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(EVS38) Gö teborg, Sweden, June 15-18, 2025 

 

Battery digital twin for real time operation of an 

electric vehicle 

Muralikrishnan Ramanujam1, Saurabh Jayawant Desai, Shashank Agarwal, Venkataramana 

Runkana 

1Senior Scientist, TCS Research, Tata Consultancy Services, Pune, India, r.muralikrishnan2@tcs.com 

 

Executive Summary 

Digital twins have found applications in diverse industrial applications from power plants to refineries. The 

use of AI/ML to process and build models has provided a powerful technique to supplement and enhance 

reduced order models (ROM) for real time prediction and optimization of physical equipment. A reduced 

order model for temperature prediction in a battery pack and machine learning models for state of health 

(SoH) and remaining useful life (RUL) are described. The temperatures inside the pack are predicted using 

a lumped capacitance model coupled with a forced convection model and a cell electro-thermal model. The 

thermal model is validated with a high-fidelity computational fluid dynamics (CFD) model. The ML model 

for  SoH and RUL prediction is validated with publicly available cell data.   

Keywords: battery management system, network thermal model, state of health, remaining useful life, 

reduced order model 
 

 

 

1 Introduction 
 

Batteries form an important component of green energy and sustainability as they store the energy from 

renewable sources like wind and solar and are used in electricity grids and electric vehicles. For electric 

vehicles, Lithium-ion batteries are preferred due to their high energy density and flat voltage output over a 

large state of charge range (SoC). Several cells are assembled in a module and several modules are used 

together in an automobile for providing the required voltage and current. These cells are placed closely to 

each other due to space constraints in a vehicle [2]. Lithium-ion batteries are flammable because metallic 

lithium is combustible and can catch fire when heated beyond a certain temperature. This is commonly 

termed thermal runaway [3]. This typically happens when the cells are overcharged when the voltage of the 

cell exceeds a certain limit. Cells also generate heat due to ohmic losses during charging and discharging, 

and due to reversible heat generation while charging. Additionally, the capacity of the cell to hold charge 

decreases as the reversible Lithium ions undergo certain irreversible side reactions. The rate of capacity 

degradation increases with increasing operating temperature of the cells.   

 

To prevent thermal runaway and to control the temperature rise in the pack, different cooling mechanisms are 

employed. For electric vehicles, forced convection cooling using liquid coolants is preferred because of the 

greater thermal mass of the coolant. Since heat transfer between the cells and the coolant is not uniform, cell 

capacity decreases differentially and requires cells that have degraded more be cutoff earlier compared to 
other cells while charging. This is done through a mechanism called cell balancing. Battery management 

systems are commonly used to control the behavior of the pack by cutting off supply during charging and 

discharging to maintain the health of the pack. However, this is based on a limited number of temperature 

measurements and it becomes difficult to identify the exact location of thermal runaway. Since cell 
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performance and its health are strongly dependent on its temperature, it is important to monitor temperature 

distribution of the coolant within the pack. As it not possible to install many temperature sensors within a 

battery pack, digital twin of a batter pack with soft sensors based on first principles or machine learning 

would be of great utility to monitor, optimize and control the performance and health of a battery pack. 

 

Modeling the temperature distribution in the cells and capacity degradation of the cells from first principles 

is computationally expensive, and alternate fast running models are required. The present work is to address 

two issues in battery digital twin. 1. Predicting the temperature of cells in a battery pack using lumped 

capacitance models including two-state thermal models for cells with equivalent circuit thermal-electric 

models for cell behavior. 2. A fast running memory efficient data-based model for capacity degradation and 

remaining useful life prediction using past charging-discharging behavior. The description for the thermal 

model and data-based SoH model are given and the results from the two models are presented.  

 

2 Battery Pack Model 

2.1 Geometry of the battery pack  

A schematic of the battery pack is shown in  

Figure 1. A serpentine configuration with a straight non-wavy cooling channel next to the cell column is 

considered. The cell and the channel are thermally connected using an elastomer assembly, also shown in  

Figure 1. For the sake of demonstration, the battery pack is assumed to be similar to that of a module in Tesla 

EV pack [2]. The module consists of 240 cylindrical cells that are arranged in a 10×24 configuration. A non-

staggered configuration with the center of the cells in a straight line between two adjacent rows is 

considered.  The cylindrical cell modeled is A123 cell with capacity of 2.3 Ah [1], [9]. A glycol-water 

mixture of 50-50 based on volume is taken as the coolant. The depth of the channel is assumed to be the 

same as the height of the cell. The thickness of the elastomer varies from 14 mm to 28 mm and width of the 

channel is assumed to be 4 mm.  

2.2 Equivalent circuit model 

The cell is modelled assuming a 1R - 2RC model [9]. The terminal voltage of a cell is calculated as  

 

 𝑉𝑇 = 𝑉𝑂𝐶𝑉 − 𝑉𝑅1𝐶1
− 𝑉𝑅1𝐶2

 (1) 

 

where VOCV is open circuit voltage of the cell, 𝑉𝑅1𝐶1
 and  𝑉𝑅2𝐶2

are voltage drops across the RC 

pairs. The change in SoC in a cell with time is given by:  

 

 𝑑𝑆𝑜𝐶

𝑑𝑡
= −

1

𝐶𝑏𝑎𝑡
𝐼 

(2) 

 

where 𝐶𝑏𝑎𝑡 is capacity of the cell and I is current.  

 

The voltages across the two RC pairs are given by: 

 

 𝑑𝑉𝑅1𝐶1

𝑑𝑡
=

1

𝑅1𝐶1
𝑉𝑅1𝐶1 +

1

𝐶1
I (3) 

 

 𝑑𝑉𝑅1𝐶2

𝑑𝑡
=

1

𝑅2𝐶2
𝑉𝑅2𝐶2

+
1

𝐶2
I (4) 

 
 

 

The rate of generation of heat in the cell Q is calculated as: 
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𝑄 = 𝐼2𝑅𝑠 +
𝑉𝑅1𝐶1

2

𝑅1
+

𝑉𝑅2𝐶2

2

𝑅2
 (5) 

 

 

𝑅1, 𝑅2, C1, C2  and Rs are calculated using the following equations: 

 

𝑅𝑖𝑙 = (𝑅0𝑖1𝑙
+ 𝑎1𝑖𝑙𝑆𝑜𝐶 + 𝑎2𝑖𝑙𝑆𝑜𝐶2)𝑒

𝑇𝑟𝑒𝑓𝑅𝑖𝑙
𝑇𝑖𝑛−𝑇𝑠ℎ𝑖𝑓𝑡𝑅𝑖𝑙  

(6) 

 

i = {
1, for R1

2, for R2
, l = {

c, for charge
d, for discharge

 

 

𝐶𝑖1 = 𝐶0𝑖𝑙 + 𝐶1𝑖𝑙𝑆𝑜𝐶 + 𝐶2𝑖𝑙𝑆𝑜𝐶2 + (𝐶3𝑖𝑙 + 𝐶4𝑖𝑙𝑆𝑜𝐶 + 𝐶5𝑖𝑆𝑜𝐶2)𝑇𝑖𝑛 
(7) 

 

i = {
1, for R1

2, for R2
, l = {

c, for charge
d, for discharge

 

 

𝑅𝑖𝑠 = 𝑅0𝑙
+ 𝑎1𝑙𝑇𝑖𝑛 + 𝑎2𝑙𝑇𝑖𝑛

2
 

  

   

l = {
c, for charge
d, for discharge

 

 

 

Here R1, R2, C1, and C2 are resistances and capacitances of the electrode-electrolyte interface and Rs is 

resistance of the electrolyte. 𝑉𝑅1𝐶1 and  𝑉𝑅2𝐶2
 are voltage drops across the two RC circuits. Tin is the 

maximum temperature in the cell core, I is the t current in the cell, and SoC is state of charge of the cell. All 

other quantities are assumed to be constant and fitted using vehicle battery data.  

2.3 Battery Pack Thermal Model  

A two-state thermal model with a cell core temperature and shell temperature is adapted from [9].  

 

𝐶𝑐

𝑑𝑇𝑖𝑛

𝑑𝑡
= 𝑄 +

𝑇𝑠 − 𝑇𝑖𝑛

𝑅𝑐
 

(8) 

 

𝐶𝑠

𝑑𝑇𝑠

𝑑𝑡
=

𝑇𝑓 − 𝑇𝑠

𝑅𝑢
−

𝑇𝑠 − 𝑇𝑖𝑛

𝑅𝑐
 (9) 

 

 

 

where Cc  and Cs are thermal masses of the cell core and shell, respectively, Tin is the maximum temperature 

seen at the cell core, Q is heat generation in the cell, Ts is shell temperature of the cell, Tf is free stream fluid 

temperature, and Ru and Rc are thermal resistances between cell core and shell and between shell and fluid, 

respectively.  

 

The heat transfer from the cell to coolant channel is facilitated by an elastomer. The two-state thermal model 
is extended to include the elastomer shown in  

Figure 1 and the model is solved for calculating the surface temperature of the elastomer next to the coolant 

channel instead of the shell temperature. The lumped resistances of the shell-elastomer assembly are obtained 

by carrying out detailed CFD simulations using the individual elastomer-cell assembly. The free stream 
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temperature Tf  is replaced by mean fluid temperature in the channel for these simulations. 

 

 
 

Figure 1: Schematic of the cell assembly and an individual cell with elastomer shown in green convection channel 

2.4 Fluid-side Heat Transfer  

The coolant channel is divided into elements along the direction of flow with the element length matching 

diameter of the cell next to it. A lumped parameter model of the coolant channel is used with the outlet 

temperature, with mean temperature of the coolant element used for heat transfer with the cell element 

adjacent to it. The heat balance for the coolant element is solved algebraically with input and output 

temperatures along with heat addition from the cells adjacent to it. The surface elastomer temperature Ts and 

the fluid temperature Tf are coupled using the heat transfer coefficient calculated from (10). 

 

The coolant flow regime is in the laminar regime with Reynolds number in the order of 100s. For the 

conditions encountered, the development of thermal boundary layer is delayed due to high Prandtl number of 

the fluid while the laminar boundary layer develops much quicker. In this scenario, the velocity and pressure 

do not change after the flow develops. Hence, the problem becomes linear with respect to the temperature. 

The convolution method developed by Graetz for arbitrary wall temperatures applies to current operating 

conditions [8]. In the original method the technique requires heat flux at certain point be the function of 

temperature histories upstream of that location.  

 

To simplify the Shah correlation that models the developing boundary layer is used in place of Graetz 

solution and convolution is applied to first few cells downstream of the inlet. The equation is given by  

 

𝑁𝑢𝐷ℎ = { 1.233(𝑥∗)−
1
3 + 0.4,                                                       𝑥∗ ≤ 0.001

7.541 + 6.874(103𝑥∗)−0.488 𝑒𝑥𝑝(−245𝑥∗) ,  𝑥∗ > 0.001
 

(10) 
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here x* is the non-dimensional distance from the inlet, calculated as x/DhRePr where x is distance from the 

inlet along the fluid path, Re is the Reynolds number based on average velocity, Dh is hydraulic diameter, 

and Pr is the Prandtl number of the flow, NuDh is the local Nusselt number. The cell temperature is assumed 

to be uniform along its height. Since convective heat transfer dominates among other mechanisms, heat 

transfer on the sides of the cell, top and bottom are ignored. The cells don’t exchange heat with each other 

due to their circular geometry. Axial conduction along the length of the elastomer is ignored in the fluid flow 

direction. 

 

The equations for SoC, V1, V2, Tin, and Ts are solved for each cell, and so for the full model, 240×5 equations 

are solved. These equations are coupled with convective side heat balance, with one convection element 

adjacent to cell-elastomer element shown in Figure 1. 

. 

 

3 State of Health (SoH) & Remaining Useful Life (RUL) Models 

 
The State of Health (SoH) and Remaining Useful Life (RUL) of batteries are crucial metrics in cell 

management systems, particularly for applications involving electric vehicles, renewable energy storage, and 

consumer electronics. SoH represents the current capacity or performance of a cell relative to its original, ideal 

state—typically expressed as a value between 0 and 1, or as a percentage. RUL, on the other hand, refers to 

the estimated time or usage cycles remaining before the cell becomes unusable or reaches a predefined 

performance threshold. 

 

Accurately estimating SoH and predicting RUL helps ensure safety, maximize performance, plan timely 

maintenance, and reduce costs. Our work presents a robust, data-driven approach to model SoH and predict 

RUL using a machine learning algorithm.  

 

3.1 State of Health Estimation Method 

To estimate cell SoH, we use beta regression, a statistical modeling technique particularly effective for 

outcomes that lie within a bounded interval — such as SoH values that always fall between 0 and 1. 

 

Beta regression is built upon the beta distribution [5], which is flexible and capable of modeling a wide variety 

of curve shapes (symmetric, skewed, etc.) depending on the data. This makes it ideal for representing cell 

health, which show nonlinear or asymmetric behavior over time. 

 

For modeling, dataset provided by NASA using ‘randomized battery usage’ is used [4].  In this case, the cell 

is charged and discharged with randomly selected current values for a short duration. Such a cycle is termed 

as a random walk (RW) cycle. Reference cycle is carried out after several RW cycles to measure the cell 

capacity and to observe the cell degradation over time 

 

The published data was generated under 7 different charging/discharging conditions. Four similar cells were 

used for each test condition. All three states of the cell, that is, charging, discharging and rest were realized in 

a random manner. Further, there were reference cycles in between, where for several 500 or 1500 random 

cycles the cell capacity is measured.  Details of these tests are summarized in [4]. 

 

Before training the beta regression model on this data, feature engineering is performed to extract useful 

features. These features capture subtle patterns and relationships with SoH. We propose the following extracted 

features for prediction of SoH and RUL: 

 

1. Mean Cumulative Charging Load (MCCL): As the name suggests, this feature is related to the 

cumulative value of total input charge into the cell over time at any given instance of time. It is defined 

as the ratio of total charge input (Qch) to the cell to total charging time since inception (𝑇𝑜𝑝𝑛𝑐ℎ
 ) till 

given instance of time ‘t’.  

 

ℎ𝐿𝑐𝑢𝑚 =
𝑄𝑐ℎ

𝑇𝑜𝑝𝑛𝑐ℎ

 (11) 
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It is useful in explaining the general trend of cell degradation as shown in Figure 2. 

 
Figure 2: Relation between SoH and Mean Cumulative Charging Load (MCCL) 

2. Cumulative Elapsed Time Ratio [𝐸𝑇𝑅𝑎𝑡𝑖𝑜]: After an idle period in cell operation, the cell capacity 

increase. This phenomenon is called ‘capacity regeneration’. Capacity regeneration can be observed 

after a long rest period as can be seen in Figure 3 where prolonged rest period is getting captured in 

terms of cumulative elapsed time ratio as a sudden spike in the ETRatio (due to random rest period 

for small time this ratio is seen increasing value, but spike can be seen in the ratio after unusual, 

prolonged rest). It is defined as the ratio of total rest period (time when cell is not charging or 

discharging), 𝑇𝑟𝑒𝑠𝑡, to total absolute time since the inception of new cell, 𝑇𝑎𝑏𝑠.  

 

𝐸𝑇𝑅𝑎𝑡𝑖𝑜 =
𝑇𝑟𝑒𝑠𝑡

𝑇𝑎𝑏𝑠
 

 

(12) 

Or 

 

𝐸𝑇𝑅𝑎𝑡𝑖𝑜 =
𝑇𝑎𝑏𝑠 –  𝑇𝑜𝑝𝑛

𝑇𝑎𝑏𝑠
 

(12) 
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Figure 3: Effect of Elapsed Time Ratio on SoH 

 

Elapsed Time Ratio gives insights on cell usage in terms of the percent of time the cell is rested over a given 

period of its life. 

 

3.2 RUL Prediction Method 

To predict the Remaining Useful Life (RUL) of the cell, we extend the approach above using the previously 

constructed features and the trained SoH model. 

 

First, values of the engineered features into future time steps re forecasted using Gaussian process regression 

[11], [12]. These future feature values are then fed to the trained beta regression model to generate predicted 

SoH values for those future points in time. These predicted SoH values for the future time steps are 

compared with the predefined threshold value. Once the predicted SoH falls below this threshold, it is 

considered as the end of useful life. The corresponding time gives us the RUL. 

 

4 Results 

4.1 Thermal network model  

4.1.1 Validation with CFD results 

 

Before the model was used in the 240-cell battery pack, it was tested on a reduced 72 cell battery pack with 

two convection passes to minimize computational cost. Ansys FluentTM software was used to run 

simulations. To simplify the model, a constant resistance of 0.01 ohms was used for the cells. The current 

profile used is urban assault cycle (UAC) taken from [9]. The mesh count used in the CFD runs was around 

140,000. A user defined function (UDF) was integrated to model cyclotropic thermal conductivity of the 

A123 cell. The shell of the A123 cell is modeled using the shell conduction model available with Ansys 

Fluent.  

 

The model parameters are estimated as functions of cell state of charge, cell core temperature and charge or 

discharge conditions for the 2 RC circuits. Electrolyte resistance is treated a function of cell core temperature 

and charge discharge condition. The open circuit voltage of the cell VOCV is a function of the state of charge 

of the cell. The model is first validated with experimental data from [9] before being used in the battery pack. 

 

The results are presented for a water-glycol mixture with average velocity of 0.1 m/s. This corresponds to a 
Reynolds number of 300.  

Figure 4 shows the comparison between CFD and reduced order model runs. The temperature rise in the cell 

core is reported for 5 cells, with the total cell index i calculated as j×24+72×k, here j is row number. For two 

rows, it is 0 and 1 counted from left to right, and k is column number of the cells counted from the bottom, 
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varying from 0 to 23. The maximum error in the simulation was around 7% for the cell close to the outlet, at 

the total cell index i=48.  

 

4.1.2 Full Battery Stack Simulations 

 
After validating the model with CFD for simplified two pass runs with constant resistance, the full battery 

stack consisting of 240 cells is modeled using the equivalent circuit model and 2- state thermal model. The 

same conditions used for the CFD validation are used for the full stack run with UAC cycle with glycol as 

coolant with velocity of 0.1 m/s. Equations for state of charge (SoC), voltage across RC circuits, V1, V2, 

temperature in cell core Tin and on elastomer surface Ts surface are solved. The heat source is a function of 

cell resistance R1, R2, and Rs. The initial temperature of the cells and the inlet coolant temperature is  

set as 20 C. The results are provided in Figure 5. 

 

 

 
 

Figure 4: Temperature rise history of selected cells: Comparison of CFD and Reduced Order models for UAC 

profile assuming constant cell resistance 
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Figure 5: Cell core temperature profiles for 240 cell assembly at different times predicted using the ROM with 

UAC 

 

The total cell index defined in the previous section is used here. The jumps in the temperature are due the 

numbering of the cells, as the first column of cells counted from bottom to top ends, the second column starts 

at bottom and since the coolant fluid in second pass flows from top to bottom, the cell with total index 24 has 

higher temperature compared to cell with total index of 48. The overall temperature variation in the assembly 

is around 6 C.  

 

4.2 State of Health and Remaining Useful Life Prediction 

The SoH in Table 2 accurately the beta regression model compares with other commonly used models. The 

results indicate that the model captures the degradation trend effectively, even across diverse usage profiles 

as seen in Figure 6 

 

Table 3 shows predicted RUL values alongside ground truth RUL the predictions closely match the actual end-

of-life points, highlighting the strength of the method in forward-looking battery management. Some key 

findings include the beta regression model computed prediction accuracy across various cell types and 

degradation patterns. Feature forecasting added a valuable time dimension, enabling smooth RUL estimations. 

The model adapts well to noisy and incomplete data, due to its statistical nature and use of engineered features. 

 

In conclusion, the proposed method provides a powerful framework for estimating cell SoH and predicting 

RUL. This approach is scalable, interpretable, and suited for real-time deployment in smart battery systems. 

 
Figure 6:  Comparison of predicted SoH with measured SoH for test battery cell RW9 
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Table 1:  Summary of NASA randomized battery dataset 

Dataset title Battery 

Code 

Reference 

Charge Description 

Random Walk Charge Description 

Battery Uniform Distribution Charge 

Discharge DataSet 2Post 

RW9, 

RW10, 

RW11, 
RW12 

CC charge with 2A till 

4.2 V, then CV charge 

till current drops to 
0.01A 

Random CC charge with f0.75A, 1.5A, 2.25A, 3A, 3.75A, 

4.5Ag. 

Till battery voltage reaches to 4.2V, or 5 minutes has 
passed. 

1. Battery Uniform Distribution 
Discharge Room Temp DataSet 

2Post 

RW3, 
RW4, 

RW5, 

RW6 

CC charge with 2A till 
4.2 V, then CV charge 

till current drops to 

0.01A 

CC charge with 2A till 4.2 V, then CV charge till current 
drops predefined threshold 

2. Battery Uniform Distribution 

Variable Charge Room Temp 
DataSet 2Post 

RW1, 

RW2, 
RW7, 

RW8 

CC charge with 2A till 

4.2 V, then CV charge 
till current drops 

to 0.01A 

Battery is charged for constant interval of time randomly 

for 0.5 hours, 1 hours, 1.5 hours, 2 hours, 2.5 hours, or 
charge until full. Additionally, batteries are charged at a 

2A current (in CC and then in CV) until either the battery 

reaches max voltage 4.2V or the charging time exceeds the 
allotted interval. 

3. RW Skewed High 40C DataSet 

2Post, 
4. RW Skewed High Room Temp 

DataSet 2Post, 

5. RW Skewed Low 40C DataSet 
2Post, 

6. RW Skewed Low Room Temp 

DataSet 2Post 

RW13- 

RW28 

CC charge with 2A till 

4.2 V, then CV charge 
till current drops 

to 0.01A 

CC charge with 2A till 4.2 V, then CV charge till current 

drops predefined threshold 

 

Table 2: Comparison of R2 obtained with different algorithms for battery SoH model 

Battery Pack Name 

𝑹𝟐  

Gamma 

Regression 
Beta Regression 

GPR (Matérn 

Kernel) 
Linear Regression 

Battery Uniform Distribution Charge 

Discharge DataSet 2Post 
0.825 0.86 0.891 0.873 

Battery Uniform Distribution Discharge 

Room Temp DataSet 2Pos 
0.723 0.673 0.771 0.721 

Battery Uniform Distribution Variable 

Charge Room Temp DataSet 2Post 
0.873 0.874 0.869 0.879 

RW Skewed High 40C DataSet 2Post 0.8 0.7 0.167 0.732 

RW Skewed High Room Temp DataSet 

2Post 
0.75 0.93 0.907 0.859 

RW Skewed Low 40C DataSet 2Post 0.736 0.823 0.512 0.757 

RW Skewed Low Room Temp DataSet 

2Post 
0.933 0.947 0.914 0.97 

Groupwise Average 0.806 0.830 0.719 0.827 
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Table 3: Battery RUL model prediction results 

 
Battery Pack Name 

Battery Cell 
No. 

Actual life (days) 

 

Predicted End of Life (days) 

 

Comment 

30% Training 50% Training 70% Training  

Battery Uniform 

Distribution Charge 

Discharge DataSet 2Post 

RW10 145 75 110 117   

Battery Uniform 

Distribution Discharge 

Room Temp DataSet 2Pos 

RW5 152 109 118 134   

Battery Uniform 

Distribution Variable 
Charge Room Temp 

DataSet 2Post 

RW7 148 134 126 148   

RW Skewed High 40C 

DataSet 2Post 
RW27 92 NA NA NA 

Data within the dataset are 

insufficient for RUL 
prediction 

RW Skewed High Room 

Temp DataSet 2Post 
RW20 91 NA NA NA 

Data within the dataset are 

insufficient for RUL 
prediction 

RW Skewed Low 40C 
DataSet 2Post 

RW21 188 NA NA NA 

Data within the dataset are 

insufficient for RUL 

prediction 

RW Skewed Low Room 
Temp DataSet 2Post 

RW14 203 174 160 160   

  𝑅𝑀𝑆𝐸𝑛𝑜𝑟𝑚 0.291 0.209 0.155  
 

Conclusions 

 

Models are important components of a digital twin system. Two important models for prediction and 

optimization of battery pack life in electric vehicles, a network thermal model that provides accurate 

temperature distribution in a battery pack and a feature-based State of Health and Remaining useful Life 

model for battery capacity degradation are presented in this work. The models were tested with rigorous 

CFD simulations or with publicly available experimental data. These models will be incorporated as part of a 

digital twin system of a battery pack for real-time monitoring, optimization and control subsequently.  
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