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Göteborg, Sweden, June 15-18, 2025

Adaptive Extended Kalman Filter-Based State of Charge
Estimation for a Lithium-Ion Battery Module

Qian Xun1, Gustavo Gomez Casanova1,2, Xiaoliang Huang1

1Qian Xun (corresponding author) RISE Research Institutes of Sweden, Borås, Sweden, qian.xun@ri.se
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Executive Summary

As battery electric vehicles continue to drive the shift toward sustainable transportation, accurate and
robust state of charge (SoC) estimation for lithium-ion batteries become essential for reliable battery
management. This paper presents an adaptive extended Kalman filter (AEKF)-based framework for SoC
estimation, utilizing a second-order equivalent circuit model. Model parameters are identified through
nonlinear optimization using reference performance test data, with the setting of time constant constraints
guided by preliminary exponential fitting. To improve the accuracy of the SoC estimation, the initial er-
ror covariance matrix, process noise covariance, and measurement noise covariance are jointly optimized
using a genetic algorithm, aiming to minimize the root mean square error between the estimated SoC and
the Coulomb counting based calculation. The AEKF adaptively adjusts the process noise covariance in
real-time based on estimation residuals, thereby improving robustness. Comparative simulations under
both ideal and perturbed scenarios, including initial SoC deviation, sensor noise, and parameter mis-
match, demonstrate that the proposed AEKF significantly outperforms the conventional EKF method.
Keywords: Electric vehicles, batteries, battery management systems, energy storage systems.

1 Introduction
The global transition towards sustainable transportation has significantly accelerated the adoption of bat-
tery electric vehicles (BEVs) [1]. By 2023, the number of electric cars registered worldwide surpassed
40 million, fueled by advancements in battery technologies, declining costs, and favorable government
policies [2]. Lithium-ion batteries (LIBs) remain the dominant energy storage technology in BEVs due
to their relatively high energy and power density, long lifespan, and relatively low self-discharge rates.

Effective battery management systems (BMS) are essential to ensure the reliability, safety, and perfor-
mance of LIBs. A critical function of the BMS is the accurate and robust estimation of the state of
charge (SoC), which directly influences range prediction, charge scheduling, and battery health manage-
ment [3]. However, SoC estimation remains challenging due to the inherently nonlinear electrochemical
dynamics of LIB, the inaccessibility of internal states, and the time-varying nature of battery parameters
under real-world conditions [4].

Various techniques have been developed for SoC estimation in LIB, including Coulomb counting (CC),
open-circuit voltage (OCV) look-up tables, equivalent circuit models (ECMs), electrochemical models,
and data-driven approaches [5, 6]. Among these, ECM-based model-driven methods offer a favorable
balance between model accuracy and implementation complexity, making them particularly attractive
for BMS deployment in EVs. Within this framework, SoC is estimated as an internal state variable based
on the real-time input and output measurements (i.e., current and voltage), using filtering techniques.
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Figure 1: Equivalent circuit model with 2RC branches.

Among these, model-based filtering techniques based on ECMs strike a favorable balance between ac-
curacy and computational efficiency, making them well suited for onboard SoC estimation [7]. This has
motivated widespread adoption of Kalman filter (KF)-based approaches.

The KF and its derivatives have gained widespread adoption in this context due to their recursive na-
ture and capability to handle noisy measurements and model uncertainties. In particular, the extended
Kalman filter (EKF) enables online estimation in nonlinear systems by linearizing the battery model
around the current state estimate, accommodating the nonlinear OCV–SoC relationship in practical ap-
plications [8]. The EKF has been widely used with ECMs, especially the first-order and second-order
resistance-capacitance (RC) networks, to provide real-time SoC estimation under varying load profiles.

However, the performance of the EKF is strongly influenced by the appropriate selection of the process
noise covariance (Q) and measurement noise covariance (R) matrices. These matrices govern the filter
confidence in model prediction versus measurement correction. In practice, fixed Q and R values are
often manually tuned based on limited datasets or heuristic trial-and-error. Such static tuning leads to
suboptimal estimation accuracy, particularly when the system undergoes time-varying conditions, such
as temperature changes, load transients, or cell degradation. In these cases, the mismatch between as-
sumed and actual noise statistics can result in significant estimation errors or filter divergence.

To address these limitations, adaptive extended Kalman filter (AEKF) methods have been introduced,
where the noise covariances are dynamically adjusted based on real-time innovation statistics (i.e., the
residual between predicted and measured voltages). By updating Q adaptively in response to the ob-
served behavior of the system, the AEKF improves robustness and tracking performance under a broader
range of operating conditions. Several adaptation strategies have been explored in the literature, such
as covariance matching, forgetting factor approaches, and residual-based scaling [6, 9]. These methods
seek to strike a balance between responsiveness to new information and stability of the filter update.

In this paper, a robust AEKF-based SoC estimation method is proposed for LIB modules. The core
contributions are as follows:

• A 2RC equivalent circuit model is employed, with parameters identified via constrained nonlinear
optimization using reference performance test (RPT) data.

• A 9th-degree polynomial is adopted to capture the nonlinear OCV–SoC behavior, supporting ac-
curate local linearization for EKF-based SoC estimation.

• A genetic algorithm is used to jointly optimize the initial values of matrices P , Q, and R to
minimize SoC estimation error.

• An AEKF is implemented to enhance the accuracy and robustness of the SoC estimation under
initial SoC bias, current noise, and model mismatch compared to conventional EKF.

The remainder of this paper is organized as follows: Section 2 describes the battery modeling and param-
eter identification. Section 3 presents the development of the AEKF-based SoC estimation framework.
Section 4 discusses the simulation setup and results. Finally, Section 5 concludes the paper and outlines
directions for future work.

2 Battery Modeling and Parameter Identification
Accurate battery modeling is fundamental for effective state estimation in BMS. In this work, a second-
order ECM, commonly referred to as the 2RC model, is employed to characterize the dynamic behavior
of the LIB module. This model provides a balance between model accuracy and computational simplic-
ity, making it well-suited for real-time SoC estimation.

EVS38 International Electric Vehicle Symposium and Exhibition 2



2.1 Battery Equivalent Circuit Model
The 2RC ECM consists of an open-circuit voltage (OCV) source in series with an ohmic resistance R0,
and two parallel RC branches with R1−C1 and R2−C2 representing the battery polarization dynamics.
The schematic of the model is shown in Fig. 1.

The terminal voltage Vbatt(k) at discrete time k is given by

Vbatt(k) = OCV (SoC(k))−R0 · I(k)− V1(k)− V2(k) (1)

where OCV (SoC(k)) is the open-circuit voltage as a function of the SoC, SoC(k) is the SoC at time
step k, I(k) is the current where positive for discharging and negative for charging, V1(k) and V2(k) are
the voltages across the first and second RC branches, respectively.

The dynamics of the RC branch voltages are governed by

V1(k) = V1(k − 1) · exp
(
− ∆t

R1C1

)
+

(
1− exp

(
− ∆t

R1C1

))
· I(k − 1) ·R1 (2)

V2(k) = V2(k − 1) · exp
(
− ∆t

R2C2

)
+

(
1− exp

(
− ∆t

R2C2

))
· I(k − 1) ·R2 (3)

where ∆t is the sampling time interval.

2.2 Parameter Identification Methodology
The parameters R0, R1, R2, C1, and C2 encapsulate the battery internal resistance and dynamic polariza-
tion characteristics. Proper identification of these parameters is critical to ensure accurate battery voltage
prediction and, consequently, reliable SoC estimation. The parameter identification is performed using a
nonlinear optimization approach. Experimental data from a RPT, which includes dynamic current pulses
and the corresponding terminal voltage response, is utilized for this purpose.

The objective function of the optimization is defined as the minimization of the root mean squared er-
rors (RMSE) between the measured terminal voltage Vmeas(k) and the model-predicted terminal voltage
Vmodel(k) over all time steps N , and the RMSE can be written as

RMSEV(θ1) =

√√√√ 1

N

N∑
k=1

(Vmeas(k)− Vmodel(k;θ1))
2 (4)

The optimization problem is formulated as

min
θ1

RMSEV(θ1) (5a)

subject to θ1lb ≤ θ1 ≤ θ1ub (5b)

ci(θ1) ≤ 0, i = 1, . . . ,m (5c)

where θ1 = [R0, R1, R2, C1, C2] represents the parameter vector. Constraint (5b) imposes simple bound
constraints to ensure physically meaningful parameter values, while constraint (5c) includes nonlinear
inequalities that enforce the following:

• The time constants of both RC branches lie within realistic ranges;

• A clear time-scale separation between the fast and slow branches is maintained, i.e., R1C1 ≪
R2C2;

• A structural condition such as R2 < 0.5R1 is satisfied.

3 Kalman Filter-Based SoC Estimation
Accurate SoC estimation for LIB requires a robust observer capable of handling system nonlinearities
and uncertainties. In this work, an AEKF is developed to enhance the SoC estimation performance by
dynamically adjusting the process noise covariance based on real-time innovation statistics.
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3.1 State-Space Model Formulation
The battery model described in Section 2 can be reformulated into a discrete-time state-space represen-
tation suitable for KF. The state vector is defined as

x(k) =

SoC(k)
V1(k)
V2(k)


The system dynamics are given by

x(k + 1) = Ax(k) +Bu(k) +w(k) (6)
z(k) = Cx(k) +Du(k) + v(k) (7)

where u(k) is the input current, z(k) is the measured terminal voltage, w(k) and v(k) are the process
and measurement noise, respectively.

The system matrices are defined as

A =


1 0 0

0 exp
(
− ∆t

R1C1

)
0

0 0 exp
(
− ∆t

R2C2

)


B =


−η∆t

Qn

R1

(
1− exp

(
− ∆t

R1C1

))
R2

(
1− exp

(
− ∆t

R2C2

))


C =
[
dOCV
dSoC −1 −1

]
D = −R0

Here, η is the Coulombic efficiency, and Qn is the nominal battery capacity.

3.2 Extended Kalman Filter Equations
The nonlinear measurement function, mainly due to the OCV-SoC relationship, necessitates the use of
an EKF. The EKF prediction and update steps are as follows. First, the prediction step for the states and
the error covariance ahead is written as

x̂(k + 1|k) = Ax̂(k|k) +Bu(k) (8)

P (k + 1|k) = AP (k|k)AT +Q(k) (9)
Then, the update step for the Kalman gain, the state estimation with the measurement zk, and the error
covariance is written as

K(k + 1) = P (k + 1|k)CT
(
CP (k + 1|k)CT +R(k)

)−1
(10)

x̂(k + 1|k + 1) = x̂(k + 1|k) +K(k + 1) (z(k + 1)−Cx̂(k + 1|k)−Du(k + 1)) (11)
P (k + 1|k + 1) = (I −K(k + 1)C)P (k + 1|k) (12)

where I is the identity matrix.

3.3 OCV-SOC Polynomial Approximation
The OCV-SoC relationship is inherently nonlinear. To integrate it into the EKF framework, the curve is
approximated using a 9th-degree polynomial fit, expressed as

OCV (SoC) ≈ a0 + a1SoC + a2SoC
2 + · · ·+ a9SoC

9 (13)

The derivative dOCV
dSoC required for the matrix C is analytically computed by differentiating the fitted

polynomial, shown as

dOCV

dSoC
= a1 + 2a2SoC + 3a3SoC

2 + · · ·+ 9a9SoC
8 (14)
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(b) Current (left) and voltage (right) vs time.

Figure 2: Experimental dataset: OCV–SoC relationship and dynamic profile of current and voltage.

3.4 Adaptive Extended Kalman Filter
To further improve estimation accuracy and robustness under varying conditions, an adaptive mechanism
is implemented. The process noise covariance matrix Q(k) is updated online based on the innovation
(measurement residual) at each time step

r(k) = z(k)−Cx̂(k|k − 1)−Du(k) (15)

The adaptive update of Q(k) follows the following equation

Q(k) = K(k)r(k)r(k)TK(k)T (16)

This adaptive strategy allows the filter to adjust to changes in the system dynamics or sensor noise
characteristics, improving robustness across different operating conditions.

3.5 Initial Covariance Matrix Optimization
The initial selection of the error covariance matrices in the KF, including the state estimation error co-
variance P (0), the process noise covariance Q(0), and the measurement noise covariance R(0), plays a
critical role in determining the convergence behavior and steady-state performance of the filter. Poorly
chosen values may result in slow convergence, filter inconsistency, or even divergence.

To systematically determine suitable initial values, a data-driven optimization is conducted by minimiz-
ing the RMSE between the estimated and true SoC over a validation dataset. The decision variables
consist of the diagonal elements of P (0), Q(0), and R(0), where

• P (0) ∈ Rn×n reflects the initial confidence in the state estimate;

• Q(0) ∈ Rn×n represents the uncertainty of process dynamics (e.g., model mismatch, noise);

• R(0) ∈ R is the variance of the voltage measurement noise.

The optimization problem is formulated as

min
θ2

RMSESoC(θ) (17a)

subject to θ2lb ≤ θ2 ≤ θ2ub (17b)

where θ2 is the vector of tunable diagonal entries from P (0), Q(0), and R(0). Bound constraints (17b)
ensure the parameters remain within physically realistic ranges to maintain filter stability.
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(b) Slow dynamics.

Figure 3: Exponential fitting of voltage relaxation segments for estimating characteristic time constants.

4 Simulation Results and Discussion

4.1 Dataset Description
The experimental dataset is obtained from a fresh 12S1P NMC LIB module with a nominal capacity of
37 Ah. The testing is conducted at an ambient temperature of 25◦C. The test profile includes a sequence
of dynamic charge and discharge pulses with current amplitudes of ±9 A to ±37 A, designed to excite
the battery dynamics across a wide operating range. The voltage and current signals are sampled at a
frequency of 1 Hz using high-precision measurement equipment. Fig. 2 illustrates the dataset character-
istics. The OCV–SoC curve shown in Fig. 2(a) is obtained under quasi-static conditions and Fig. 2(b)
shows the applied dynamic current profile and the corresponding voltage response.

4.2 Parameter Identification and Model Validation
To ensure physical interpretability and effective optimization, a preliminary analysis using single expo-
nential fitting is conducted prior to parameter identification. This allows for an informed estimation of the
dominant time constants, which guides the initialization and constraint setting for the model parameters.

4.2.1 Preliminary Exponential Fitting for Time Constant Estimation
To capture the dynamic characteristics of the battery module, two representative voltage relaxation seg-
ments are selected. Each segment is fitted using a single exponential function of the form:

V (t) = V∞ + (V0 − V∞) exp

(
− t

τ

)
where V∞ is the final steady-state voltage, V0 is the initial voltage at the beginning of the relaxation, τ is
the time constant.

Fig. 3 shows the fitting results, and the extracted time constants are 4.52s for fast relaxation and 5949.5s
for slow relaxation. These fitted values span more than three orders of magnitude, indicating the necessity
of a dual time-constant model such as the 2RC structure. They are used to guide the selection of initial
values and constraint bounds for the subsequent parameter identification process.

4.2.2 Voltage Fitting Results
The MATLAB function fmincon is employed to solve the optimization problem formulate in (5). The
accuracy of the identified 2RC equivalent circuit model is validated by comparing the model-predicted
terminal voltage against the measured voltage under the dataset described in Section 4.1. Fig. 4 illustrates
the comparison between the measured terminal voltage and the voltage predicted by the 2RC model
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(a) Comparison of measured and model-predicted voltages.
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(b) Absolute voltage error and relative voltage error.

Figure 4: Validation of the identified 2RC equivalent circuit model under dynamic current pulses.

Table 1: 2RC ECM fitted parameters

Parameter R0 R1 R2 C1 C2

Value 1.30× 10−2Ω 1.64× 10−2Ω 7.23× 10−3Ω 2.96× 102F 7.67× 105F

using the identified parameters. As shown in Fig. 4, the model-predicted voltage closely matches the
experimental measurements, with a RMSE of 0.31%. The relative voltage error remains within ±1.5%
throughout the test. This validates the effectiveness of the parameter identification method with proper
normalization.

4.2.3 Identified Model Parameters
The final identified parameters for the 2RC model are summarized in Table 1. These parameters indicate
that the battery exhibits two distinct dynamic responses: a fast dynamic response associated with the
R1C1 branch and a slower dynamic response associated with the R2C2 branch. Both time constants are
effectively captured by the identified model.

4.3 SoC Estimation Results
The performance of the AEKF for SoC estimation is evaluated based on the dataset described in Sec-
tion 4.1. The results include the OCV-SOC curve fitting, covariance matrix optimization outcomes, the
SoC estimation performance comparison, and the sensitivity analysis of SoC estimation with perturba-
tions.

4.3.1 OCV-SOC Polynomial Fitting
The OCV–SoC relationship is modeled using a 9th-degree polynomial fitted to experimental data ob-
tained under low-current conditions. The polynomial form and fitting method are described previously
in Section 3. To evaluate the quality of the OCV–SoC polynomial fitting, the coefficient of determination
R2 is used. It quantifies how well the fitted curve explains the variance in the measured OCV data and is
defined as

R2 = 1− SSres

SStot
(18)

where SSres is the residual sum of squares between the measured and fitted OCV values, and SStot is the
total variance in the measured data. An R2 value closer to 1 indicates a better fit [10].
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Figure 5: OCV curve fitting and error analysis.

Table 2: Optimized initial covariance matrix elements

Matrix Element Optimized Value Unit

P11(0) (SoC) 0.99 -
P22(0) (V1) 0.87 V2

P33(0) (V2) 4.96 V2

Q11(0) (SoC) 1.62 -
Q22(0) (V1) 1.98 V2

Q33(0) (V2) 1.91 V2

R(0) (Voltage measurement noise) 0.99 V

Fig. 5 illustrates both the fitting results for multiple polynomial degrees and the residual error for the
selected 9th-degree model. While higher-order polynomials yield marginally better fits, the 9th-degree
polynomial achieves a desirable trade-off between accuracy and model complexity. The 9th-degree poly-
nomial fit yields a maximum absolute error of 0.4 V and a relative error within ±2%, with best accuracy
achieved in mid-SoC range and larger deviations observed at low SoC due to stronger nonlinearity.

4.3.2 Initial Covariance Matrices Optimization
The initial values of the covariance matrices, optimized using the MATLAB function ga, are summarized
in Table 2. These optimized values are used as the initial covariance matrices for the AEKF implemen-
tation.

4.3.3 SoC Estimation Performance
To evaluate the SoC estimation accuracy under dynamic load profiles, both EKF and AEKF are imple-
mented using the equivalent circuit parameters identified earlier. The CC method is used as a reference
baseline. The initial state covariance matrix P (0) and the measurement noise covariance R(0) are fixed
across both filters based on the optimal values identified through AEKF. For fair comparison, the process
noise covariance matrix Q(0) is optimized separately.

As shown in Fig. 6(a), the SoC estimated by AEKF closely follows the CC reference, with only minor
deviations throughout the profile. In comparison, the EKF exhibits more pronounced fluctuations, par-
ticularly during sharp current transients. This discrepancy is more evident at low SoC levels, where the
estimation becomes less reliable. Fig. 6(b) further confirms this trend: the relative SoC error of AEKF
stays within ±1% across most of the profile, except in the low SoC region, where errors can exceed 10%,
as indicated by the shaded gray area. In contrast, EKF errors can surpass 5% even at moderate SoC levels
during rapid dynamic changes.

In addition to SoC tracking, both EKF and AEKF can reconstruct the terminal voltage in real time based
on the internal RC model states and current input. Fig. 7(a) shows that both EKF and AEKF accurately
follow the measured terminal voltage, with negligible deviation. The relative voltage errors plotted in
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Figure 6: Comparison of SoC estimation between EKF and AEKF under pulse load profile.
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Figure 7: Comparison of voltage estimation between EKF and AEKF under pulse load profile.

Fig. 7(b) remain within ±2.5%, confirming the reliability of both algorithms in voltage estimation. Inter-
estingly, although the SoC deviation is significant in EKF, the impact on voltage estimation is marginal
due to the flatness of the OCV–SoC curve in the mid-range.

4.3.4 Sensitivity Analysis of SoC Estimation
To evaluate the robustness of the proposed AEKF under real-world uncertainties, sensitivity analysis is
conducted using the same dynamic test dataset. Three types of perturbations are introduced: (i) initial
SoC deviation, (ii) current measurement noise, and (iii) model parameter variation. The performance of
the EKF and the AEKF is compared with the CC method used as reference.

Fig. 8 shows the results with the initial SoC setting as twice of the true value. Both EKF and AEKF
gradually corrects the deviation over time. However, AEKF demonstrates superior convergence and sig-
nificantly lower relative SoC error throughout the entire cycle. EKF exhibits large deviations during
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Figure 8: SoC estimation comparison between EKF and AEKF with initial SoC deviating twice of the true value.
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Figure 9: SoC estimation comparison between EKF and AEKF under 0.2% current sensor noise.
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Figure 10: SoC estimation comparison between EKF and AEKF under 20% resistance and capacitance perturba-
tion.

mid-cycle, indicating its higher sensitivity to initialization errors.

Fig. 9 depicts the scenario where a 0.2% random noise is added to the current input. The AEKF main-
tains a relatively stable SoC trajectory with moderate error, while EKF fluctuates significantly, especially
in segments with frequent current transitions. The adaptive update mechanism in AEKF helps suppress
the noise effect more effectively.

Fig. 10 evaluates robustness when all resistances are increased by 20% and all capacitances are decreased
by 20%, simulating modeling errors. AEKF again outperforms EKF by maintaining close alignment with
the CC reference. The error in EKF accumulates over time due to the uncorrected model mismatch, while
AEKF adaptes its process covariance to partially compensate for the discrepancy.

Overall, these results confirm that AEKF provides more robust SoC estimation performance under vari-
ous real-world uncertainties compared to the conventional EKF.

5 Conclusion
This paper presents an AEKF-based method for accurate and robust SoC estimation of a LIB module. A
2RC model is employed to characterize the battery dynamics, and its parameters are identified through a
nonlinear optimization approach.

To enhance the estimation performance, the initial values of the state estimation error covariance, process
noise covariance, and measurement noise covariance matrices are optimized using a GA, minimizing the
SoC estimation error over a validation dataset. A 9th-degree polynomial is used to approximate the
nonlinear OCV–SoC curve, providing the smooth derivative needed for local linearization in EKF. Sim-
ulation results demonstrates that the proposed AEKF method significantly outperforms the conventional
EKF approach, achieving a substantial reduction of RMSE in SoC estimation. The identified 2RC model
also exhibits good predictive capability, with voltage fitting errors below 1.5%.

Despite these promising results, the proposed method relies on the assumption of consistent model ac-
curacy and is validated under controlled laboratory conditions. Future work will focus on extending
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the validation to aged battery modules, incorporating temperature-dependent effects into the modeling
framework, and investigating lightweight adaptive filtering strategies suitable for real-time implementa-
tion under variable operating conditions. On the other hand, while the proposed AEKF offers improved
estimation accuracy and robustness, its computational complexity is higher than standard EKF. Future
work will explore lightweight adaptive schemes suitable for embedded BMS hardware.
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