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Executive Summary 

This study aims to investigate the power reduction phenomena in heterogeneous battery pack configurations 

that arise due to an uneven current split, focusing on defining the power ability curves for the mixed system. 

Multiphysics based system model has been developed to investigate the factors contributing to power loss 

when the aged packs are mixed with fresh packs. Different methods are proposed to estimate the power 

retention curves for one and two fresh packs mixing into the homogeneous system. Having power ability 

curves for a heterogeneous multi pack system helps in defining the decision-making strategies for 

refurbishment of ESS during replacement and maintenance activities. Some strategies are introduced at the 

end to conduct the most conservative estimations while pack mixing.  
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1 Introduction 

The escalating demand for electric vehicles (EVs) has resulted in considerable advancements in battery 

technologies, with a focus on improving performance, energy utilization, and overall efficiency [2]. With 

the introduction of electrified heavy commercial vehicles and Battery Energy Storage Systems (BESS) for 

the grid, there is an increased need for scalable ESS with multiple battery packs in one system [3] [4]. Due 

to different user demands, for instance, higher energy, greater power, or longer cycle life, the optimal number 

of packs installed in an ESS may vary between users. In addition to adaptable performance, a scalable system 

also provides advantages such as redundancy and simplified serviceability.  

In some instances, one or a few packs in a system could be replaced if they become damaged in a traffic 

accident or if an increase in usable energy is needed due to the capacity fading of the installed 

packs. Capacity fade is still a significant challenge in energy storage systems, and it is common for cells to 

lose 20 - 30 % of their nominal capacity over their useful life [5]. Hence, unless heterogeneous system 

performance is evaluated correctly, all packs might need replacement, even though only one is damaged. 

Hence, unless heterogeneous system performance can be properly evaluated, there might be a need to 

replace all packs even though only one is damaged.  

Installing battery packs to the BESS at different time span enables systems to grow in capacity gradually. 

This would result in a heterogeneous system with packs at multiple different SOHs, and the power 

performance of such a system needs to be easily communicated and understood. It also supports circular 
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design principles, helping achieve sustainability targets [6]. Battery packs that are not fit for the high energy 

density applications can still be useful where volumetric constraints are less strict [7].  Scalable and flexible 

multi-pack systems, therefore, offer significant benefits and enable very efficient resource utilization. 

However, these mixed configurations introduce new engineering complexities, such as uneven current 

distribution among packs [8], misalignment in OCV-SOC curves, thermal management challenges [9], and 

varying degradation rates among the different cells. 

The performance of heterogeneous multi-pack systems is influenced by multiple factors, including power 

losses, capacity utilization, and thermal effects, all of which can reduce overall system efficiency [10]. 

Understanding the power reduction mechanisms within these configurations is essential to optimize their 

performance and ensure the longevity of the battery system. Power drop due to mismatched internal 

resistances, capacities or OCV’s leading to unequal current distribution, which can significantly impact the 

overall power output of the system [11] [12]. 

This study aims to investigate the power reduction phenomena in mixed battery pack configurations, 

focusing on key performance attributes such as resistance, capacity, and OCV. By analyzing the factors that 

contribute to power unavailability, the research seeks to identify a high-level metric to efficiently 

communicate power capability of a mixed battery systems. The findings will provide valuable insights into 

the design and management of battery systems in electric vehicles, contributing to the development of more 

efficient and sustainable energy storage solutions. Conventional power curves or tables for batteries usually 

assume static preconditioning. Since a heterogeneous multi-pack system can experience varying power 

drops across its SOC window, depending on how the current SOC was reached, our new method is needed 

to properly illustrate the power capability of the full system. 

 

2 Methodology 

In this section, the detailed methodology is discussed. The mathematical model is included to describe the 

coupled electrothermal model of the battery. In model overview, the MATLAB model for multipack battery 

system is discussed. Afterwards, simulation overview is explained with focus on process flow of the study, 

simulation use cases and load profiles considered in the analysis.  

 

2.1 Mathematical Modelling and Model Overview 

This study presents a coupled battery electrothermal model, where a 2RC Equivalent Circuit Model (ECM) 

is integrated with the thermal model to accurately predict battery behavior under varying conditions. 

The ECM model has been used to simulate the dynamic electric behavior of the battery. The model 

incorporates two resistor-capacitor (RC) networks to capture the transient response and predict battery 

performance under various dynamic conditions. The 2RC model consists of open-circuit voltage 𝑈𝑜𝑐𝑣 with 

charge/discharge hysteresis. It is the steady state voltage across the battery terminals when no load is 

connected. Instantaneous resistance 𝑅0 causes an instant voltage drop when the load is connected. The two 

RC Networks as shown in Fig 1: 𝑅1 represent the first polarization resistance accounts for the activation 

overpotential from the chemical reaction at the interface of the electrodes and 𝐶1 models the short-term 

energy storage capability of the battery due to double layer formation at the electrode interface.  

 

(a) 

 

(b) 

Figure 1: (a) 2RC Equivalent Circuit Model (ECM), (b) voltage polarization during discharge pulse [1] 

For second RC Network (𝑅2 and 𝐶2 ), where 𝑅2 represents the second polarization resistance due to 

concentration overpotential in the battery. The time constant 𝜏1 = 𝑅1𝐶1 and 𝜏2 = 𝑅2𝐶2 defines the time 
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required to charge/discharge the capacitor through resistance. The 𝜏1is smaller than 𝜏2, as the concentration 

overpotential evolves slower than activation overpotential. 

The current across the RC circuit can be written as, 

𝐼𝑐𝑒𝑙𝑙(𝑡) = 𝐼𝑅1(𝑡) + 𝐼𝐶1(𝑡) (1) 

Where current across capacitor 𝐶1 can be written,  

𝐼𝐶1(𝑡) = 𝐶1
𝑑𝑉𝐶1(𝑡)

𝑑𝑡
 , 𝑎𝑙𝑠𝑜 𝑉𝐶1(𝑡) = 𝑉𝑅1(𝑡) = 𝑅1𝐼𝑅1(𝑡) 

(2) 

From equations 1 and 2,  

𝐼(𝑡) = 𝐼𝑅1(𝑡) + 𝐶1𝑅1
𝑑𝐼𝑅1(𝑡)

𝑑𝑡
 

(3) 

Also rewriting the equation 3 to solve for 𝐼𝑅1,2(𝑡) 

𝑑𝐼𝑅1,2(𝑡)

𝑑𝑡
= −

1

𝑅1,2𝐶1,2
𝐼𝑅1,2(𝑡) +

1

𝑅1,2𝐶1,2
𝐼(𝑡) 

(4) 

The terminal voltage is estimated using, 

𝑈𝑐𝑒𝑙𝑙(𝑡) = 𝑈𝑜𝑐𝑣 − 𝐼(𝑡)𝑅0 − 𝑅1𝐼𝑅1(𝑡) − 𝑅2𝐼𝑅2(𝑡) (5) 

Initially, the model is calibrated using parameter estimation techniques by optimizing the RC parameters  

𝑅0,1,2(𝑆𝑂𝐶), 𝐶1,2(𝑆𝑂𝐶) . Such that the model output matches closely with the experimental data such as 

terminal voltage, SOC and OCV. 

 

The battery SOC is estimated by coulomb counting method, which integrates the current over time to estimate 

the charge transfer.  

𝑄(𝑡) = 𝑄(0) + ∫ 𝐼(𝑡)𝑑𝑡
𝑡

0

 
(6) 

Where, 𝑄(𝑡) is the charge at time (t), and 𝑄(0) is the initial charge. 

SOC is estimated using the relationship between charge and capacity such that 

𝑆𝑂𝐶(𝑡) =
𝑄(𝑡)

𝑄𝑚𝑎𝑥
× 100 

(7) 

Where, 𝑄𝑚𝑎𝑥 is the maximum charge/discharge capacity of the battery. 

The system voltage 𝑈𝑠𝑦𝑠 for 𝑁𝑝 parallel strings and 𝑁𝑠 series battery packs is estimated from cell voltage,  

𝐼𝑠𝑦𝑠

𝑁𝑝
= 𝐼𝑐𝑒𝑙𝑙 

𝐶𝑒𝑙𝑙 𝑚𝑜𝑑𝑒𝑙
⇒        𝑈𝑐𝑒𝑙𝑙  ,   𝑈𝑐𝑒𝑙𝑙𝑁𝑠 = 𝑈𝑠𝑦𝑠 

(8) 

Battery performance and its characteristics such as internal resistance and capacity are significantly influenced 

by the temperature. So, by integrating a thermal model with the battery electrical model is a sophisticated 

approach that allows for a more comprehensive understanding of battery behavior under various conditions. 

As the Thevenin 2RC model simulates the battery's voltage and current behavior, incorporating resistive and 

capacitive elements. The thermal model calculates the battery's temperature based on heat generation and 

dissipation, using the energy equation: 

𝜌𝐶𝑝
𝜕𝑇

𝜕𝑡
= ∇. (𝐾. ∇𝑇) + 𝑄𝑔𝑒𝑛 

(9) 

Where 𝜌 is the density, 𝐶𝑝 is the specific heat capacity, 𝐾 is the thermal conductivity, 𝑇 is the temperature of 

the battery. The rate of irreversible heat generation 𝑄𝑔𝑒𝑛 during charging/discharging can be calculated using, 

𝑄𝑔𝑒𝑛 = 𝐼
2(𝑅0) + 𝑎𝑏𝑠(𝐼𝑑𝑉𝑅1) + 𝑎𝑏𝑠(𝐼𝑑𝑉𝑅2) (10) 

The battery temperature influences the electrical model parameters 𝑅0, 𝑅1, 𝐶1, 𝑅2  & 𝐶2 defined as functions of 

SOC and temperature in a 2D lookup table: 

𝑅0,1,2 = 𝑓𝑛(𝑆𝑂𝐶, 𝑇) 

𝐶1,2 = 𝑓𝑚(𝑆𝑂𝐶, 𝑇) 

(11) 

(12) 
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The simulation study is conducted using MATLAB Simulink, where the energy storage system (ESS) model 

comprises a plant model and an advanced controller model (BMU) as shown in Fig.2. The plant model includes 

a cell model coupled with a thermal model. The cell model is developed using ECM 2RC method [1], while 

the thermal model is a reduced-order representation of the battery pack, capturing thermal dissipation and heat 

generation to study temperature evolution in the cell and pack under varying conditions. 

The plant model is connected to an advanced controller model, commonly referred to as the BMU, for each 

battery pack in a multi-pack system as shown in Fig.2(b). This controller implements strategies such as voltage-

current balancing and lookup-based SOC-temperature-current dependent power abilities, which defines the 

performance based on the demanded c-rate. Additionally, the system SOC is estimated by weighted average 

based sliding SOC method. Such that it equals the highest packs SOC at high SOC, the lowest pack SOC 

at low SOC. The system operates in a closed loop, where key parameters such as pack voltage, temperature, 

cell resistance, pack current and power abilities are interdependent. 

 

 
2(a) 

 
2(b) 

Figure 2: (a) Model overview, (b) Multipack Battery Model in MATLAB 

Each pack configuration differs with certain parameters like state of health (SOH), available cell capacity 

(SOQ), cell resistance (SOR), open circuit voltage (OCV) and corresponding performance abilities. The 

total system current is split into individual pack current based on voltage current balancing algorithm which 

works on voltage equalization principle as the packs are connected in parallel.  

The multipack controller fuses the multiple power abilities into one ability for the whole system. Actual 

current split will decide how much power can be withdrawn from the system without violating any single 

pack’s power ability. The system current limit during operation can be defined as (Eq. 13). 

𝐼𝐸𝑆𝑆
𝑙𝑖𝑚 =

𝐼𝐸𝑆𝑆

max(
𝐼𝐵𝑃1−6
𝐼𝐵𝑃1−6
𝑙𝑖𝑚 )

 
(13) 

Two different methods are used to calculate the current split among the different packs with 

indistinguishable results. The first method utilizes analytically derived equations to calculate the current 

split from each packs 𝑅0 and "𝑂𝐶𝑉𝑖𝑛𝑠𝑡𝑎𝑛𝑡", where the instant OCV is the sum of both the traditional steady 

state OCV term and the potential across the 𝑅1 and 𝑅2 resistances. The pack current 𝐼𝑗 for the 𝑗𝑡ℎ pack in 

parallel system is the summation of individual pack current based on Kirchhoff’s law [1]. 

ESS system current can be expressed as in (Eq. 14). 

𝐼𝐸𝑆𝑆 = ∑ 𝐼𝑗

𝑁𝑝−1

𝑗=0

= 𝑈𝑒𝑠𝑠 ∑
1

𝑅𝑗

𝑁𝑝−1

𝑗=0

− ∑
𝑈𝑜𝑐𝑣𝐼𝑛𝑠𝑡,𝑗

𝑅𝑗

𝑁𝑝−1

𝑗=0

 

(14) 

 

The pack current is defined from Ohms law and (Eq. 14) can be described as in (Eq. 15). 
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𝐼𝑗 =

∑
𝑈𝑜𝑐𝑣𝐼𝑛𝑠𝑡,𝑗
𝑅𝑗

𝑁𝑝−1

𝑗=0
+ 𝐼𝐸𝑆𝑆

∑
1
𝑅𝑗

𝑁𝑝−1

𝑗=0

− 𝑈𝑜𝑐𝑣𝐼𝑛𝑠𝑡,𝑗

𝑅𝑗
 

(15) 

The current distribution between the battery packs depends on their capacity, resistance and OCV. Capacity 

dependence is represented indirectly in terms of OCV change.  

The other method is used to calculate the current split by numerically finding the current that gives voltage 

balance in accordance with Kirchoff’s Voltage Law defined in Eq (16). Where a current split is calculated 

such that the limit of 𝑓(𝑧) tends to zero. This method allows for direct application on any battery model 

without extraction of 𝑅0 and 𝑂𝐶𝑉𝑖𝑛𝑠𝑡𝑎𝑛𝑡 and is accurate, but slightly slower than the first approach.  

𝑉1 − 𝑉2 = 𝑓(𝑧) such as lim
𝑉1−𝑉2

𝑓(𝑧)
 
→ 0 and ∆𝑉 = 0   (16) 

The percentage power retention of heterogeneous mixed battery system is estimated using, 

𝑃𝑜𝑤𝑒𝑟 𝑅𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛 % = (
𝑃𝑎𝑣𝑔,ℎ𝑒𝑡𝑒𝑟𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠
𝑃𝑎𝑣𝑔,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

)
𝑆𝑂𝐻

 (17) 

 

2.2 Simulation overview and ways of estimating aged pack characteristics 

The study adheres to the process flow chart outlined in Fig. 3. It commences with the definition of 

requirements, including use cases, pack State of Health (SOH), State of Charge (SOC) window, and system 

current. Based on these requirements, an appropriate modeling method is selected, such as the scaled, aged, 

or interpolation method. In the scaled method, the State of Resistance (SOR) of the pack is adjusted using a 

multiplication factor defined at the pack SOH. The aged method utilizes data from aged cells to model cell 

behavior. The interpolation method involves interpolating aging data between available aging test data. 

Subsequently, power attributes are collected and processed to eliminate system noise. Thereafter, the 

maximum, minimum, and average capabilities are extracted to assess power retention. From the power 

retention curve, a replacement matrix is formulated for all simulation use cases, facilitating decision-making. 

If the method satisfies the decision-making criteria, the process flow concludes; otherwise, feedback is 

provided to the requirements to continue the process for other simulation cases. 

Simulations are conducted on both homogeneous and heterogeneous multi-battery pack systems to facilitate 

systematic study. A homogeneous system consists of a multipack configuration where all packs maintain the 

same State of Health (SOH) level, serving as the baseline cases for comparison with the heterogeneous 

system. In contrast, heterogeneous systems comprise a mixed pack configuration, featuring one or two packs 

fresh pack mixed with different baseline SOH levels. 

 

 

Figure 3: Simulation process flow chart 
 
Various combinations of simulation use cases are presented, including one or two packs mixed with pack SOH 

at End of Life (EOL), Beginning of Life (BOL), and Middle of Life (MOL). The simulation methods employed 

include scaled, aged, and interpolation models, with load cycles categorized as 1. pulse discharge, 2. pulse 

charge, 3. cyclic discharge, and 4. cyclic charge, as detailed in Tables 1 and 2 below. 

 

 



6 EVS38 International Electric Vehicle Symposium and Exhibition  

Table 1: Homogeneous system simulation cases 

 

 
 

Table 2: Heterogeneous system simulation cases 

  

 

3 Results & Discussion 

In this study, approximately 108 simulation scenarios were assessed to examine the performance degradation 

caused by different combinations, including the number of incoming packs, cell characterization methods, 

State of Health (SOH) metrics, and current profiles. 

 

3.1 Pre-study: Dynamic Behavior of a Heterogeneous ESS 

A single pack with a simple cell configuration such as 200s1p still usually shows a very dynamic power ability 

which is strongly dependent on cell temperatures, SOC and charge/discharge history. Traditionally, the power 

ability for a system is communicated by a certain available pulse length power at a given SOC and temperature.  

A continuous power ability is usually given for each SOC and temperature that corresponds to the power ability 

at that temp and SOC, regardless of how the battery reached that state. In a heterogeneous multi-pack system, 

the concept of continuous power ability doesn’t transfer to the fused multi-pack power ability. Even when the 

multi-pack controller relies solely on the continuous abilities communicated by each pack, there will still be 

significant dynamics of the full ESS power ability, and the system will be sensitive to how it reached the state 

defined by temp and SOC.  

 

Fig. 4, shows the pack and system current at 50 % SOC for a heterogeneous system of 6 battery pack of 200s1p 

configuration, where 1 pack at SOH=100% and SOR=100% is mixed with 5 packs at SOH=80% and 

SOR=150%. With a pack limit of 100 A, a homogeneous 6 pack system would be able to deliver 600A. 

However, the heterogeneous system can deliver close to 500A initially, but within 3 minutes this current ability 

has dropped to ~450 A, since the fresh pack is hitting its peak current. This even though each pack allows 

100A each for the whole charge pulse. This is evidence that the uneven current splits can limit the system to 

operate at its full abilities. Hence, the sum of the continuous abilities isn’t enough, but a new metric is needed 

for communicating the power ability for a heterogeneous multi-pack system at different SOCs and 

temperatures. A battery model could always be used together with a use case to accurately predict the power 

ability, but to facilitate communication of the system performance something similar to traditional power 

ability curves is needed.  

 
4(a) 

 
4(b) 

 
Figure 4: (a) Multi-pack system current (b) Individual pack current at ~50% SOC. 
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3.2 Power Retention Analysis 

Power retention is the ratio of the average actual power from the heterogeneous mixed battery system to that 

of a defined homogeneous baseline system at certain SOH. Analysis has been performed by operating the 

system at different load profiles such as pulse charge Fig. 5(a), pulse discharge Fig. 5(b), cyclic discharge Fig. 

5(c) and cyclic charge Fig. 5(d). The key attributes such as SOC, temperature, pack voltage and actual currents 

were monitored to estimate the instantaneous power delivered. To define the power abilities at each pulse, the 

maximum, minimum and average powers are extracted from the instantaneous power. This process was applied 

across various use cases mentioned in Table 1 and Table 2, where scenarios such as one or two incoming fresh 

packs in the homogenous multi-pack battery system are evaluated using scaled, aged and interpolated cell 

characterization methods. In the study below, MOL packs mixed with 1 or 2 fresh packs are shown. 

 

5(a) 

 

5(b) 

 
5(c) 

 
5(d) 

 
Figure 5: (a) Pulse charge profile with rest preconditioning, (b) Pulse discharge profile with rest preconditioning, 

(c) Cyclic discharge profile with charge preconditioning, (d) Cyclic charge profile with discharge preconditioning. 

 

3.2.1 Pulse Charge with Rest Preconditioning 

The pulse charge profile operates the ESS at its maximum defined current abilities on a 5% change in SOC 

with a dedicated preconditioning rest period between pulses. For instance, as shown in Fig 5(a), if the system’s 

depth-of-discharge (DOD) window ranges from 10% to 90%, the ESS is allowed to charge between 10% to 

15% SOC, followed by a rest period before the next pulse begins. The cycle repeats in successive 5% SOC 

increments throughout the entire operating range.  

As illustrated in Fig. 6(a), the power retention analysis reveals notable performance variations across different 

pack configurations and cell characterization methods.  
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The two fresh pack system demonstrate an average power loss of approximately 7-8% within the SOC window 

of 20-90%.  In contrast, the single pack system experiences a higher average loss of 10-12% over the same 

range. However, within SOC window of 50-70%, the single pack system exhibits better power retention 

compared to other pack configuration for aged and interpolation methods. 

 

In the higher SOC window of 75-80%, the interpolation method tends to overpredict power retention with 

values exceeding 100%, indicating an unrealistic estimation and overutilization. In contrast, the aged method 

provides a more conservative and accurate estimation of power retention between 85-90% for both the 

configurations. A significant drop in performance up to 77% is observed in the lower SOC region, primarily 

due to open circuit voltage (OCV) shift arises due to SOH difference between heterogeneous and homogeneous 

packs. This results in a non-linear trend in power retention curves.  

 

 
Figure 6: (a) Power retention curves, (b) Average power ability factor, (c) Max power ability factor, (d) Min power 

ability factor for pulse charge scenario. 
 

As shown in Fig. 6(b), 6(c) and 6(d), all methods exhibit similar baseline power curves due to the identical 

OCV curves in the baseline homogeneous system. A greater deviation in power between the baseline and 

heterogeneous systems is observed in the early SOC range of 10-50% SOC, indicating higher initial 

degradation. Afterwards, the power curves converge and closely follow the baseline. Around 75-80% SOC, 

the interpolation method results in overestimating the power which leads to exceeding power retention more 

than 100%. 

 

3.2.2 Pulse Discharge with Rest Preconditioning 

A similar methodology was applied for pulse discharge as shown in Fig. 5(b), where the ESS is discharged 

over 5% SOC intervals with intermittent rest preconditioning. As shown in Fig. 7, the performance degradation 

trend observed during pulse discharge are same as that of the pulse charge profile. In the 90% to 30% SOC 

region, the two fresh pack configurations show an average power drop of approximately 5-8%, while the single 

fresh pack configuration exhibits a more pronounced degradation of about 10-12%. 

 
At the lower end of the SOC spectrum (around 12%), the scaled and interpolation methods tend to overpredict 

performance, with estimated power retention exceeding 100%, indicating unrealistic utilization. For example, 

higher discharge power at low SOC can be explained by one pack being at the lower SOC than the rest of the 
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packs. Hence, most of the packs are at a lower SOC having higher power ability than the compared baseline 

and the system SOC is defined from the high SOC outlier based on sliding SOC method. 

 

In contrast, the aged method offers more conservative and accurate estimates, predicting power retention 

between 93% and 80% across both pack configurations. Similarly, at the higher SOC range (80-90%), the aged 

method estimates a power retention approximately 83% for the two-pack scenario and 77% for the one pack 

scenario primarily attributed due to OCV shifts and SOH differences among the pack. 

 

 
7(a) 

 
7(b) 

Figure 7: (a) Power retention curves, (b) Average power ability factor for pulse discharge scenario. 

3.2.3 Cyclic Discharge with Charge Preconditioning 

In this case, as shown in Fig. 5(c), the ESS undergoes cyclic discharge, where each cycle begins with a 15% 

SOC increment followed by a 5% charge. For example, if the SOC window spans from 10% to 90%, the system 

first discharges from 90% to 75% SOC, then charges from 75% to 80% SOC for preconditioning. This 

discharge-charge sequence is repeated in successive 15% discharging and 5% charging steps across the entire 

SOC range. This helps in simulating realistic cyclic discharge conditions for the system. 

 

 
8(a) 

 
8(b) 

Figure 8: (a) Power retention curves, (b) Average power ability factor for cyclic charge scenario. 

As shown in Fig. 8, the cyclic discharge profile exhibits power degradation trends like those observed in the 

previous pulse-based profiles, with both charging and discharging preconditioning effects presented in single 

plot. Consistent with earlier observations, the single fresh pack combination demonstrates a more significant 
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power drop compared to the two fresh pack configurations. In the two fresh pack scenarios, average power 

degradation during discharging ranges from 11.5-12.5% in the (10-50%) SOC window, with charge 

preconditioning showing slightly lower drop of 7-7.5%. In the higher SOC region (60-90%) the degradation 

remains same for discharge as of (10-50%) and 8-9% during charge. In contrast, the single fresh pack scenario 

exhibits more pronounced losses, with discharging degradation of 15-16% and charge preconditioning 

dropping by 9-10% in the lower SOC range. At higher SOCs, the power drop remains same as of lower SOC 

range for discharge and increases to 11-12% for discharge. 

3.3 Max-Min Power Comparison for Aged and Scaled Method 

Based on our analysis using various load profiles, we examined different methods along with their 

characteristics. The maximum power within any state of charge (SoC) window represents the highest retained 

power, while the minimum power reflects the lowest retained power. When deciding whether to swap one or 

two battery packs, the maximum and minimum power values serve as key performance indicators. These 

values help define the essential ESS power requirements needed to meet our objectives. 

The aged method offers the highest accuracy and reliability compared to other methods studied so far. 

However, it requires a substantial amount of testing data to make accurate predictions. In contrast, the scaled 

method is quick and simple to implement, making it beneficial for those in the early stages of development. 

 

In the figure below, we analyze the minimum power retention derived from the maximum and minimum power 

retention curves across all load profiles. Fig. 9(a) illustrates the minimum power retention achievable with one 

fresh pack swap, using both the aged and scaled methods. It demonstrates that the minimum of the maximum 

power retention values for both methods provides a reasonably close approximation, with an average difference 

of 3% across the entire SOC range of 20-80%. However, the minimum of the minimum power retention curve 

reveals a greater deviation between the aged and scaled methods in the SOC range above 55%. This suggests 

that the aged method offers valuable insights into more precise estimations, aiding in decision-making. If one 

must adopt a conservative approach, the minimum of the minimum power retention should be examined, as it 

defines the least power achievable from a heterogeneous system when engaging with stakeholders. 

Furthermore, the scaled method has shown good performance in accurately estimating power trends compared 

to the aged methods for majority of the SOC window. 

 

 
9(a) 

 
9(b) 

Figure 9: Minimum Power retention curves for a) 1 fresh pack mixing, (b) 2 fresh pack mixing for all load profiles 

using aged and scaled method 

In fig 9(b), The two pack swapping system is analysed for making the decision, the power retention seems 

approximately 5% higher than the 1 pack swap, this indicates the less performance degradation compared to 1 

pack. Also, the power retention drops below 80% for the SOC above 55% like 1 pack swap. So, if the 

requirement is of min 60 % power retention, then 1 pack is capable to fulfil the demand. However, if the 

minimum power retention requirement is 70% then 2 pack swap is required to fulfil the requirement. This 

decision is made based on minimum of minimum power retention with the aged methods. And it seems to be 
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the most conservative prediction possible. However, if we go with the scaled method then both 60% and 70% 

minimum power retention requirements can be fulfilled with 1 pack swap only. So, it is important to select the 

better method for the analysis based on requirements and available resources.  

 

4 Conclusion 

This study investigated and compared the power ability curves for heterogeneous multi-battery pack system 

with the homogeneous system. Different methods viz.  scaled, aged and interpolation, are compared to estimate 

the power retention for single and two pack mixing in the homogeneous system. The following conclusions 

are drawn from the study: 

 

1. Power retention analysis helps us define conservative power abilities of heterogenous system instead of 

directly scaling the individual pack abilities which would give too high abilities. 

2. Among the three characterization methods evaluated, the aged method demonstrates the highest accuracy 

in estimating power retention, owing to its reliance on actual test data. Provided such data is available, this 

method is preferred. 

3. The interpolation method used to estimate power retention based on test data of certain SOH, sometimes 

leads to overestimations, resulting in values greater than 100% at both low and high SOC levels. This 

method performs better within the mid SOC range. Thus, it is important to choose the appropriate method 

based on specific requirements and the availability of data.  

4. Estimating the minimum of minimum power retention enables us to determine the most conservative 

power abilities for heterogeneous systems. This estimation can allow us to make decisions regarding the 

number of battery packs to be swapped based on the power requirements of stakeholders.  

5. By creating these power ability curves for heterogeneous multi pack systems, quick and easy comparisons 

between heterogeneous systems and homogeneous replacement systems is possible without the need for 

running detailed use case dependent multipack simulations. 
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