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Executive Summary

Accurate state of charge estimation is vital for the performance and reliability of lithium-ion batteries in
electrical vehicles. Traditional onboard methods use equivalent circuit model (ECM) with fixed param-
eters, which degrade in accuracy over time and varying conditions. Electrochemical impedance spec-
troscopy (EIS) captures detailed insights into battery states. Leveraging recent hardware advancements,
this study proposed two data-driven methods to update ECM parameters using EIS data.
This study introduces two data-driven approaches to dynamically update ECM parameters using over
6,000 EIS measurements. A frequency-relative sensitivity analysis guided model structure selection,
and synthetic data were generated to enhance training. The proposed methods include an XGBoost-
based structure classifier with a Random Forest (RF) regressor and a physics-constrained 1D-CNN. The
XGBoost-RF model demonstrated high classification accuracy and low estimation errors, even with lim-
ited data. Meanwhile, the 1D-CNN, though computationally heavier and more data-dependent, showed
strong adaptability in complex scenarios and achieved comparable accuracy when trained on augmented
datasets.
Keywords: Electric Vehicles, AI - Artificial intelligence for EVs, Batteries, Battery Management System

1 Introduction
Accurate state of charge (SoC) estimation is essential for reliable range prediction, efficient energy man-
agement, and safe operation of electric vehicles. Among various SoC estimation methods, model-based
approaches are the most widely adopted [1]. Specifically, equivalent circuit model (ECM) has gained
popularity for its acceptable modeling accuracy, easy offline parameterization, and suitability for real-
time implementation [2]. However, ECM parameters are sensitive to a range of operating conditions,
including SoC, state of health (SoH), and temperature [3, 4]. Traditionally, look-up tables have been
used to capture these dependencies, but this approach requires extensive experimental data to cover the
full operational range [5]. As the battery ages, this method can become inaccurate, as earlier characteri-
zations may no longer reflect the battery’s current state [5]. To address these challenges, online recursive
parameter estimation methods, such as recursive least squares and adaptive filters, have been explored.
However, these approaches often encounter numerical stability issues and require complex tuning, com-
plicating their onboard implementation [6–9].
Electrochemical impedance spectroscopy (EIS) has traditionally been used in laboratories to analyze
electrochemical processes in the battery and is well-established for offline parameter identification in
ECM [10]. Recent studies also demonstrated its potential for SoC estimation in laboratory settings
[11–14]. However, certain limitations arise in onboard applications. Specifically, the time required
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for conducting EIS measurements and the challenge of finding appropriate operational windows for
data collection conflict with the demand for continuous, real-time SoC monitoring in onboard systems.
Nevertheless, EIS still offers significant potential for enhancing onboard SoC estimation accuracy when
integrated with ECM-based methods. By providing insights into battery degradation and electrochemical
behavior, EIS data can be used to dynamically adjust ECM parameters, preserving model accuracy under
diverse conditions and as the battery ages. This hybrid approach leverages the strengths of both EIS and
ECM-based estimation methods.
In this study, aging experiments on 12 cells were conducted to collect EIS data under various operating
conditions (different SoC, SoH, and temperatures) simulating real-world electric vehicle usage. Based
on the collected EIS datasets, two data-driven ECM parameter update methods are proposed and their
performance is evaluated.
The structure of this paper is as follows: section 2 introduces the experimental setup used for this paper,
which includes the design of the experiments for the aging and the characterization process. Section 3
presents the ECM fitting process to generate labels for model training. A frequency-relative ECM pa-
rameter sensitivity analysis was conducted and based on those results, three simplified ECM structures
were proposed and fitted. In section 4, the proposed eXtreme Gradient Boosting (XGBoost)-Random
Forest (RF) and 1-Dimensional Convolutional Neural Network (1D-CNN) frameworks are introduced,
and their performance are evaluated. Section 5 provides a summary of the study, discusses its limitations,
and outlines potential directions for future research. A schematic workflow is shown in Fig. 1.

Figure 1: Workflow of the proposed data-driven ECM parameterization framework

2 Experimental setup
This section introduces the experimental protocol for the aging experiments. In this study, 12 cylindri-
cal Panasonic NCR18650PF cells with a nominal capacity of 2.9 Ah were used. All cells underwent
five charge–discharge cycles for activation, followed by initial characterization. This characterization
included measurements of cell capacity and impedance across various SoC, ranging from 0% to 100% in
5% increments, and at a temperature of 10, 25 and 40 ◦C. The cells were grouped according to the ini-
tial results of the characterization, ensuring that the capacity variation within each group did not exceed
1.0%. The complete experimental structure and detailed setup are introduced in the following sections.

2.1 Aging processes
A variety of charge-discharge combinations were employed to study the relationship between EIS data
and operating conditions (temperature, SoC, and SoH). In this work, continuous-cycle aging processes
were conducted to accelerate the battery’s progression toward the end of life. The 12 Panasonic 18650
cells were divided into four groups (A-D), each subjected to a unique cycling profile, as detailed in Table
1. Groups A and B were assigned to standard aging protocols and each included 4 cells. Groups C and
D were categorized as extreme accelerated aging mode, and each included 2 cells.
The cycling processes were conducted using the BioLogic BCS-815 system at an ambient temperature
of 25 ◦C, maintained by a Binder KB115 E4 climate chamber. Cells from Groups A and B were charac-
terized every 25 cycles, while fast-charged cells (Groups C and D) were tested every 10 cycles to capture
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accelerated degradation effects. The aging process was designed to conclude when the SoH reached
80%. As of the current reporting stage, the aging process is still ongoing, with most cells exhibiting a
SoH of approximately 93%.

Group number Charge profile Discharge profile Battery cell ID
A 0.5C Highway profile A1 – A4
B 0.5C Commuter profile B1 – B4
C 2C Highway profile C1 – C2
D 2C Commuter profile D1 – D2

Table 1: Battery aging experiment configuration

2.2 Characterization procedure
After the aging procedure, the cells were subjected to a characterization process. The capacity of each
cell was measured to calculate the SoH, and EIS measurements were performed at various SoC (same
as in the initial characterization) to analyze changes in ECM parameters under different operating condi-
tions.
EIS measurements were conducted over a frequency range of 10 mHz to 10 kHz with a current ampli-
tude of 100 mA, collecting six frequency points per decade. To ensure more stable impedance data, a
relaxation period of 20min was scheduled after reaching the target SoC prior to each EIS measurement.
The three temperature levels were controlled using a Binder KB115 E4 climate chamber, with ambient
temperature deviation maintained within ±2 ◦C. After reaching the target temperature, a 2-hour resting
period was applied to ensure uniform temperature distribution within the cell before EIS measurements
commenced.
The overall experimental workflow is illustrated in Fig. 2, where the blue box denotes the aging process
and the orange box indicates the characterization process.

Activation cycles
Initial characterization (Capacity, EIS)

Predischarge to 80% SoC at C/3

Start the aging process

Discharge with different profiles

Discharge with highway 
profile to 20% SoC

Discharge with urban 
profile to 20% SoC

Charge with different C-rate

Charge at 2C to 60% SoC

Charge at C/2 to 80% SoC

Loop > 9 Loop > 24

Characterization

No No

Yes Yes

Capacity test

Charge to 100% SoC

Set temperature

GEIS at every 5% SoC step
until 0% SoC reached

All
temperature

done?

Yes No

Charge at C/2 to 80% SoC

Figure 2: Schematic of the experimental data collection
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3 Data processing and labeling
As a low-signal technique, EIS measurement requires the system to be time-invariant, linear and causal
[15]. However, due to various sources of interference, such as measurement noise, the measurement may
not strictly satisfy these assumptions [16]. To ensure data reliability, the linear Kramers–Kronig (KK)
validation method proposed by Boukamp was employed to assess physical consistency [17], and mea-
surements violating plausibility criteria were excluded. In total, 6083 valid EIS datasets were obtained.
A Savitzky-Golay smoothing filter was applied to balance noise suppression and spectral fidelity.
The resulting smoothed EIS data were initially fitted using an ECM with the structure illustrated in Fig.
3. However, since the form of the impedance spectra varies under different battery operating conditions,
the universal ECM structure was found to be suboptimal for some cases. In addition, the complexity
of this model is relatively high, which could pose a challenge for onboard implementation. To improve
fitting performance, a frequency-relative ECM parameter sensitivity analysis was performed based on
the initial fit. Based on this analysis, three optimal simplified ECM structures were selected for different
conditions, with each EIS spectrum assigned its most suitable model structure. Finally, the EIS data
were re-fitted using nonlinear least-squares optimization with their respective optimal structures. The
resulting ECM parameters were used as labels for the subsequent training process.

3.1 Frequency-relative ECM parameter sensitivity analysis
Electrochemical processes within the battery occur over a broad spectrum of timescales, ranging from
milliseconds to several days or longer. To capture such complex dynamics, ECM topologies with differ-
ent numbers of parallel resistance-capacitor (RC) branches have been proposed. With advancements in
EIS technology, fractional-order models have attracted increasing attention due to their improved accu-
racy in simulating complex battery behavior [18]. A typical fractional-order model is illustrated in Fig. 3,
consisting of a series inductance (L0) and ohmic resistance (R0), followed by two parallel branches: one
representing the solid electrolyte interphase (SEI) layer using a resistor and capacitor network (RSEI ,
CSEI ), and the other representing the charge transfer and double layer effects through a resistor and con-
stant phase element (CPE) (RCT , CPEDL) [19]. To account for the sloped behavior often observed in
the low-frequency region of EIS spectra, an additional parallel branch composed of a Warburg element
and a diffusion-related capacitance (Wo, Cdiff) is included to characterize ion diffusion processes. How-
ever, the operating conditions of electric vehicles are highly dynamic, and the time available for onboard
EIS measurements is limited. The inclusion of multiple parallel branches significantly increases the com-
putational burden of parameter identification, making complex ECM structures impractical for real-time
applications in EVs [20]. As a result, many existing studies adopt simplified topologies containing one
or two RC or R-CPE branches, often omitting explicit modeling of the diffusion process [18–20].

L0 R0

RSEI

CSEI

RCT

CPEDL

Cdiff

Wo

Figure 3: Complete ECM structure for modeling battery impedance over the entire frequency range

To investigate the evolving impedance behavior under various operating conditions, Fig. 4 presents the
Nyquist plots at different temperatures (10°, 25°, and 40°) and SoC levels. At low temperatures (10°) and
extreme SoC conditions (0% and 100%), two distinct semicircles—typically corresponding to the SEI
layer and the charge transfer process, double layer effect can be clearly observed. In contrast, at higher
temperatures or moderate SoC levels, the two semicircles begin to overlap, complicating the separation
of the underlying electrochemical mechanisms. Consequently, it becomes necessary to employ multiple
ECM structures, incorporating either single or dual RC/R-CPE parallel branches, to accurately fit the
EIS data across varying operating conditions.
To further determine the appropriate ECM structure and its corresponding EIS frequency sampling range
for each impedance spectrum, a perturbation-based frequency-domain analysis was performed to iden-
tify regions predominantly influenced by diffusion-related dynamics. These regions were subsequently
excluded from the impedance dataset to ensure that the simplified models maintain accurate parameter
estimation while remaining robust to the omission of low-frequency processes. Beginning with the initial
circuit topology, each parameter was independently perturbed in increments of 1%, while keeping the
remaining parameters fixed. At each perturbation step, the corresponding impedance Zpert(f) was calcu-
lated and compared against the baseline Zref(f) across frequencies up to 1 kHz. The frequency-resolved
relative residuals in the real and imaginary components were computed as:
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Figure 4: Parameters distribution over SoC

εreal(fk) =

∣∣∣∣Re(Zpert(fk))− Re(Zref(fk))

Re(Zref(fk))

∣∣∣∣× 100% (1)

εimag(fk) =

∣∣∣∣ Im(Zpert(fk))− Im(Zref(fk))

Im(Zref(fk))

∣∣∣∣× 100% (2)

The perturbation process was terminated once the residual in either component exceeded 5% at any
frequency point [21]:

max
f

(
εreal(f), εimag(f)

)
> 5% (3)

When the perturbation applied to an ECM parameter reaches a level such that the residual in either the
real or imaginary part of the generated EIS data exceeds 5% compared to the measured EIS, the ratio
between the perturbed and original values of that ECM parameter is recorded as the scale threshold for
the corresponding parameter.

3.2 Results of the sensitivity analysis
To illustrate the results, the EIS data measured at 100% SoH, 100% SoC, and 25 ◦C was selected as a
representative case. As shown in Fig. 5a, the perturbation in R0 resulted in a relatively large residual in
the real part of the impedance across the entire frequency range, indicating that R0 has a broad influence
on the impedance spectrum. Perturbations in other components led to varying degrees of deviations in the
real and imaginary parts of the impedance spectrum. Notably, the Warburg element Wo primarily affected
the impedance at frequencies below 1 Hz (Fig. 5h-i), while the diffusion capacitance Cdiff exhibited
noticeable influence starting around 10 Hz (Fig. 5g). Cdiff predominantly governing the transition region
between charge transfer and pure diffusion processes, and its effect on the EIS curve can be compensated
with CPEDL. L0 primarily influences the impedance response at high frequencies and reflects parasitic
effects. As it does not originate from the intrinsic behavior of the battery, it is typically disregarded [21].
Based on these findings, the low-frequency portion of the EIS spectrum below 1 Hz can be excluded
without significantly compromising fitting accuracy. This allows the circuit structure to be simplified
by removing both the L0 inductance and the Cdiff–Wo branch, as shown in Fig. 6(b). As shown in
Fig. 4, under high temperatures or at moderate SoC levels, only a single semicircle appeared, suggesting
that SEI, double layer effect and charge transfer processes merged due to accelerated electrochemical
kinetics. An alternative circuit topology representing combined SEI, charge transfer and double layer
effects with a parallel R–CPE branch, as shown in Fig. 6c, was adopted for those cases.
As shown in Fig. 7, at very low SoC levels, the high-frequency semicircle in the EIS spectrum became
increasingly difficult to model accurately using circuit b (Figure. 6b). In order to obtain a better ECM fit,
the SEI capacitance (CSEI ) was replaced with a CPE, leading to the structure shown in Fig. 6a.
Based on the above analysis, a SoC- and temperature-dependent multi-structure modeling framework
was developed, in which three distinct ECM topologies were proposed to accommodate varying oper-
ating conditions. Corresponding frequency sampling ranges were selected for each condition and are
summarized in Table 2.
Using the newly defined ECM structures and the corresponding truncated EIS datasets with non-uniform
frequency sampling, least-squares fitting was performed to extract the ECM parameters, which serve as
labels for the training process.
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Figure 5: Frequency-resolved residuals at perturbation thresholds for each ECM parameter at 100% SoC, and 25
°C
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(a) Circuit a: Diffusion branch re-
moved; CSEI replaced with a CPE

R0

RSEI

CSEI

RCT

CPEDL

(b) Circuit b: Diffusion branch re-
moved

R0

Rcombied

CPEcombied

(c) Circuit c: Multi ef-
fects branch

Figure 6: ECM structures under different simplification levels

a b

Figure 7: Fitting performance comparison of two ECM structures at 5% SoC and 10°C. Fig. a: Nyquist plot
showing the measurement and model fittings; Fig. b: Relative residuals versus frequency.
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Table 2: Selected ECM topologies and frequency ranges under different temperatures and SoC conditions.

Temperature in °C SoC range in SoC Selected circuit Frequency range in Hz

10

95–100 Circuit a 0.3–1000
85–90 Circuit b 1.2–1000
50–80 Circuit b 2–1000
35–45 Circuit b 2–1000
25–30 Circuit b 1–1000
15–20 Circuit b 0.3–1000
0–10 Circuit a 0.05–1000

25

95–100 Circuit b 1–1000
85–90 Circuit b 5–1000
35–80 Circuit c 5–1000
25–30 Circuit b 5–1000

20 Circuit b 2–1000
15 Circuit a 1–1000

5–10 Circuit a 0.3–1000
0 Circuit a 0.1–1000

40

90–100 Circuit b 5–500
65–85 Circuit c 10–500
55–60 Circuit c 20–500
25–50 Circuit c 15–500
15–20 Circuit b 5–500
5–10 Circuit b 1–500

0 Circuit b 0.5–500

Table 3: Scale thresholds of ECM parameters at 25°C for 100% and 20% SoC levels (threshold defined at 5% EIS
residual)

Condition R0 RSEI CSEI RDL CPEDL,0 CPEDL,1

100% SoC, 25°C 1.06 1.10 1.24 1.05 1.04 1.02
20% SoC, 25°C 1.06 1.29 1.53 1.04 1.03 0.01

As shown, the variation in parameter values remains relatively small and generally does not exceed 10%
when the residual is constrained to be below 5%. Notably, RSEI and CSEI exhibit larger deviations under
certain conditions. Therefore, these two parameters are incorporated as additional constraint conditions
when generating synthetic data, a strategy also discussed in Ref. [21].

4 Data-driven frameworks
In this work, two preliminary modeling frameworks are proposed based on a balance between model
simplicity and adaptability to varying operating conditions. The first framework employs XGBoost as a
classifier to select the ECM structure and RF as a regressor to estimate the parameters. This structure is
relatively simple, interpretable, and suitable for small to moderate-sized datasets. The second framework
is based on a 1D-CNN, which offers higher generalization capability, particularly under large-scale data
scenarios.

4.1 XGBoost-RF based model
XGBoost is an open-source implementation of the gradient boosting framework, featuring gradient-based
optimization, and is thus capable of handling high-dimensional feature spaces [22].As another ensemble
learning method, the RF is widely adopted for regression problems. In RF, a large number of decision
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trees are independently trained on randomly resampled subsets of the original dataset, and their outputs
are averaged to produce the final prediction. Owing to tree independence and feature randomness, RF
exhibits strong resilience against overfitting, robustness to noisy inputs, and good generalization even
with relatively small datasets.
In this work, the regression task focuses on parameterizing ECM models with varying structures. Ac-
cordingly, three separate RF regressors are developed, each dedicated to a specific ECM structure. Due
to differences in the available frequency sampling across experiments, the number of frequency points
varies between samples. To ensure uniform input dimensions, the EIS data with different lengths were
interpolated prior to model input, resulting in a fixed set of 30 frequency points for each sample. The
appropriate structure is identified using an XGBoost-based classifier, which then directs the input to the
corresponding RF module, as illustrated in Fig. 8 in the left side. Each RF model is trained to learn
only the parameters relevant to its assigned ECM structure, resulting in improved accuracy and reduced
overfitting.

Figure 8: Inference workflow of 1D-CNN and XGBoost-RF models for circuit a

Hyperparameter settings for all models are summarized in Table 4.

Table 4: Summary of Hyperparameter Settings for All Models

Model Hyperparameter Value / Range

XGBoost

Max Depth 3, 5, 7 (random search)
Learning Rate 0.01–0.1 (random search)

Number of Estimators 100, 200 (random search)
Subsample Ratio 0.8, 1.0 (random search)

Random Forest
Max Depth 20 (fixed)

Number of Estimators 100 (fixed)

1D-CNN

Learning Rate 4.22× 10−5

Batch Size 32
Dropout Rate 0.22
Weight Decay 1.24× 10−5

Number of Epochs 100
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4.2 Structure-aware and physics-constrained 1D-CNN framework
Although the XGBoost-RF framework enables fast and accurate ECM parameterization under limited
data conditions, its performance relies heavily on feature engineering and shows limited generalization to
unseen operating scenarios. To address these challenges, this work further proposes a structure-aware and
physics-constrained neural network architecture, aiming to achieve robust and scalable ECM parameter
estimation directly from EIS measurements.
The input layer consists of two components: (i)variable-length EIS sequences of variable lengths, where
each sequence contains measurements of real and imaginary impedance components at a set of frequency
points. To enable uniform batch processing, EIS sequences are zero-padded to the maximum sequence
length and standardized prior to input; (ii) scalar meta-information including normalized temperature
and SoC, which provides contextual information on operating conditions and facilitate more accurate
modeling of impedance responses under varying thermal and electrochemical environments.
A one-dimensional convolutional encoder with hierarchical layers is employed to extract localized spec-
tral features. Frequency information is incorporated via a frequency-aware attention mechanism, en-
abling the model to dynamically assign importance weights to different spectral regions. Simultaneously,
temperature and SoC features are processed through a fully connected network and fused into the latent
representation, enhancing model generalization across operating conditions.
The output of the encoder is fed into a joint feature space, from which two branches emerge: one for
ECM structure classification and another for parameter regression. Specifically, a structure classifier
predicts a probability vector α ∈ R3, corresponding to three predefined ECM structures. Parallel to this,
three structure-specific regression heads estimate the parameter vector

p = [R0, RSEI, CSEI, CPESEI,0, CPESEI,1, RCT, CPEDL,0, CPEDL,1, Rcombined, CPEcombined,0, CPEcombined,1]
⊤,

In order to avoid greater deviation caused by hard selection, a soft fusion of the outputs is performed
according to the structure probabilities:

p̂ =

3∑
k=1

αk · p̂(k),

where p̂(k) denotes the prediction from the k-th head.
The training objective combines two terms: (i) a complex nonlinear least squares (CNLS) loss LCNLS
minimizing the discrepancy between the reconstructed and measured impedance curves based on pre-
dicted parameters; and (ii) a cross-entropy loss Lclassification for structure prediction:

Ltotal = λregLCNLS + λclsLclassification,

where λreg and λcls are balancing coefficients. In this work λreg is 0.7, λcls is 0.3.
For each sample i, the CNLS loss is defined as:

L(i)
CNLS =

1

Si

Si∑
k=1

[(
Re

(
Ẑ(fk;pi, L0,i,Si)

)
− Re (Zmeas,i(fk))

)2

+
(
Im

(
Ẑ(fk;pi, L0,i,Si)

)
− Im (Zmeas,i(fk))

)2
]

(4)

where:

• pi denotes the estimated ECM parameter vector,

• L0,i is the estimated inductance,

• Si is the selected circuit structure,

• Si is the number of frequency points for sample i.

The final CNLS loss across the batch is computed as:

LCNLS =
1

B

B∑
i=1

L(i)
CNLS (5)

where B is the batch size.
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4.3 Results and comparison
To establish a rigorous foundation for evaluating the proposed machine learning approaches, both exper-
imentally measured and synthetically generated EIS datasets were used to evaluate the proposed frame-
works. Initially, 10% of the entire measured dataset was reserved as a test set, while the remaining 90%
was split into training and validation sets in a 4:1 ratio. For experiments involving synthetic data, given
the objective of assessing the model’s capability to parameterize ECMs based on real measurements,
synthetic samples were excluded from the validation and test sets. The measured data were evenly di-
vided into training, validation, and test subsets, while synthetic samples, along with an additional 2000
real measurements, were used for model training.
On the measurement-only dataset comprising 6083 EIS samples, the XGBoost-RF framework achieved
97.37% classification accuracy and low regression errors, demonstrating robust performance under data-
limited conditions. In comparison, the 1D-CNN model exhibited slightly higher classification accuracy
but showed increased RMSE and MAE, likely due to its larger capacity and the limited experimental
dataset failing to support effective feature learning.
The use of combined synthetic and partial experimental EIS data for training resulted in high predictive
accuracy in both structure classification and parameter regression. The overall classification accuracy
of XGBoost-RF framework reached 97.70%. As detailed in Table 5, the classifier correctly recognized
the majority of ECM structures. A closer inspection of the confusion matrix reveals that circuit a was
perfectly classified, suggesting that its features are clearly distinguishable from those of the other two
structures. However, a small portion of circuit b samples were misclassified as either circuit a or circuit c,
and a limited number of circuit c samples were predicted as circuit b. This behavior indicates partial
feature overlap between circuits b and c, which may introduce ambiguity in structure identification and
merits further investigation.

Table 5: Confusion matrix for structure classification of XGBoost-RF framework

True \ Estimated Circuit a Circuit b Circuit c
Circuit a 180 0 0
Circuit b 5 547 10
Circuit c 0 13 462

In the 1D-CNN framework, classification accuracy improved slightly, with corresponding decreases in
RMSE and MAE. Most misclassifications occurred between circuit b and the other circuits, which can be
attributed to the inherent ambiguity in some EIS profiles where different circuit topologies yield similar
impedance responses. Since the ultimate objective is accurate impedance reconstruction and parameter
inference, and the 1D-CNN framework employs soft-fusion for structure fusion, classification errors do
not necessarily propagate to parameter estimation errors. These results demonstrate the flexibility of the
neural model in handling complex or ambiguous measurement scenarios.
Furthermore, a loss function combining the CNLS fitting term with parameter estimation error was em-
ployed to guide the training of the 1D-CNN. While the inclusion of CNLS loss improved physical con-
sistency and helped address the imbalance introduced by differences in parameter magnitudes, it also
introduced substantial computational overhead. In certain cases, parameter amplification during de-
normalization led to numerical instability during impedance reconstruction, causing divergence in the
training loss. A masking strategy was applied to exclude physically implausible estimations, and the
reported 1D-CNN performance metrics were derived from this physically filtered subset. Additionally,
the best results were selected from multiple training, validation, and test runs. Due to the large number
of excluded samples, the statistical validity of the reported metrics remains uncertain. This issue will be
investigated in future work.
The Evaluation metrics are summarized in Table 6.

Table 6: Evaluation results of proposed Machine Learning Methods on Different Datasets

Parameter
XGBoost-RF 1D-CNN

Measured Synthetic Measured Synthetic

Classification
accuracy (%) 97.37 97.70 98.85 99.92
MAE 0.5637 0.4331 3.1295 3.0561
RMSE (%) 4.7419 2.4737 7.5512 6.9401
R2 0.5557 0.8563 0.4983 0.5152
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5 Summary and limits
Overall, these results indicate that XGBoost-RF are well-suited for applications with limited data and
constrained computational resources, offering strong performance with relatively simple architectures.
In contrast, deep learning models such as the 1D-CNN provide higher modeling flexibility and scalability.
Future research will focus on improving the efficiency of CNN-based parameter estimation. Conven-
tional loss functions often face difficulties in multi-parameter regression tasks due to large disparities
in parameter magnitudes. Although the CNLS loss improves physical consistency, it introduces consid-
erable computational overhead. A potential solution is to decompose the frequency domain and apply
localized CNLS losses within sub-bands, which may reduce computational demands while preserving
physical fidelity. In addition, extending the concept of soft-fusion—currently employed in the CNN
framework—to ensemble models like XGBoost-RF could be a promising strategy to mitigate the im-
pact of occasional classification errors. This could enhance the robustness and adaptability of tree-based
models in more complex or ambiguous real-world environments.
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