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1Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, Italy.

davide.clerici@polito.it

Executive Summary

This work investigates the mechanics of lithium-ion batteries both from the aging point of view, and as a
tool to diagnose the battery health and degradation mechanisms in real-world scenarios.
This work presents POLIDEMO, the first battery aging model explicitly addressing mechanical degra-
dation phenomena. The model provides a physics-based description of the coupled electrochemical and
mechanical aging processes in lithium-ion batteries. It enables the prediction of key degradation indica-
tors, including capacity fade—capturing the knee point behavior—and the irreversible thickness increase
associated with long-term aging. .
Mechanics is not only an issue in lithium-ion batteries: the close correlation between the lithiation
of the electrodes and the deformation of the battery allows to define algorithms for battery diagnos-
tic and state of charge estimation based on the measurement of the battery deformation. The strength
of mechanical-based algorithms with respect to traditional voltage-based algorithms is the absence of
current-dependency, making mechanical-based algorithms working excellently even with high currents,
typical of real-world scenarios.

Keywords: Batteries, Battery Management System, Modelling & Simulation, Health and Safety Consid-
erations

1 Introduction
During operation, lithium-ion batteries experience a macroscopic deformation due to the deformation
induced by the electrochemical processes, involving the interaction of lithium ions with the crystal struc-
ture of the active material of electrodes. Such deformation, originating at the atomic scale, has an impact
on the macroscopic structural deformation of the battery (Fig. 1a-b), which can be both mathematically
computed [1, 2] and measured experimentally with dedicated sensors [3, 4, 5, 6, 7, 8]. In particular,
batteries swell during charge, and contract during discharge, following the deformation the negative
electrode being lithiated (expansion) and delithiated (contraction), respectively. The deformation of the
positive electrodes used in commercial batteries is lower than graphite (or silicon), then it counterbalance
the deformation of the negative electrode but it does not overcome it. This makes the macroscopic de-
formation of the battery to have the same trend of the negative electrode deformation. This deformation
occurring during charge and discharge is referred to as reversible deformation, as the the same amount
of expansion in a full charge cycle 0%-100% state of charge (SOC), is completely recovered during the
discharge back to 0% SOC.
An irreversible deformation is observed during aging on the top of the reversible deformation, meaning
that the thickness of the battery continuously increases during aging [9, 8, 6, 5, 10] because of degrada-
tion phenomena, such as the SEI growth and the associated gas generation.
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The interaction of lithium ions with the electrode microstructure does not only cause the macroscopic de-
formation of the battery, but also the mechanical degradation of the electrodes at microscale. Indeed, the
insertion of lithium ions in the crystalline structure of the active material causes the so called diffusion
induced stress [11, 12, 13, 14] in the active material particles of the electrode. This stress leads to crack
propagation in the particles [15, 16, 17], resulting in the disconnection of portion of active materials from
the rest of the electrode (loss of active material) and in the accelerated solid electrolyte interface (SEI)
growth over the cracks surfaces because of the contact with the electrolyte. These phenomena leads to
the performance decay of the battery during aging, such as capacity fade and resistance increase.
For this purpose, a mechanical-electrochemical degradation model has been studied to model the cou-
pling between the mechanical and electrochemical degradation processes. This study resulted in the
implementation of POLIDEMO [18], an open-access software for lithium-ion battery degradation mod-
eling. The key features of the model are three: (a) The innovative approach to model mechanical degra-
dation and its relationship with loss of active material, the increasing tortuosity and the subsequent resis-
tance increase ultimately; (b) The ability to predict the occurrence of the knee point in the capacity loss
curve; (c) The ability to calculate the irreversible swelling of the battery during aging.
Mechanics is not just an issue in lithium-ion batteries. Indeed, the reversible deformation of the battery
provides useful insight in the battery internal states that can be leveraged for innovative battery diagnos-
tic methodologies [19], with some advantages over traditional voltage-based methods.
The reversible expansion of the battery is proportional to its SOC, as visible in Figure 1b, and it is slightly
affected by the applied current, differently from voltage. These observations led to the development of
POLISOC, a mechanical based estimation algorithm that leverages the reversible deformation of the
battery to estimate SOC. It is shown that the SOC can be estimated by inverting the thickness-SOC re-
lationship even in dynamic condition with rmse in the order of 2%. Furthermore, a hybrid Kalman filter
is implemented, running both with deformation and voltage measurements, besides the current measure-
ments for coulomb counting. The application of the algorithm for SOC estimation in LFP, LCO and
NMC batteries shows promising results. The key advantages are two: (a) The estimation of SOC in LFP
batteries that suffer the flat SOC-open circuit voltage (OCV) relationship and the OCV hysteresis; (b)
The SOC estimation in aged batteries, where the high resistance increase occurring during aging nega-
tively affects the performance of the electrical equivalent circuit model in the kalman filter for the voltage
calculation.
Mechanical measurements can be used to diagnose the battery health as well, through the estimation of
degradation mechanisms. The phase transition occurring during the electrode lithiation leave a trace in
the deformation characteristic (deformation vs state of lithiation) of the electrode, visible on the macro-
scopic battery deformation measurement. Then, these traces appear as peaks when computing the deriva-
tive of deformation with respect to SOC - differential expansion - in analogy to the differential voltage
methodology. The main advantage with respect to the traditional voltage based methodology is that de-
formation does not suffer polarization, then mechanical-based method are applied also at high current
in industrial relevant applications, and not just at very low current in lab applications as voltage based
methods.

Figure 1: (a) Multi-scale structure of lithium-ion batteries; (b) Reversible deformation of an LCO battery in a
single charge/discharge cycles as a function of current rates.

2 Experiment
Two kind of experimental tests have been carried out: 1) Mechanical characterization tests to study the
reversible deformation of the battery as a function of state of charge and different charging/discharging
currents; 2) Aging tests to track how the electrical performances (capacity and resistance) as well as
mechanical performances (reversible and irreversible deformation) change with aging.
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The most common battery chemistries (LFP, NMC, LCO) have been mechanical characterized, whereas
aging tests have been carried out on LCO batteries.

2.1 Mechanical characterization
The reversible deformation of LFP, NMC and LCO batteries (the first two prismatic and the latter pouch)
has been measured with the experimental setup explained in detail in the authors’ previous works [3,
4]. Briefly, batteries undergone constant current full depth of discharge cycles followed by constant
current/constant voltage charge cycles. Current rate spans from C/20 up to 3C in discharge and from C/20
up to C/2 during charge. The battery deformation is measured with laser displacement sensors measuring
the thickness change of the battery. In particular, the couple of laser sensors measure the displacement
of the central point of the two larger battery surfaces, so that the sum of the two displacement measured
is the thickness change of the central point of the battery. The reversible deformation measured on LFP,
NMC and LCO batteries during charge and discharge is reported in Figure 2.

Figure 2: Reversible deformation measurements at different current rates during discharge (a-c) and charge (d-f)
cycles in LFP, LCO and NMC batteries.

2.2 Aging tests
Aging tests are carried out on LCO batteries to track how electrical performances (voltage profile, capac-
ity and resistance), thermal performance (temperature profile), and mechanical performances (reversible
and irreversible deformation) change with aging.
The aging test protocol consists of alternating aging cycles and reference performance tests. In particular,
reference performance tests consisting in 3 full DOD charge-discharge cycles at high rate (C/2 charge -
1C discharge) are performed each 25 aging cycles. Voltage, temperature and deformation responses at
high rate cycling are obtained from this reference performance tests. Irreversible deformation is obtained
measuring the battery thickness each 25 aging cycles. Low rate charge-discharge cycles and hybrid pulse
power characterization tests (HPPC) are performed each 50 aging cycles to obtain the voltage and defor-
mation responses at low rate and the Ohmic and diffusion resistances.
Figure 3a reports the capacity loss measured from the high and low rate reference performance tests, as
well as the calendar aging measured on other battery samples not subjected to aging. Figure 3b reports
the trend of the Ohmic resistance during aging. Figure 3c reports the reversible deformation measured
from the high and low rate reference performance tests. Finally, Figure 3d reports the irreversible defor-
mation of the battery through aging.
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Figure 3: Electrical and mechanical performance change through battery life. (a) Capacity loss, (b) Ohmic resis-
tance, (c) Reversible deformation, (d) Irreversible deformation.

3 Aging Diagnostics and State of Charge Estimation with Mechanical
Measurements

Algorithms for the on-line battery diagnostics have been developed and patented [20] aiming to estimate
SOC, state of health (SOH) and to identify the degradation mechanisms (loss of active material and
lithium inventory) from in-operando mechanical measurements. These deformation-based algorithms
leverage the close correlation between the electrode lithiation and the battery deformation, overcoming
the difficulties of voltage-based algorithms when dealing with high current because of polarization. The
final goal is to provide health and the degradation estimation as well as improved SOC estimation when
operating with fast charging profiles, typical of the automotive sector.

3.1 State of Charge estimation - POLISOC
The SOC estimation algorithm based on mechanical measurements relies on the fact that the reversible
deformation of the battery during operation is directly linked to the amount of lithium ions in the elec-
trodes, that is the true indication of the SOC. This makes the thickness of the battery to be directly
proportional to its charge: higher the charge of the battery, higher its thickness. This behavior is re-
versible, making the battery to contract during discharge, so that a certain thickness corresponds to a
certain SOC. Furthermore, this characteristics remains unchanged also when the battery ages.
The state of charge-thickness (SOC-THK) relationship of LCO and NMC batteries is almost linear (thus
monotonic), as shown in Figure 2b,c,e,f, making possible to accurately estimate SOC just inverting the
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SOC-THK curve. Then, a SOC value is attributed according to the actual thickness of the battery, even in
dynamic condition like DST and drive cycles current profile with currents up to 3C. LFP batteries have a
non monotonic SOC-THK relationship, as shown in Figure 2a,d, thus an Extended Kalman Filter (EKF)
is developed to estimate SOC on the basis of the deformation measurement.
In this regard, an hybrid SOC estimation algorithm, called POLISOC, is created [21]. POLISOC can
estimate SOC in three modes: 1) The traditional EKF approach with current (Coulomb counting) and
voltage measurement as explained in reference textbooks [22]; 2) The mechanical EKF approach where
current measurement for Coulomb counting are combined with deformation measurement, in analogy
with the approach 1; 3) The hybrid EKF approach, where current measurement for Coulomb counting
are combined with voltage and deformation measurement.
The logic of the algorithm, as all the EKF algorithm for SOC estimation, is that current measurements
give the time evolution of the SOC with Coulomb counting. Coulomb counting alone is error prone
because of the noise in the current measurement sums up at each time step making the estimation to drift
from the true value. Furthermore, also other terms in the Coulomb counting expression can induce errors,
such as the actual battery capacity changing with aging and the unknown initial SOC. For this reason,
measurable quantities, in this case voltage and deformation, depending mathematically on the SOC are
included in the EKF to correct the estimation. The goal is to model these quantities as a function of the
SOC state to be able to correct the estimation with a feedback loop: the estimation is good and does not
need correction if the calculated quantity (depending on the SOC state being estimated) is in agreement
with the measured quantity; On the other hand, the estimation may benefit of a correction when the cal-
culated quantity is different from the measured quantity.
It is assumed that errors between the calculated and measured quantity are due to the bad estimation of
SOC fed into the model for the deformation or voltage calculation. In reality, the estimation error may
be caused by the model’s poor representation of the quantity being modeled as a function of the state of
charge. In this regard, the model used to compute deformation as a function of SOC is relatively simple,
as it only involves the SOC–THK relationship. Conversely, the model used to compute voltage from the
state of charge is a more complex equivalent electrical circuit model, which requires the identification
of several resistance and capacitance parameters. These parameters not only may suffer identification
errors, but they also may vary significantly as the battery ages.
As a result, estimation algorithms based on voltage measurements are inherently subjected to model er-
rors—both due to inaccuracies in parameter identification and, more critically, due to the possible lack of
parameter updates that reflect the current aging state of the battery. On the other hand, deformation-based
algorithms do not suffer from this issue, since the deformation model requires no parameter identifica-
tion and the SOC–THK characteristic remains stable over aging. In fact, as the battery loses capacity, the
amplitude of the reversible deformation also decreases proportionally. Therefore, relying on deformation
allows the algorithm to inherently account for the current state of health, without the need to update the
actual battery capacity using a dedicated identification algorithm.
POLISOC is applied to LFP batteries subjected to dynamic DST and drive cycles test (Figures 4a-b, re-
spectively), showing that SOC estimation may be improved when including deformation measurement.
In the hybrid configuration, the algorithm is influenced by the covariance values assigned to the input
signals, which represent the assumed measurement uncertainties. In this case, identical covariance values
are attributed to all sensors (current, voltage and deformation). Nonetheless, further work could aim to
improve the estimation logic so that, even under equal covariance assumptions, the algorithm naturally
converges toward the signal with lower actual error—typically the deformation measurement.
POLISOC is further applied to aged LCO batteries subjected to DST profile, as shown in Figures 4c-d,
respectively. In this case it is evident that when relying to the voltage based method without updating
the resistance values, measured at the beginning of life (BOL), the estimation gets very bad because
the current pulses cause voltage drops higher than expected because of the resistance increase during
aging, causing erroneous SOC changes. On the other hand, the deformation based algorithm performs
excellently, even with the SOC-THK relationship measured at the BOL.
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Figure 4: SOC estimation in LFP battery with the POLISOC algorithm (a) DST current profile, (b) Drive cycle
current profile. SOC estimation in aged LCO batteries with (c) voltage based and (d) deformation based method-
ologies.

3.2 Degradation Indicators Estimation
Degradation indicators estimation based on mechanical measurement relies on the fact that the phase
transitions occurring in the electrode are accompanied by structural changes detectable by the macro-
scopic deformation of the battery. The algorithm, called differential expansion (DE), works in analogy
with differential voltage, where the phase transitions are detected by sudden voltage drops resulting in
peaks in the differential voltage (DV). The significant advantage is that deformation does not suffer from
polarization like voltage, so the mechanical-based method is applicable even with high current rate. This
is evident comparing the differential voltage and differential expansion curves at low and high rate re-
ported in Figure 5. At low current peaks in the differential voltage are clearly visible, but they becomes
less evident at high current, especially peak c in Figure 5c. On the other hand, peaks remain in the same
position both at high and low current with the differential expansion method, as evidenced in Figures
5b,d. This characteristics makes the latter method applicable to real-world charging profile in vehicle
applications for degradation indicators estimation.
The differential expansion method used to estimate the loss of lithium inventory (LLI) and the loss of
active material (LAM) from the derivative of the reversible deformation at high rate (Figure 5d) is ex-
plained in detail in a previous authors’ publication [9], interested readers should refer to it for detailed
information on the algorithm implementation.
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Figure 5: Differential voltage at (a) low-C/20 and (c) high-C/2. Differential expansion at (b) low-C/20 and (d)
high-C/2.

Degradation indicators computed with the traditional differential voltage method applied to low current
(C/20) charging cycle are compared with those computed with differential expansion applied to high
current (C/2) charging cycle, to benchmark the Differential Expansion method against a conventional
technique widely recognized as a standard for degradation indicator assessment. The results reported
in Figure 6 show that the differential expansion method can adequately compute degradation indicators
from high charging cycles, giving results in agreement with those obtained from the traditional differen-
tial voltage method performed on low rate charge cycles, validating the correctness of the deformation-
based method.

Figure 6: Comparison of degradation indicators (a) Loss of lithium inventory, (b) Loss of active material negative
electrode and (c) Loss of active material positive electrode calculated with traditional voltage based methodologies
and the innovative differential expansion.
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4 POLIDEMO - Lithium-ion Battery Degradation Model
POLIDEMO is a physics-based battery software implemented in MATLAB, which will be released soon
as an open-access software on the following GitHub repository: https://github.com/Poli-ON/POLIDEMO.
The innovative key features of the model are the computation of the irreversible deformation, namely and
the continuous increase in battery thickness during aging and the ability to capture the knee point of the
capacity loss curve, thanks to an innovative mechanical degradation law correlating LAM with the in-
creasing tortuosity and thus the increasing internal resistance.
The model framework is based on a set of differential equations explained qualitatively in the following
lines. Electrochemistry is computed according to the traditional single particle model (SPM) approach.
Mechanics is modeled with an analytical multi-scale sub-model [1] taking in input the lithium concen-
tration in the particle computed by the SPM and computing the lithiation-induced deformation response
of the battery during cycling from the atomic scale up to the macroscopic scale, as shown in Fig. 1a.
Furthermore, a thermal model at macro-scale computes the temperature and the temperature-induced
deformation. Then, the macroscopic reversible deformation of the battery during operation is computed
by superimposing the lithiation-induced and thermal-induced deformations. The reversible deformation
computed in this way is validated with experimental measurements, as shown in Figure 1b in the case of
LCO batteries.
The aging model includes several degradation mechanisms, such as SEI growth, gas generation and crack
propagation according to an innovative methodology developed by the authors [23] and its relation with
the increasing SEI rate and the loss of active material. The model takes in input the physical and geomet-
rical properties of the battery and computes the capacity loss, the reversible and irreversible deformation
of the battery and the degradation mechanisms (LAM and LLI). Full details on the model framework can
be found in the relevant authors’ previous work [18].
The empirical model parameters are estimated fitting the capacity loss curve, the irreversible deformation
and degradation indicators. This procedure allows to get a more reliable parameter set and avoid solu-
tions that are not unique, as more constraints are considered in the error minimization problem solved to
get the parameters set.
POLIDEMO is validated with the aging tests carried out by the authors shown in Figure 3 as well as with
aging dataset available in the literature [6]. The validation consists in comparing capacity, irreversible
deformation and degradation mechanisms, when available. Figure 7 shows the validation of the model
with the aging tests carried out by the authors. It evidences that the model can correctly capture the bat-
tery capacity when cycling the battery at high and low rate, the irreversible swelling and the degradation
indicators. The validation of the capacity curve deserves some additional comments. Experimentally, it
is observed that the knee point in the capacity curve coincides with an increase in resistance [9, 24, 8],
which in turn is associated with an exponential increase in LAM [9, 24]. It is therefore hypothesized that
the increase in LAM—linked to the propagation of fractures in the electrodes—leads to an increase in
tortuosity, as also confirmed experimentally through nano-computed tomography [25], ultimately result-
ing in a rise in battery resistance. As a result, the fact that POLIDEMO models a resistance component
that depends on LAM allows capturing the appearance of the knee point when the battery is cycled under
high-current RPT conditions. However, the knee point does not appear when the same battery is cycled
under low-current RPT conditions. This behavior arises because the increase in resistance causes the
voltage limits to be reached earlier during high-current cycling, thus reducing the extractable capacity.
At low current, this resistance-related effect is significantly diminished, and therefore the knee point does
not manifest under those conditions.
Irreversible swelling is mainly caused by the gas generated by the SEI growth reaction. An electrochemical-
mechanical model considers the equilibrium between the expansion of the battery due to gas generation
and the constraint of the battery case. A linear trend is in agreement with the SEI growth law under
kinetic limited conditions. The accelerated growth towards the end of life is likely correlated with the
increasing SEI growing on the cracks surfaces.
Loss of active material due to crack propagation and loss of lithium inventory correlated to SEI growth
are correctly capture by the model.
The model is further validated with aging dataset available open access in literature [6]. This dataset
consists of three aging conditions with constant current cycles at different current rates (C/5, 1.5C and
2C). In this case, the model parameters are identified from the condition with C/5 cycles and the same
set of parameters are used in the other two conditions at higher rates, finding a satisfactory agreement as
reported in Figure 8, and proving the generality of the model framework.
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Figure 7: Validation of POLIDEMO with the aging test shown in Section 2. (a) Capacity loss, (b) Irreversible
swelling.

Figure 8: Validation of POLIDEMO with aging test dataset from [6] in different operating conditions: (a) C/5,
(b) 1.5C and (c) 2C. Parameters are estimated in condition (a) and then the same set of parameters are used in
condition (b) and (c).

5 Conclusions
This work introduced mechanical-based approach for lithium-ion battery diagnostics and degradation
modeling, providing both experimental validation and simulation insights. The two key contributions
are: (a) The development and application of deformation-based algorithms for battery diagnostics. In
particular, a hybrid SOC estimation algorithm (POLISOC) leveraging both battery deformation and (pos-
sibly) voltage, and the Differential Expansion method to estimate degradation indicators (LAM and LLI)
in real-world charging scenarios. (b) The implementation of POLIDEMO, a multi-physics degradation
model capable of capturing key aging phenomena, including irreversible swelling and the knee point in
the capacity fade curve.
Mechanical measurements have proven to be a reliable and robust alternative to traditional voltage-based
methods, especially under high-current operation where polarization limits voltage-based estimations.
SOC estimation using POLISOC shows improved accuracy in dynamic conditions and aged cells, thanks
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to the stability of the SOC–thickness relationship over time and the absence of model parameters.
Moreover, the differential expansion method introduced for degradation diagnostics enables the estima-
tion of Loss of Active Material and Loss of Lithium Inventory even during high-rate charging, making it
suitable for automotive applications.
On the degradation side, POLIDEMO successfully links mechanical and electrochemical phenomena
through a consistent modeling framework. It is able to simulate capacity loss, resistance increase, and ir-
reversible deformation aligning well with experimental results. The model’s capability to capture the
onset of the knee point—through a resistance component that evolves with the loss of active mate-
rial—demonstrates its relevance for battery aging analysis.
Overall, this study confirms the potential of mechanics-informed battery diagnostics and modeling as
powerful tools to enhance Battery Management Systems, particularly in the context of electric vehicles
where real-time, high-current operations are critical.
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