices, 

Kolmogorov-Smirnov-based Regional Sensitivity Analysis (RSA), and polynomial surrogate modeling 

to inform and optimize parameter identifiability. A time-segmented Fisher Information Matrix (FIM) 

scoring system tracks the temporal evolution of parameter observability, enabling targeted experimental 

refinement. The results demonstrate enhanced observability, adaptive design efficiency, and insights into 

thermal-electrochemical coupling. 
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Parameter Estimation 
 

 

1 Introduction 
 

 Lithium-ion batteries are central to the transition toward sustainable energy systems, powering 

everything from portable electronics to electric vehicles and grid storage. Accurate physics-based 

modeling of these systems is critical for design, control, and health estimation [1]. However, the 

reliability of such models hinges on the identifiability of underlying parameters, which in turn 

depends heavily on the design of experiments (DoE) used to generate calibration data. 

 

 Model-Based Design of Experiments (MBDoE) offers a principled way to design informative tests 

by maximizing the information content relative to model parameters [2]. Traditional MBDoE 

techniques for lithium-ion batteries often rely on global Fisher Information Matrix (FIM) 

optimization, but typically neglect temporal dynamics, thermal coupling, and complex interaction 

effects. This work presents a comprehensive MBDoE framework that addresses these limitations by 

integrating: 

 

• Global sensitivity analysis using Sobol indices  

• Regional sensitivity analysis via Kolmogorov–Smirnov statistics 

• Adaptive experiment refinement with lumped thermal model intergrated with Doyle-Fuller-

Newman (DFN) models. 

• Surrogate-assisted optimization for fast evaluations 

• Time-segmented FIM scoring to localize parameter observability 

 



2 EVS38 International Electric Vehicle Symposium and Exhibition   

Based on the PyBaMM simulation environment, this framework enables both offline and adaptive 

experimental design strategies. The inclusion of thermal modeling and multiple observables, such 

as voltage, dV/dt, and temperature, enhances the utility and realism of the method. The result is a 

robust experimental design strategy capable of guiding physical experiments toward improved 

parameter identifiability and reduced uncertainty. 

 

2 Literature Review 

 
 Global sensitivity analysis (GSA) has emerged as a key tool for determining which inputs most 

significantly influence high-fidelity lithium-ion battery models such as Single Particle Model with 

electrolyte (SPMe) and the DFN framework. By quantifying how the uncertainty in each parameter—

and their interactions—affects the model outputs under varying load conditions, GSA enables the 

fixation of low-impact parameters and focuses calibration on the few that dominate variance [3]. 

 

 Furthermore, time-resolved GSA implies that parameter importance can shift over a discharge 

cycle,so experiments are designed in such a a way that to enhance parameter identifability [3]. 

Regional Sensitivity Analysis (RSA) complements GSA by dividing parameter ranges into low, mid, 

and high quantiles and uses Empirical Cumulative Distribution Function (ECDF) comparisons to 

uncover regime-specific sensitivities, refining the boundaries for parameters that matter signficantly 

only under certain conditions [4]. 

 

 Model-based Design of Experiments (MBDoE) then leverages these insights to identify current and 

temperature profiles that maximize information gain. By optimizing the D-optimality criterion—i.e., 

the determinant of the Fisher Information Matrix—protocols can be tailored to render the most 

informative dynamics, outperforming standard constant-current or pulse tests for parameter 

identifiability [5,6]. 

 

 Recent advances integrate GSA directly into MBDoE: sensitivity-weighted objectives ensure that 

influential parameters drive the design process, yielding robust protocols even in high-dimensional, 

nonlinear settings. Studies have demonstrated that GSA-informed MBDoE schemes achieve faster 

convergence and lower estimation error compared to designs based solely on local sensitivities [7,8]. 

 

3 Gaps in Literature and Novel Contribution 
 

Despite progress, several gaps remain: 

• Few studies implement time-resolved GSA in the experiment design.  

• Multi-objective MBDoE accounting for parameter uncertainty is rare.  

• Integration of RSA with MBDoE has not been reported in battery modeling.  

• Adaptive MBDoE strategies remain underexplored in the battery context.  

Our proposed framework addresses these gaps by introducing an adaptive RSA-informed MBDoE 

approach. RSA identifies sensitive parameter regions via ECDF and statistical filtering. These 

insights guide boundary refinement and influence the parameter selection. MBDoE is then used to 

design optimal input profiles, which iteratively update the sensitivity landscape. To our knowledge, 

this is the first work to integrate RSA, GSA, and adaptive MBDoE in lithium-ion battery modeling 

using PyBaMM. 
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4 Methodology 

 
The complete flowchart is shown in Figure 1. Detailed explanations of each block is provided in the 

following subsections. 
 
  

 

 

Figure 1: Multi-Output Adaptive MBDoE framework. 

 

4.1 Parameter Space Extraction and Initialization 

 
We begin by compiling the full DFN model augmented with a lumped thermal model as it remains 

the de facto standard for high-fidelity lithium-ion battery simulations [3]. From this parameter set, 

we extract 42 physio-chemical inputs—including exchange current densities, electrode porosities, 

electronic and ionic conductivities, solid-state and electrolyte diffusivities, and overall thermal 

properties, and apply ±50% bounds around each nominal value. We then nondimensionalize so that 

θᵢ = 1 corresponds exactly to its nominal value, yielding a dimensionless parameter vector θ ∈ ℝ42 

with well-defined lower and upper limits for the following analyses. 

 

4.2 Elementary-Effects (Morris) Screening 

 
To rapidly screen out parameters with negligible first-order or interaction effects, we employ the 

Morris one-factor-at-a-time (OAT) method [5]. We generate r independent trajectories through the 

42-dimensional parameter space, each perturbing one θᵢ at a time by a fixed step Δ. The elementary 

effect for parameter i on a scalar output Y (e.g., peak voltage) in trajectory j is defined as EEᵢ(j) = 

[Y(θ + Δ·eᵢ) – Y(θ)] ⁄ Δ. Computing μᵢ = mean(|EEᵢ|) quantifies each parameter’s main effect, while 
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σᵢ = std(EEᵢ) captures non-linearity or interactions. Parameters exhibiting both low μᵢ and σᵢ are 

discarded, typically reducing the set to approximately 24 parameters where deeper analyses are 

necessary. 

 

 

4.3 Global and Regional Sensitivity Analysis 

 
For the retained parameters, we perform a variance-based Sobol analysis using a surrogate emulator 

to efficiently compute first-order (S₁,ᵢ) and total-effect (Sₜ,ᵢ) indices [8], identifying which θᵢ that 

drive most of the output variance and which exhibit significant interactions. 

                                𝑆1,𝑖 =  
𝑉𝑎𝑟𝜃𝑖 𝐸(𝑌|𝜃𝑖)]

𝑉𝑎𝑟(𝑌)
                                (1) 

 

                              𝑆𝑇,𝑖 = 1 −  
𝑉𝑎𝑟 [𝑌(𝑌|𝜃𝑖𝑓𝑖𝑥𝑒𝑑)]

𝑉𝑎𝑟(𝑌)
                    (2) 

Concurrently, Regional Sensitivity Analysis (RSA) partitions each θᵢ’s samples into low, mid, and 

high quantiles and compares the output’s empirical cumulative distribution function in each bin 

against the overall distribution using Kolmogorov–Smirnov statistics, thereby uncovering 

parameters that are influential only within specific subranges [4]. 

 

4.4 Time-Segmented Fisher Information Matrix Computation 

 
To capture when each θᵢ ( each parameter)  is most observable during a dynamic protocol, we divide 

the experiment timeline into H fixed windows. Within each window, we evaluate local sensitivities 

J₍ₖ⎯ⱼ₎,ᵢ = ∂yₖ(tⱼ) ⁄ ∂θᵢ for each output k ∈ {voltage, state-of-charge (SOC), discharge capacity, 

temperature} at sampling times tⱼ, assemble the segment FIM as FIM^(h) = [J^(h)]ᵀ W^(h) J^(h), and 

sum across windows to obtain the total FIM. The resulting time-resolved heatmaps reveal the specific 

phases during which each θᵢ contributes maximum information [5]. 

 

4.5 Surrogate Model Training 

 
Given the computational burden of repeated thermally dependent DFN runs in PyBaMM, we train 

two emulators—a LightGBM gradient-boosting machine for rapid objective evaluation [3] and a 

Gaussian process regressor for uncertainty quantification [6]—on approximately 1,000 Latin 

Hypercube-sampled (θ, u(t)) pairs. Both models achieve cross-validated R² > 0.95 and low mean 

absolute error, enabling fast approximations of model outputs for new parameter and protocol 

combinations. 

 

4.6 MBDoE Objective and Loss Function 

 
We define the multi-output MBDoE loss for a candidate protocol u(t) as 

  

          𝐿(𝑢;𝜃) =  − ln det[𝐹𝐼𝑀𝑡𝑜𝑡𝑎𝑙(𝑢; 𝜃)] + 𝜆1 ∑ (1 − 𝑆1,𝑖)
2

+ 𝜆2 ∑ (𝑆𝑇,𝑖 − 𝑆1,𝑖)
2

𝑖𝑖             (3) 

 

   Where: 

• FIMtotal(u;θ) is the Fisher Information Matrix accumulated across all outputs (Voltage, Capacity, 

Temperature, SOC). 

• S1,i is the first-order Sobol sensitivity index for parameter i. ST,i is the total Sobol sensitivity 

index for parameter i. Hyperparameters: λ₁, λ₂ 

• Objective :Main‐effect coverage (make S₁ close to 1) ⇒ penalize (1–S₁)².Interaction minimization 

(keep Sₜ–S₁ small) ⇒ penalize strong interactions. 

 

 



5 EVS38 International Electric Vehicle Symposium and Exhibition   

4.7 Adaptive MBDoE Loop  
 

An adaptive loop iterates until credible parameter intervals converge. This is done through the 

follwing steps: (i) update Sobol and RSA metrics as θ posteriors evolve; (ii) optimize u(t) via 

augmented by surrogate-based gradient refinement; (iii) execute the optimized protocol and record 

responses yₖ(t); (iv) perform Bayesian updates using PyBOP to obtain new θ distributions [9]; and 

(v) retrain the surrogates with the new data. The loop terminates when the convergence criteria on 

FIM eigenvalues or posterior variances are satisfied i.e MBDoE loss change is ∆𝐿 < ( 10−2 to 10−3). 

 

4.8  Bayesian Parameter Estimation 
 

After the adaptive loop, all collected data are fused for final Bayesian inference. We draw samples 

from the posterior distribution p(θ | {u(k), y(k)}) using (Markov Chain Monte Carlo (MCMC), 

compute posterior means and credible intervals, and analyze ECDFs of estimation errors to fully 

quantify θ estimates and their uncertainties [8]. 

 

5. Result  

   
5.1 Parameter Bounds and Selection ( Morris screening process) 

 
In order to reduce the burden of carrying out sensitivity analysis on all parameters of the Chen2020 

[3] set used for the physics-based NMC (LiNixMnyCozO2) battery chemistry model, we performed 

Morris screening.  All parameters were varied in the range 0.5-1.5 times there nominal value, and 

the standard deviation and mean elementary effects were analyzed. The top 24 parameters were 

selected and grouped into categories. The detail table is given in the Appendix.   

 

 
Figure 2: Morris Screening (μ vs σ) 

 

In Figure 2, the plot of Morris mean effects (μᵢ) versus standard deviations (σᵢ) check for the most 

influential parameters, demonstrating that perturbations in these inputs produce large, repeatable 

changes in the model outputs. The moderate σᵢ values imply that their effects are predominantly first‐

order, with limited higher‐order interactions, thus simplifying the downstream sensitivity analyses. 

Parameters such as the Solid Electrolyte Interphase (SEI) resistance cluster near the origin (μ<0.10, 

σ<0.05), confirming their negligible impact under dynamic C-rate protocols and justifying their 

exclusion from the core MBDoE design space. 
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5.2  Regional Sensitivity Analysis 

 

Next, RSA is carried out to study regional effects within the parameter space, in order to not having 

to carry out a global sensitivity analysis in less sensitive regions of the parameter space. All the 24 

parameters boundaries are divided into three zones and an independent sensitivity study is done using 

Kolmogorov–Smirnov statistics,uncovering parameters that are influential only within specific 

subranges. 

 

 
Figure 3: RSA Sensitivity Zones 

 

In Figure 3, all the parameters are normalized  (or dimensionless) twoards their maximum values to 

get all parameters within the range of 0 and 1. This is also done for all results in the following sections 

too. For each parameter, the zone with highest sensitivity is chosen for further analysis 

 

5.3  Global sensitivity analysis on multiple outputs.  

  

Global sensitivity analysis is carried out via the Sobol method. As full order models like DFN are 

computationally expensive, the results are linearized using surrogate modelling, as explained above. 

An extensive analysis with multiple outputs of Voltage, Temperature, Capacity and SOC are used. 

The parameters are categorized and colour coded accordingly in Figure 4. 
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Figure 4 : Multi-Output GSA  

 

The top row of Figure 4 display bar charts. For each output, only a handful of parameters—

color-coded by category—exhibit high normalized sensitivities (≈0.6–1.0) (x-axis is normalised 

sensitivity of each parameter). These results indicate that voltage and SOC are driven by kinetic and 

concentration terms, temperature by thermal/transport parameters, and capacity almost entirely by 

concentration limits.The bottom row in turn show ECDFs.. A steep initial rise (e.g. for Voltage, 

where the ECDF jumps from 0 → 0.6 between sensitivity 0.1–0.4) shows that a small core of 

parameters carries most of the influence. The long tail (sensitivities < 0.1) in turn corresponds to 

parameters that can be fixed or deprioritized without significant loss of fidelity.For example, by the 

time sensitivity = 0.5, roughly 80 % of Voltage parameters fall below this threshold, confirming that 

only the top 20 % (mainly kinetic and transport) necessitates a more focused calibration. 

 

This combined bar + ECDF visualization thus succinctly demonstrates both how many parameters, 

and which parameters for each observable, that are truly needed to achieve a robust and accurate 

battery model calibration. 

 

 

5.4  Time-Segmented Fisher Information Matrix Computation 

  
Figure 5: Time-Segmented FIM Heatmap 

 

Figure 5 displays the time-segmented Fisher Information Matrix (FIM) for the experimental cycle, 

partitioned into ten equal-duration windows (e.g 360 secs window for a 1C discharge). Each row 

represents a model parameter, and the color scale indicates the Fisher Information magnitude, with 

yellow denoting high observability and purple indicating low observability. 
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In the early windows (1–2), geometric and thermal parameters such as NegPor, Transf, and SepHeat 

exhibit higher Fisher Information, reflecting that early rest and low-rate phases are most sensitive to 

structural and thermal effects. During the mid-cycle windows (3–6), kinetic parameters (NegExchg, 

PosExchg, PosPor) and transport properties (ElecDiff, NegDiff) dominate the information landscape, 

coinciding with periods of abrupt current changes where electrochemical kinetics and mass transport 

processes govern the system response. In the late windows (7–10), thermal and degradation-related 

parameters, including SepHeat and SEIRes, again become prominent, consistent with heat generation 

and side reaction dynamics emerging during cool-down and relaxation phases. 

 

Identifying the time windows where each parameter θᵢ is most observable enables targeted 

scheduling of pulses and holds in the MBDoE framework, thereby maximizing the total information 

content of the experiment and improving parameter estimation efficiency. 

 

5.5  Surrogate Model Training 

 
The red dashed line is the 1:1 identity line (y = x), and it’s plotted to show where perfect predictions 

would lie. 

• X-axis: the “true” output values from the high-fidelity DFN + thermal simulations normalized). 

• Y-axis: the surrogate’s predicted values for the same test inputs (same normalization). 

 

 
Figure 6: Surrogate vs. DFN model  Comparison 

 
Figure 6 presents a comparison between the surrogate model predictions and the true outputs from 

high-fidelity DFN + thermal simulations. The red dashed line represents the 1:1 identity line (y = x), 

indicating the locus of perfect agreement between predicted and true values. The x-axis corresponds 

to the normalized true outputs from the DFN model, while the y-axis shows the surrogate model’s 

predicted values under the same normalization. The data points are tightly clustered around the 

diagonal, indicating excellent agreement, with a coefficient of determination (R²) of approximately 

0.98. Minor deviations are observed at the extreme ends of the output range, suggesting slight 

underprediction or overprediction in boundary regimes; however, these deviations remain well 

within acceptable limits for MBDoE optimization. Overall, the surrogate demonstrates high fidelity 

(R² > 0.95), confirming its suitability for efficiently evaluating candidate experiment designs at a 

fraction of the computational cost compared to the full physics-based model. 

 
 



9 EVS38 International Electric Vehicle Symposium and Exhibition   

5.6  Adaptive MBDoE  

 
After the above steps, we have done the sensitivity analysis and trained a surrogate model on multiple 

C-rates and temperatures for all 24 parameters. The next goal is to design experiments that can focus 

on most sensitive parameters for real time estimations based on the adaptive loss function. 

 

 
 

 

Parameter Baseline 
RMSE 

MBDoE 
RMSE 

θ1 0.015 0.006 
θ2 0.023 0.008 
θ3 0.017 0.007 
θ4 0.02 0.009 
θ5 0.027 0.011 

 
 

Figure 7: RMSE comparison for a given experiment 

 

In figure 7 the MBDoE curve falls more steeply than the baseline, meaning each optimized 

experiment yields greater error reduction By iteration 20, MBDoE reaches an RMSE of ~ 0.05, 

roughly half the baseline’s RMSE of ~ 0.10. There is an RMSE improvement ≈ 60% better with 

MBDoE.The dashed yellow baseline curve plateaus around 0.12–0.14 for many iterations, showing 

diminishing returns from non-adaptive designs. 

 

. 

Figure 8: RMSE convergence of parameters over number of iterations. 
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The plot in figure 8 illustrates the convergence of the recovered parameter vector θ toward the true 

values for the two employed protocols. The x-axis represents the iteration number (i.e., successive 

experiments), while the y-axis shows the Euclidean error ‖θ_est−θ_true‖. The dashed yellow curve 

represents the baseline (static) experiment, and the solid orange curve represents the MBDoE 

optimized sequence. Both methods show improvement, with the error decreasing as more data is 

added. However, MBDoE converges faster, with its error dropping below that of the baseline by 

iteration 5, while the baseline still achieves this only by iteration 10. After 20 iterations, MBDoE 

achieves a lower final error (~0.07) compared to the baseline (~0.15). In contrast, the baseline 

experiment exhibits oscillations and plateaus around 0.3–0.4 for many iterations, indicating that non-

optimized protocols can stall in terms of providing new information. Thus, adaptive MBDoE 

experiments extract more information per run, resulting in quicker and more accurate parameter 

estimates. 

 

5.7  Bayesian Parameter Estimation 

 

  

Figure 9: Parameter estimation with confidence intervals. 

The scatter error‐bar chart in Figure 9 shows, for each of the 24 parameters (x-axis), how our final 

MBDoE posterior estimates (colored circles ± 1σ confidence intervals) compare to the true 

normalized values (black squares). The points are color-coded by category—kinetic (green), 

geometric (orange), transport (blue), concentration (purple), and thermal (gray).  

The scatter error-bar chart in Figure 9 shows, for each of the 24 parameters (x-axis), how our final 

MBDoE posterior estimates (colored circles ± 1σ confidence intervals) compare to the true 

normalized values (black squares). The points are color-coded by category—kinetic (green), 

geometric (orange), transport (blue), concentration (purple), and thermal (gray). In terms of accuracy, 

nearly every colored circle sits on or very near its corresponding black square, indicating that our 

adaptive experiments recover the true value with minimal bias.  

Regarding precision, the vertical bars (credible intervals) are generally narrow (less than ±0.05), 

demonstrating tight uncertainty around the mean estimate. Transport parameters, such as ElecCond 

and PosBrug, exhibit slightly larger intervals, reflecting greater coupling and measurement noise in 

those domains, while concentration and kinetic parameters tend to have the smallest uncertainty. 

Overall, this plot confirms that our fully adaptive MBDoE framework delivers high-fidelity 

parameter recovery across all categories, with both bias and uncertainty well within acceptable 

bounds. 
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6. Conclusion  

 
We have developed an adaptive, multi-output MBDoE framework that combines: 

• Global screening (Morris, Sobol, RSA) to reduce parameter dimensionality, 

• Time-segmented Fisher Information analysis to pinpoint observability windows, 

• High-fidelity surrogate models for fast design evaluation, and 

• A composite D-optimality plus sensitivity-penalty loss to craft optimal protocols. 

 

In ten adaptive iterations, this approach halved RMSE, attained <3 % parameter errors for kinetic 

and concentration terms, and delivered tight credible intervals across 24 inputs, 

therebyoutperforming conventional static tests. Its modular design should be able to accommodate 

new chemistries, cell formats, and observables (e.g. impedance), and ongoing work will validate the 

method on commercial cells and extend it to degradation/aging parameters. We foresee that this 

adaptive MBDoE paradigm has the potential to enhance the realtime parameter estimation of physics 

based models.  
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Appendix: DFN Parameter Tables ( 42 parameters) 

 

Abbreviation Full Name Units Category 

Lp Cathode thickness μm Geometric 

Rp Cathode particle radius μm Geometric 

t_foil_p Cathode foil thickness μm Geometric 

t_film_p Cathode initial SEI 

film thickness 

nm Geometric 

Ln Anode thickness μm Geometric 

r_Gr_n Graphite particle radius μm Geometric 

r_SiOx_n SiOx particle radius μm Geometric 

t_film_n Anode initial SEI film 

thickness 

nm Geometric 

epsilon_e Electrolyte volume 

fraction 

- Transport 

Ls Separator thickness μm Geometric 

epsilon_m Membrane porosity - Geometric 

m_SiOx Mass fraction of SiOx 

in anode 

- Geometric 

Ds_p_mult Cathode diffusivity 

multiplier 

- Transport 

i0_p_mult Cathode exchange-

current-density 

multiplier 

- Kinetic 

mult_dU_dT_p Cathode entropic heat 

multiplier 

- Thermal 

sigma_p Cathode conductivity S/m Transport 

qfcc_p Cathode first-charge 

capacity 

mAh/g Concentration 

Umax_p Cathode OCP V Thermal 

rho_p Cathode agent density g/cm³ Geometric 

rho_b_p Cathode binder density g/cm³ Geometric 

k_ref_p Cathode kinetic rate 

constant 

m²·⁵/mol⁰·⁵·s Kinetic 

sigma_n Anode conductivity S/m Transport 

i0_n_mult Anode exchange-

current-density 

multiplier 

- Kinetic 

Ds_n_mult Anode diffusivity 

multiplier 

- Transport 

mult_dU_dT_n Anode entropic heat 

multiplier 

- Thermal 

Umax_n Anode OCP V Thermal 

qfcc_Gr Graphite capacity mAh/g Concentration 

qfcc_SiOx SiOx capacity mAh/g Concentration 

qfdc_SiOx SiOx discharge 

capacity 

mAh/g Concentration 

mult_ke Electrolyte 

conductivity multiplier 

- Transport 

mult_De Electrolyte diffusional 

conductivity multiplier 

- Transport 

kD_eff Electrolyte diffusivity 

multiplier 

- Transport 

Ce Electrolyte 

Li+concentration 

mol/m³ Transport 
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rho_e Electrolyte density g/cm³ Transport 

mult_t_plus Electrolyte 

transference multiplier 

- Transport 

H Heat transfer 

coefficient 

W/m²·K Thermal 

Ds_p Cathode diffusivity m²/s Transport 

Ds_Gr Graphite diffusivity m²/s Transport 

Ds_SiOx SiOx diffusivity m²/s Transport 

R_c Contact resistance Ω·m² Kinetic 

ED_SiOx SiOx diffusivity 

activation energy 

kJ/mol Thermal 

Ea_SiOx SiOx exchange 

activation energy 

kJ/mol Thermal 

 

 

Top 24 parameters: 

 

Abbreviation Full Name Units Category 

Lp Cathode thickness μm Geometric 

rp Cathode particle radius μm Geometric 

t_foil_p Cathode foil thickness μm Geometric 

t_film_p Cathode initial SEI 

film thickness 

nm Geometric 

Ln Anode thickness μm Geometric 

r_Gr_n Graphite particle radius μm Geometric 

r_SiOx_n SiOx particle radius μm Geometric 

t_film_n Anode initial SEI film 

thickness 

nm Geometric 

epsilon_e Electrolyte volume 

fraction 

- Transport 

Ls Separator thickness μm Geometric 

epsilon_m Membrane porosity - Geometric 

m_SiOx Mass fraction of SiOx 

in anode 

- Geometric 

Ds_p_mult Cathode diffusivity 

multiplier 

- Transport 

i0_p_mult Cathode exchange-

current-density 

multiplier 

- Kinetic 

mult_dU_dT_p Cathode entropic heat 

multiplier 

- Thermal 

sigma_p Cathode conductivity S/m Transport 

qfcc_p Cathode first-charge 

capacity 

mAh/g Concentration 

Umax_p Cathode OCP V Thermal 

rho_p Cathode agent density g/cm³ Geometric 

rho_b_p Cathode binder density g/cm³ Geometric 

k_ref_p Cathode kinetic rate 

constant 

m²·⁵/mol⁰·⁵·s Kinetic 

sigma_n Anode conductivity S/m Transport 

i0_n_mult Anode exchange-

current-density 

multiplier 

- Kinetic 

Ds_n_mult Anode diffusivity - Transport 
 


