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Executive Summary 

The second-life application of vehicle batteries is getting attention as millions of battery systems, modules, 

or cells are going to enter the market in the coming decade. The performance uncertainty with or without 

the historical knowledge of the batteries’ vehicle usage is a concern. In this work, such a 2nd life battery 

pack is dismantled, and the Nickel-Manganese-Cobalt (NMC) 141 Ah cells are extensively investigated to 

understand the 2nd life degradation behavior. The one and a half year long test campaign followed a suitable 

stationary test matrix, generating a valuable dataset. The aging dataset is then used to train different 

machine learning algorithms, resulting in a root-mean-square-error (RMSE) of 0.65 with ElasticNet while 

validating against a stationary profile. 
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1 Introduction 

The State of Health (SoH) estimation of NMC battery cells is a crucial aspect of assessing the performance 

and longevity of batteries, particularly in the 2nd applications [1]. The millions of cars sold in the past decades 

are going to expire in the coming years, and the numbers will only increase over time [2]. These batteries from 

on-road vehicles should be either repurposed or recycled, requiring an established strategy. The vehicle 

batteries can be easily reused in a different application where the market is also growing, and the service 

demand is less demanding than the on-road usage [3]. However, there are numerous challenges of acquiring, 

analyzing, sorting, remanufacturing, and monitoring these batteries, just to name some out of many. On top of 

that, technical challenges such as a lack of first-life usage information, data log, potential mechanical impact 

from packaging, etc., increase the uncertainty of the batteries in the 2nd application. Within this research work, 

2nd life battery cells dismantled from a commercial vehicle pack are studied extensively in terms of aging, 

developing an accurate estimation model to understand the SoH [4]. The 2nd life cells of NMC 141 Ah prismatic 

types are produced by a prominent manufacturer. The cells follow a detailed pre-check before being 

investigated for a long-term life campaign. 

In the field of SoH modeling, there are many estimation modeling methodologies available in the literature, 

which can be divided into empirical [5], electrochemical [6], and data-driven techniques [7]. The latter has 

gained attention in recent years due to the development of numerous algorithms, especially machine learning 

algorithms that are frequently trained with success on the battery time-series dataset. Besides, no prior 

knowledge of battery history and a complex invasive characterization process make the machine learning 

algorithms more suitable for aging prediction work. In this research, after evaluating different trained 
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algorithms' performance on lab- and real-scale profiles, ElasticNet is reported to be the best performer. In the 

following part of the paper, the test protocols are described in Section 2, after which the results are analyzed 

in Section 3. The model development work, including feature engineering and validation results, is reported in 

Section 4. In Section 5, the conclusion is outlined along with the future work. 

 

2 Experimental setup 

For the test campaign, the 2nd life cells were characterized by generating a high-quality dataset with a range of 

characterization and cycle life tests. The test campaign ran for close to 18 months. A total of 16 cells are studied 

as part of 8 operating conditions. Fig. 1 displays the physical cell under test, which is a prismatic NMC/C Li-

ion battery with 141 Ah nominal capacity, 3.7V nominal voltage, 2.14kg weight and a volume of 0.94m3.  

The 2nd life aging test campaign started with a physical pre-check and preconditioning of the cells before 

making the final setup. The aging conditions are preselected according to the scenarios presented in Table 1. 

The test procedure includes the beginning or end of life (BoL/EoL) standard characterization and then cycling 

as per defined conditions with a frequency of 100 full equivalent cycles to track the SoH until the actual 

capacity drops below 60% of the nominal [8]. A full equivalent cycle is defined as one full charge event equal 

to the nominal capacity value. 

 

 
Figure 1: Sample pouch (left) and prismatic (right) cells setup for aging tests. 

 

Table 1: Test conditions for the 2nd life test campaign. 

Condition 

nr. 

Depth of 

cycling (DoD) 

SoC 

Range 

Temperature C-rate 

(charge/discharge) 

Nr. of 

cells 

1 80% 10%-90% 25 1 2 

2 70% 20%-90% 25 1 2 

3 60% 20%-80% 25 1 2 

4 40% 30%-70% 25 1 2 

5 80% 10%-90% 35 1 2 

6 80% 10%-90% 15 1 2 

7 80% 10%-90% 25 0.33 (50A) 2 

8 60% 20%-80% 25 0.33 (50A) 2 

Total cells 16 

 
As part of the characterization procedure, which has been performed at BoL, EoL, and intermediate 

frequency of 100 FEC includes standard capacity test, hybrid pulse power characterization (HPPC), and 

open circuit voltage (OCV) tests. The capacity test is designed with three full-discharge cycles at a C/3 
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rate, where C refers to the nominal capacity of the cell. The HPPC test is performed to calculate internal 

resistance (IR) at different SoC percentages (at 80%, 50%, 20%) with a 10s 0.33C pulse. The slow quasi-

OCV test is done with a C/20 charge-discharge cycle at room temperature. Hence, a so-called dynamic 

test, referring to a real-life day-long profile optimized for the cell, is performed with two cells to understand 

the battery characteristics for non-static cycling. The number of FEC-scale is calculated as equivalent to 15 

FEC for each dynamic cycling test in this case, before doing the characterization. 

 

3 Results 

The dismantled battery cells showed almost similar SoH compared to a fresh battery, meaning that they 

were used at a minimum, for which there is no information available. The battery capacity fades, internal 

resistance check, and OCV shift are tracked during the aging campaign via characterization tests. Fig. 2 

displays the capacity fade of the studied cells, where the high DoD and temperature are found to be more 

prominent, impacting a sharp decay in the capacity fade [9]. Similar results are found in internal resistance 

growth and OCV curves as displayed in Fig. 3. 

The cells have completed a maximum of 1600 FECs by the end of the campaign, with a maximum of almost 

15% SoH drop, while the maximum internal resistance growth of 26%. The EoL limit was set to 60% SoH 

and/or 100% IR growth; however, no cell reached that limit. The SoH is calculated as the actual measured 

capacity value against the BoL value in percentiles, while IR calculation follows a similar approach, but 

only to cover the growth compared to the BoL IR value. Note that figures 2 and 3 refer to Table 1 conditions, 

where two consecutive numbered cells are linked to consecutive conditions.   

 

 
Figure 2: Capacity fade results of 18 NMC 141 Ah cells, where the vertical axis represents the SoH 

percentile, and the horizontal axis represents the performed FECs. 
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Figure 3: Internal resistance growth results of 18 NMC 141 Ah cells, where the vertical axis represents the 

growth percentile, and the horizontal axis represents the performed FECs. 

 

4 Machine learning modeling 

4.1 Feature Engineering 

One of the challenges for the SoH estimation is to find suitable features that can capture the internal changes 

of the battery and correlate with capacity degradation. The battery current, voltage, and temperature data are 

the most commonly available signals that can be measured during battery operation and can provide useful 

information about the battery condition. However, these signals are affected by various factors, such as the 

operating conditions, the measurement noise, and the battery aging mechanisms, and thus, they are not directly 

related to the SoH of the battery. 

In this work, critical features are selected using different techniques such as the Pearson Coefficient, Pearson 

component analysis, etc. As shown in Fig. 4, the Pearson coefficient is deployed to identify the 24 features out 

of a total of 43 features for the training because they have a score of more than 0.8. These features are extracted 

either directly from the tests performed during the campaign (i.e., capacity values) or from analysis (i.e., 

incremental capacity curves). Fig. 4 provides a comprehensive view of the interrelationships between variables, 

guiding the selection of independent and relevant features for the model. However, since the Correlation Matrix 

analysis is analogous to the Pearson Coefficient method (different representation), this method has not been 

used directly to retain important analysis. In this project, the Pearson coefficient finally won the competition 

since it revealed higher performance in comparison to other methods.  

The training dataset was prepared by selecting relevant features (X), with the target variable being the SoH of 

the battery. After feature selection, the dataset was split into training and test sets using an 80-20 split, with 

80% of the data used for model training and 20% for testing. This split ensures that the models can be evaluated 

on unseen data to measure their performance.  
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Figure 4: Correlation matrix for the dataset. 

 

4.2 Algorithm training 

ML techniques have been widely applied to estimate SoH for lithium-ion batteries. After training and testing 

different algorithms such as Gaussian Process Regression [10], ElasticNet [11], Random Forest Regression 

[12], etc., the best-performing algorithm is found to be the ElasticNet regression, which has been deployed to 

validate the dynamically cycled dataset.  

 

The ElasticNet as expressed in equation (1), combines the penalties of Lasso (L1) and Ridge (L2) 

regularization. It linearly combines the two penalties to perform variable selection and regularization, 

preventing overfitting [13]. 

 

ŷ = argmin (∑(yi − Xiβ)
2

N

i=1

+ λ1|β|1 + λ2|β|2
2) (1) 

 

Where β represents the model parameters (coefficients), λ1 controls the L1 penalty (Lasso), λ2 controls the 

L2 penalty (Ridge). 

The training process was run on a system with the following specifications: 

Processor: Intel Core i7-6820HQ @ 2.70 GHz, 8 cores 

RAM: 32 GB DDR4 

GPU: NVIDIA GeForce Quadro M2200 (4 GB GDDR5) 

Operating System: Windows 11 Pro 

Software Environment: Python 3.9, Scikit-learn 1.0.2, and TensorFlow 2.6.0 for model development and 

training 

These system specifications ensured efficient dataset handling and expedited the training process, especially 

for computationally intensive models like Gradient Boosting and Gaussian Process Regression. 

 

4.3 Evaluation Metrics and Validation 

The trained models are validated using the assembled dataset to predict SoH. The predicted SoH values are 

compared with the actual SoH values to calculate the error. As the final step, the error is analyzed, and 

hyperparameter tuning is performed. 

The performance of different models is compared using one evaluation metric, which is expressed in equation 
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(2). 

RMSE (Root Mean Squared Error):  

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

 
(2) 

 

The predicted SoH values are compared with the actual SoH values to calculate the error. The performance of 

different models is compared using different evaluation metrics such as RMSE. The best RMSE score of the 

validation is found to be 0.065 in one of the validation cells, and the curves are displayed in Fig. 5. It is clear 

that though the algorithm could not identify the actual SoH with good accuracy at the BoL but shows a 

promising convergence by cycle numbers. 

 

 
Figure 5: Validation curve of a sample cell (ID – N30). 

 

5 Conclusion 

The 2nd life NMC 141 Ah cells were characterized in this study. However, the status of the cells was close to 

fresh, meaning they had spent an unusual time in the vehicle. The cells were cycled under the same type of 

conditions. The high DoD cycling was found to have a faster degradation, and together with cold temperature, 

the cells experienced the most aging. 

When different ML algorithms are trained with the generated dataset, the best-performing model is found as 

ElasticNet, with which the validation task is performed on an unknown dataset by dynamically cycling the 

cells. The RMSE value obtained from the validation is 0.065. The robustness of the model can also be increased 

by retraining with the availability of new data. The inclusion of first-life aging information could also improve 

prediction accuracy. Future work could be on how to reuse such a trained model for a completely new dataset 

of another type of NMC cell, facilitating transfer learning. 
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