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(EVS38) Gö teborg, Sweden, June 15-18, 2025 

 
KF-Net: Data-Driven Kalman Filter for Enhanced 

Battery State and Health Estimation in Electric 
Vehicles 

Farshid Naseri and Erik Schaltz 
1
Department of Energy, Aalborg University, Aalborg, Denmark 

Email: fna@energy.aau.dk; esc@energy.aau.dk  

Executive Summary 
State-of-charge (SoC) and state-of-health (SoH) estimation are critical for ensuring the performance, 
reliability, and safety of electric vehicles (EVs). However, accurately estimating SoH remains challenging, 
particularly when using model-based approaches such as Kalman filters (KFs), due to the inherent 
complexity and variability of battery degradation processes. As batteries age, model uncertainties increase, 
driven by the stochastic nature of degradation mechanisms, reducing the reliability of traditional model-
based estimators. To address this challenge, we propose KF-Net, a novel data-driven Kalman filter 
algorithm for joint state and capacity estimation, developed within the Horizon Europe project DeepBMS. 
In the KF-Net architecture, a priori state estimates are generated using a battery model, while a posteriori 
estimates are corrected using a neural network (NN). The NN is trained on historical battery data to predict 
optimal Kalman gains, thereby minimizing SoH estimation errors. The method is evaluated on lithium-ion 
cells based on nickel manganese cobalt oxide (NMC) cathode. Preliminary results show that KF-Net 
outperforms the extended Kalman filter (EKF) baseline, particularly in capturing SoH trends under aging. 

Keywords: Batteries, Battery Management System (BMS), Electric Vehicles (EVs), Kalman Filter 
(KF), State-of-Health (SoH) 
 

1 Introduction 
The growth of electric vehicles (EVs) and renewable energy systems relies heavily on advancements in 

lithium-ion (Li-ion) batteries and battery management systems (BMSs) [1]. A core function of the BMS is 
to estimate the battery’s state-of-charge (SoC) and state-of-health (SoH), which are essential for ensuring 
performance, safety, and longevity. SoC indicates the remaining usable energy, while SoH reflects the 
degradation level, typically measured by changes in capacity [2]. 

Conventional SoC estimation techniques, such as Coulomb Counting and Open-Circuit Voltage (OCV), 
are either prone to error accumulation or not suitable for real-time applications. This has motivated the 
development of more advanced estimation methods, including machine learning (ML) and model-based 
approaches using Kalman filters (KFs) [3]. ML methods such as neural networks and LSTMs can handle 
nonlinear battery behaviors but depend on extensive training data. Model-based techniques like the 
Extended Kalman Filter (EKF) are more data-efficient but can struggle with model mismatch, especially 
as the battery ages. Regarding SoH estimation, existing techniques fall into four main categories: (1) direct 
measurement methods, (2) indirect analysis methods, (3) model-based methods, and (4) data-driven 
methods [4]. Direct measurement methods involve experimental characterization techniques conducted in 
the laboratory to “directly” measure the reference capacity or internal impedance of the battery. These 
techniques may follow standardized procedures such as those outlined in IEC62660, involving controlled 
capacity and resistance tests. In some cases, destructive techniques such as X-ray diffraction and scanning 
electron microscopy (SEM) are employed to physically characterize internal cell structure. These methods 
provide highly accurate SoH benchmarks, but they are not suitable for EV applications due to their offline 
nature and the need for cell disassembly. Indirect analysis methods estimate SoH by quantifying 



2 EVS38 International Electric Vehicle Symposium and Exhibition  

degradation indicators through observable responses, using techniques such as Incremental Capacity 
Analysis (ICA), Differential Voltage Analysis (DVA), or ultrasonic inspection. ICA and DVA analyze the 
voltage-capacity curve, converting flat voltage plateaus into distinctive IC and DV peaks [3]. These peaks 
represent different unique shapes, amplitudes, and positions along the degradation paths, which offer great 
insight for SoH estimation through mixing them with ML-based methods for pattern recognition, e.g. 
support vector regression or Convolutional Neural Network (CNN) [5]. However, these methods face 
practical limitations in onboard EV applications. Specifically, accurate IC/DV curves require low charging 
rates (C/3 or lower), which are rarely feasible in real-world EV use [3]. Likewise, these methods rely on 
numerical differentiation, which increases the computational load on the BS microcontroller and amplifies 
measurement noise [3]. Model-based approaches typically use physics-informed aging models to predict 
capacity fade and internal resistance increase due to degradation mechanisms such as solid electrolyte 
interphase (SEI) growth or loss of lithium. These models may be derived from first principles or empirically 
or semi-empirically fitted to experimental data relating the battery SoH to operational parameters such as 
number of cycles, temperature, depth-of-discharge (DoD), and SoC. The SoH estimation RMSE level 
attainable with model-based approaches reported in the literature varies between 1% to 7% [3]. However, 
the complexity of these models often hinders their application in real-time systems [5]. Data-driven 
methods attempt to learn a mapping between SoH and observable battery parameters using historical battery 
data or based on features extracted from raw measurements. ML algorithms such as NNs and ensemble 
models have shown great potential to capture complex, nonlinear aging behaviors without the need for 
explicit modeling of physical degradation mechanisms. The disadvantage of the data-driven estimation 
methods is that they do not incorporate the domain knowledge, such as the state-space model (SSM) in the 
EKF, and consequently, they require many trainable parameters and large battery datasets [6]. However, 
collecting battery datasets is costly and time-consuming due to the large number of cells required for tests 
and the involvement of advanced and expensive test facilities. Besides this, the generalization of data-
driven methods across battery chemistries and usage conditions remains an ongoing challenge. 

In summary, model-based methods like EKF offer low data requirements and good estimation 
performance but may become computationally burdensome when complex battery models are used. While 
simpler models seem to be more computationally efficient, they may lack the fidelity needed to account for 
degradation-induced uncertainties. On the other hand, data-driven methods excel at capturing such 
uncertainties through learning but are constrained by data availability and training costs. Therefore, data-
efficient hybrid approaches that combine the strengths of both paradigms are increasingly attractive. In this 
paper, we propose a hybrid estimation algorithm called KalmanNet, which integrates the robustness and 
structure of Kalman filtering with the adaptability of neural networks. KalmanNet leverages both model 
knowledge and training data to co-estimate SoC and SoH concurrently, offering a practical balance between 
accuracy, complexity, and data efficiency, a critical aspect that remains a challenge in the existing literature. 
This paper builds upon the authors' conference publication in which KalmanNet was first introduced for 
battery state estimation. However, in that paper, only the SoC estimation was estimated, and model 
uncertainties were introduced synthetically rather than using actual battery data. This work extends the 
conference paper by enabling the co-estimation of SoC and SoH, along with more extensive validations 
considering an experimental battery aging dataset. 

The rest of the paper is organized as follows: In Section 2, cell specifications and explanations of the 
experimental work related to cell testing, test conditions, and procedures are presented. Section 3 describes 
the proposed KalmanNet for SoC/SoH co-estimation. Experimental results and discussions are provided in 
Section 4. Finally, in Section 5, the conclusions are provided. 

2 Description of the experimental procedures 
To collect data required for training, validation, and testing of the KalmanNet-based SoC-SoH co-

estimation algorithm, automotive-grade Li-ion cells based on NMC cathode and graphite anode are tested. 
The cell has a nominal voltage of 3.7 V and a rated capacity of 73 A.h. Detailed specifications of the tested 
cells are provided in Table 1. 
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A test bench based on Digatron MCT-RE (20 channels, 250 A) battery cycler and thermal chambers was 
used to charge-discharge cells under controlled test conditions. The schematic of the test bench is shown 
in Fig. 1.  

Different experiments involving both calendaric and cyclic aging tests at different rates, temperatures, 
etc. were carried out. The cyclic aging profile consisted of charge cycles based on a constant-current 
constant-voltage (CC-CV) protocol followed by discharge cycles at fixed rates and predefined levels of 
depth-of-discharge (DoD). Cells were fully characterized before and in intervals during the aging tests 
using reference performance tests (RPTs). The RPTs include capacity test, hybrid pulse power 
characteristics (HPPC) test, open-circuit voltage characteristics test (to procure the OCV-SoC 
relationships), and dynamic driving cycle tests. The dynamic test cycles were based on a customized driving 
cycle representing driving in Aarhus, Denmark (the Aarhus Driving Cycle or ADC). For the dynamic tests, 
the cells were initially charged to 100% SoC, then discharged according to the drive cycle profile, and 
subsequently recharged using the CC-CV protocol to bring the cells back to the reference test point. All 
tests were repeated under three temperature conditions (5°C, 25°C, and 40°C) to evaluate temperature-
dependent behavior. Figure 2 shows typical RPT results at 25℃. Based on the RPT, the OCV-SoC 
relationships of the cells are obtained, and typical OCV-SoC curves at 25℃ are plotted in Fig. 3. The OCV-
SoC curves are separately obtained during the charging and discharging processes. As seen, the charge and 
discharge OCV curves are similar, indicating that the level of hysteresis is negligible. Thus, to simplify the 
modeling process, the average of the charge and discharge curves is considered for the representation of 
OCV-SoC curves. The dataset created by testing different cells is used for training, testing, and validating 
the proposed SoC-SoH co-estimation framework based on KalmanNet.  

3 Principles of the proposed KalmanNet battery state estimator 
In this section, we first present and derive the original model-based EKF algorithm for real-time battery 

SoC-SoH estimation, which is the foundation for the KalmanNet derivation and will later be used as a 

TABLE 1: SPECIFICATIONS OF THE TESTED LI-ION CELLS 
Parameter Value 

Nominal voltage 3.7V 
Rated capacity 73 A.h. 

Upper voltage limit 4.2V 
Lower voltage limit 2.75V 

Material composition NMC-graphite 
Cell format Pouch 

 
 

 
Figure 1:  Schematic of the test setup used for cell testing 
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performance benchmark. Then, we detail the proposed co-estimation algorithm, including the KalmanNet 
architecture, feature extraction and definition, and training process, each discussed in separate subsections.  

3.1. The model-based EKF SoC-SoH estimator 

The EKF algorithm is developed here based on the formulations proposed in [7]. The implementation is 
fulfilled in the discrete domain, as required for final digital implementation. We assume that the battery 
corresponding measurement equation can be represented by the following SSM: 

 (1) 

( ) ( ), , 0, , n
k k k k k k ky h X R yυ υ= ∈ 

 (2) 

where 𝑘𝑘 is the sample index and 𝑈𝑈, 𝑦𝑦, and  𝑋𝑋 denote the battery input, output, and state vector, respectively, 
while 𝑓𝑓(∙) and ℎ(∙) are nonlinear functions representing the state and measurement equations. Likewise, 𝜔𝜔 
and 𝜐𝜐 denote the process and measurement noises considered to have zero mean with covariances 𝑄𝑄 and 𝑅𝑅, 
respectively. The EKF is a recursive algorithm, which means the state vector and the matrix of estimation 
error covariance should be initialized: 

[ ]0 0X̂ E X+ =  (3) 

( ) ( )1 1 1 1, , , ~ 0,k k k k k k kX f X U Qω ω− − − −=

 
Figure 2. Typical current and voltage profiles during different RPTs at 25℃ at Beginning-of-Life 

(BoL) (a) Capacity test (b) HPPC test (c) OCV test (d) Driving cycle test (ADC) 

 
Figure 3. OCV-SoC characteristics curves at 25℃ at BoL 
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( )( )0 0 0 0 0
ˆ ˆ T

P E X X X X+ + + = − −  
 (4) 

The EKF obtains the state estimates using a two-step process: the time-update phase using the battery 
SSM, and the measurement-update phase using the measurement equation. The original Kalman algorithm 
uses a linear SSM, and to accommodate the nonlinearity, the EKF linearizes the SSM using the first-order 
approximation of Taylor’s series expansion through the partial derivative matrices 𝐹𝐹 and 𝐿𝐿 as follows: 

1 1

1 1
1

ˆ ˆ
,

k k

k k
k

X X

f fF L
X ω+ +

− −

− −
−

∂ ∂
= =
∂ ∂

 

(5) 

The time-update of the battery state estimates 𝑋𝑋�𝑘𝑘− and the estimation error covariance 𝑃𝑃𝑘𝑘− can be obtained 
as follows: 

1 1 1 1 1 1
T T

k k k k k k kP F P F L Q L− +
− − − − − −= +  

(6) 

( )1 1 1
ˆ ˆ , ,0k k k kX f X U− +

− − −=
 

(7) 

For the measurement-update phase, the first-order linearization of the output can be carried out through 
the following derivative matrices: 

ˆ ˆ
,

k k

k k
k k

X X

h hH M
X υ− −

∂ ∂
= =
∂ ∂

 
(8) 

For obtaining the a posteriori state estimates, the measurement-update phase can ultimately be 
performed through the following equations: 

( ) 1T T T
k k k k k k k k kK P H H P H M R M

−− −= +
 

(9) 

( )ˆ ˆ ˆ ,0k k k k k kX X K y h X+ − − = + −   
(10) 

( )k k k kP I K H P+ −= −  (11) 

The battery SSM of (1)-(2) can be established considering the dynamic model of the battery, e.g. herein 
through a second-order ECM. The ECM and EKF are a widely used combination for battery state 

 
Figure 4. Second-order battery ECM used to establish the SSM 
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estimation. The considered ECM is shown in Fig. 4, where 𝐼𝐼𝐿𝐿 denotes the battery current, 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 denotes the 
OCV voltage, and 𝑉𝑉𝑡𝑡 denotes the battery terminal voltage. Current is assumed to have a positive sign during 
discharging and a negative sign during charging. The first state equation can be derived from the Coulomb 
equation as follows: 

,
1

13600
s L k

k k
k

T I
SoC SoC

C
η

−
−

= −
 

(12) 

where 𝐶𝐶 refers to the cell capacity, 𝜂𝜂 refers to the Coulombic (charge) efficiency, and 𝑇𝑇𝑠𝑠 is the sampling 
time. To obtain other state equations, we consider that the dynamic part of the ECM containing the ohmic 
resistor and the two resistive-capacitive networks, can be represented through the second-order transfer 
function in (13), where cross-multiplication yields (14): 

1 2
, 0 1 2

1 2
, 1 21

E k

L k

V b b z b z
I a z a z

− −

− −

+ +
=

+ +  
(13) 

, 1 , 1 2 , 2 0 , 1 , 1 2 , 2E k E k E k L k L k L kV a V a V b I b I b I− − − −= − − + + +
 (14) 

where 𝑧𝑧−1 is the discrete unit delay function. Another battery dynamic state is the cell’s capacity C, which 
gradually reduces over time due to battery degradation. We are particularly interested in estimating the cell 
capacity, as it represents the battery SoH. Considering that the changes in C are small and gradual within 
the estimation time steps 𝑇𝑇𝑠𝑠, one can approximate 𝐶𝐶𝑘𝑘 ≈ 𝐶𝐶𝑘𝑘−1 leading to the following equation: 

1 4k kC C ω−= +  (15) 

where 𝜔𝜔4 denotes a random noise. We will introduce this state equation to the overall battery SSM and co-
estimate it alongside the cell’s SoC. Co-estimating SoC and SoH allows the estimator to better capture the 
underlying coupled dynamics and inherent correlations between the states. By defining 𝑥𝑥1,𝑘𝑘 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑘𝑘, 𝑥𝑥2,𝑘𝑘 =
𝑉𝑉𝐸𝐸,𝑘𝑘, 𝑥𝑥3,𝑘𝑘 = 𝑉𝑉𝐸𝐸,𝑘𝑘−1, 𝑥𝑥4,𝑘𝑘 = 𝐶𝐶𝑘𝑘, and 𝑈𝑈𝑘𝑘 = [𝑢𝑢1,𝑘𝑘 𝑢𝑢2,𝑘𝑘 𝑢𝑢3,𝑘𝑘] = [𝐼𝐼𝐿𝐿,𝑘𝑘 𝐼𝐼𝐿𝐿,𝑘𝑘−1 𝐼𝐼𝐿𝐿,𝑘𝑘−2], the state equations 
can be derived from (12)-(15) as follows: 

1,
1, 1, 1 1

4, 13600
s k

k k
k

T u
x x

x
η

ω−
−

= − +
 

(16) 

2, 1 2, 1 2 3, 1 0 1, 1 2, 2 3, 2k k k k k kx a x a x b u b u b u ω− −= − − + + + +
 

(17) 

3, 2, 1 3k kx x ω−= +
 

(18) 

4, 4, 1 4k kx x ω−= +
 

(19) 

where 𝜔𝜔1 to 𝜔𝜔4 are the process noise with characteristics defined in (1). The process noise accounts for the 
uncertainty in the process model and states, and is considered to be an additive term here. The output 
equation can be derived by applying KVL to the circuit model of Fig. 4: 

, , , , 2,( 0 ) ( )t k OCV k E k k OCV k kV V S C V y V SoC x υ= + ⇒ = + +
 

(20) 

where 𝜐𝜐 is the measurement noise as in (2) and 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂,𝑘𝑘 is a nonlinear function of the SoC and temperature 
and is established using the OCV-SoC characteristic tests in Section 2. The OCV model can be implemented 
by fitting OCV-SoC data to an appropriate regressor function, such as a polynomial function, or 
alternatively using two-dimensional look-up tables. In this paper, polynomial functions of appropriate 
orders are used to represent the OCV models for the NMC cells. The last state variable is defined based on 
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the cell terminal voltage as 𝑥𝑥5,𝑘𝑘 = 𝑉𝑉𝑡𝑡,𝑘𝑘. Since the cell’s terminal voltage 𝑉𝑉𝑡𝑡,𝑘𝑘 is a measurable variable, this 
definition will ensure the system's observability. The state equation can be obtained using the derivation of 
(20), which leads to the following: 

( )
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.
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∂
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∂

∂
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∂
 

(21) 

Equations (16) to (21) represent the state and output equations corresponding to 𝑓𝑓(∙) and ℎ(∙) in (1) and 
(2), respectively. Finally, the battery states 𝑥𝑥1 to 𝑥𝑥5 can be co-estimated using the EKF algorithm with 
equations (3) to (11), in a sample-by-sample manner. The partial derivative matrices F, L, H, and M can be 
in part pre-calculated from the state equations derived before. Accordingly, one can write M=1 and L∈
ℝ5×5 is a unity matrix of size 5, while F and H can be obtained as follows: 

1

1
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1 2
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0
0 0 1 0 0
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∂ 
∂  ∂    ∂ − − 
 ∂  = = =    −∂   
  ∂   −   ∂   

(22) 

As seen in (22), only a few entries need to be computed in real-time, while the remaining entries are 
fixed, which simplifies the embedded implementation. In practice, it is expected that the battery SSM 
parameters (𝑎𝑎1,𝑎𝑎2, 𝑏𝑏0, 𝑏𝑏1, and 𝑏𝑏2) will change under different operating conditions of temperature and SoC, 
as well as due to the battery aging process. Thus, the model parameters should also be estimated and updated 
in real-time to maintain the accuracy of the EKF algorithm. The architectural block diagram of the EKF-
based SoC/SoH estimator is shown in Fig. 5. 

Initial 
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states

Time-update using 
battery model

Kalman gain 
calculation

Battery 
measurements

Measurement-
update phaseSoC & SoH

Current state becomes 
previous state

a priori estimates

Predict

error

V, I, T

 
Figure 5. Block diagram of the EKF-based state estimation 
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KalmanNet combines the EKF-based state estimator with a recurrent neural network (RNN) to tackle 
the modeling uncertainties and nonlinearities arising from cell aging. In the EKF-based state estimator, the 
covariances R and Q are normally not known and must be selected by trial and error, which are used in the 
KF process to obtain the Kalman gain based on (9). Here, the KalmanNet learns the Kalman gain statistics 
directly from data and integrates it into the overall Kalman filter process flow [8]-[10]. The time-update 
phase of the KalmanNet is merely based on (7), while the measurement-update phase is fulfilled using the 
innovation term ∆𝑦𝑦𝑘𝑘=𝑦𝑦𝑘𝑘 − ℎ𝑘𝑘(𝑋𝑋�𝑘𝑘−, 0). Contrary to the EKF, the Kalman gain is not calculated explicitly 
using (9); rather, it is obtained by training an RNN using battery data. The internal memory of RNN allows 
it to capture and track the underlying noise dynamics. The block diagram of KalmanNet is depicted in Fig. 
6. The input features are designed as follows: 

ˆk k ky y y∆ = −  (23) 

1 1
ˆ ˆ ˆ

k k kX X X− − +
− −∆ = −  (24) 

The output of the RNN contains the vector of Kalman gains 𝐾𝐾 ∈ ℝ5×1. The architecture of the RNN 
includes two fully connected layers (FCLs) as input and output, and a gate recurrent unit (GRU) in between 
them. The activation function type is considered to be rectified linear unit (ReLU) in the middle part of the 
network and a tangent hyperbolic (tanh) before the output layer. The training of the RNN is performed in 
a supervised end-to-end manner using the back propagation technique and stochastic gradient descent 
algorithm, and considering the following loss function: 

ˆ
k kLF X X += −  (25) 

4 Results and discussions 
The KalmanNet SoC-SoH estimator is trained and tested using the MATLAB/SIMULINK environment. 

The dynamic ADC tests at different stages of battery life are used to train the KalmanNet, while the RPTs 
are used for parameterization of the EKF and the battery model in (1) and (2).  
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Figure 6. Block diagram of the EKF-based state estimation 
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(a)                     (b) 

 

   
(c)                                                                             (d) 

Figure 7. Simulation results of EKF and KalmanNet (a) SoC estimation over one ADC cycle at 25 °C 
(b) Capacity (SoH) estimation over a dynamic cycle for aged cells (c) SoC estimation considering 

different initial SoC values in algorithms (d) SoC estimation error for different initialization settings 

Fig. 7 presents the SoC and SoH estimation results over a dynamic ADC cycle at 25 ℃, comparing the 
performance of the EKF and KalmanNet algorithms. To ensure a fair comparison, the covariance matrices 
in the EKF are selected to achieve the best possible estimation accuracy. In Fig. 7(a), the SoC estimation 
results demonstrate that while both methods can accurately track the SoC, KalmanNet outperforms EKF 
due to its superior ability to handle model uncertainties. The capacity estimation results in Fig. 7(b) support 
a similar conclusion for SoH, highlighting KalmanNet’s improved accuracy in estimating the capacity of 
aged cells. To assess filter convergence, various initialization conditions were tested. The results show that, 
regardless of the initial SoC value, KalmanNet consistently converges to the ground truth in the early stages 
of the simulation. A summary of the state estimation performance across different test scenarios is provided 
in Table 2. 

TABLE 2. SUMMARY OF THE STATE ESTIMATION RESULTS USING EKF AND KALMANNET 
  5 degC 25 degC 40 degC 

EKF SoC 0.028 0.025 0.019 
SoH 0.052 0.049 0.046 

KalmanNet SoC 0.015 0.012 0.011 
SoH 0.031 0.029 0.026 

 

In the table, simulation results at different temperature conditions for an aged cell (SoH ≈ 70%) are 
listed, showing that KalmanNet consistently achieves lower estimation errors for both SoC and SoH across 
all temperatures, demonstrating its robustness and superior performance compared to EKF, particularly 
under varying thermal conditions. 
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5 Conclusions and future work 
This paper presents KalmanNet, a data-driven Kalman filter framework for the joint estimation of 

battery SoC and SoH. Built upon the model-based EKF, KalmanNet replaces the traditional computation 
of Kalman gains with a RNN that learns gain statistics directly from historical battery data. This hybrid 
approach enhances robustness against model inaccuracies and nonlinearities, particularly those arising from 
battery aging and temperature-dependent behavior. A second-order ECM was employed to describe the 
battery dynamics, with both SoC and capacity (as a proxy for SoH) included in the state vector. The 
algorithm was trained and validated using real experimental data from NMC-based lithium-ion cells 
subjected to dynamic driving profiles and aging conditions at multiple temperatures. Simulation results 
demonstrated that KalmanNet consistently outperforms the EKF in terms of estimation accuracy, 
convergence speed, and robustness, especially under aging and varying thermal conditions. 

Future work will focus on several directions. First, we aim to optimize the KalmanNet architecture (e.g., 
layer size, depth, and activation functions) to improve estimation accuracy while reducing computational 
complexity. Second, we will investigate real-time deployment of KalmanNet on embedded platforms 
typical of battery management systems, with attention to memory and processing constraints. Additionally, 
we plan to extend the methodology to handle online learning and adaptation, enabling the network to update 
itself incrementally during operation as new data becomes available. Lastly, we will explore the 
generalization of KalmanNet across different cell chemistries and usage patterns to assess its applicability 
in a wider range of EV and energy storage systems. 
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