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Executive Summary

The heavy-duty truck industry is undergoing a significant transition from diesel-powered vehicles to electric trucks,
driven by environmental concerns and advancements in battery technology. This shift necessitates a comprehensive
understanding of the factors influencing propulsion energy consumption, as these insights are crucial for optimizing
the performance and range of electric trucks. Using data from a fleet of 19 trucks monitored over a period of 11
months, we investigate key variables affecting energy consumption including gross combination weight (GCW),
road inclination, acceleration, speed and ambient temperature in heavy-duty trucks, comparing their impact on
urban and rural routes. Our findings revealed that rural route showed 6% higher energy consumption per kilometer
compared to urban route. All algorithms consistently perform better in rural environments compared to urban ones,
likely due to more complex traffic patterns, intersections, and variability. The results also indicate that acceleration
and road inclination are the most significant factors affecting energy consumption, regardless of the type of trip
(urban or rural). These results have important implications for fleet management, route optimization, and the
development of more energy-efficient heavy-duty vehicles.

1 Introduction

Globally, governments are intensifying their focus on the transportation sector due to its substantial role in environ-
mental pollution, greenhouse gas emissions, and energy consumption. This heightened concern for environmental
and energy issues has catalyzed significant advancements in electric vehicle (EV) technology[6]. Battery Electric
Vehicles (BEVs) have been extensively researched since their introduction. Various studies have focused on key
factors influencing BEV performance, such as driver behavior, speed and external conditions like topography, and
the impact of ambient temperature [1, 2, 3, 4]. While BEV cars have been the center of attention, there is a growing
need to extend this research to BEV trucks. Unlike cars, BEV trucks are subject to unique factors such as GCW
and more pronounced effects of ambient temperature. These differences justify the importance of targeted investi-
gations specific to trucks.

In particular, BEV trucks vary by emission standards and other performance characteristics. For this study, we
focus on a heavy-duty BEV variant, aiming to examine energy consumption across both rural and urban envi-
ronments. Urban routes are often characterized by stop-and-go traffic, frequent accelerations, and short travel
distances, leading to increased energy consumption due to constant braking and acceleration. In contrast, rural
routes typically involve longer stretches of consistent speed with fewer stops, but may also include varying terrain
and higher average velocities, which can further affect fuel efficiency. Understanding how these factors interact is
essential for optimizing BEV truck design, improving route planning, and accurately predicting range and energy
requirements in diverse operating conditions.

Energy consumption in vehicles is influenced by a variety of factors that must be considered holistically. it is essen-
tial to account for all aspects from vehicle characteristics i.e.weight, route characteristics i.e. urban vs rural area,
driving behavior, speed and acceleration and environmental conditions i.e. topography and ambient temperature
[5]. This paper aims to provide a comprehensive analysis of the factors affecting propulsion energy consumption
in BEV trucks, contrasting the unique challenges presented by urban and rural environments. In the following
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sections, we present our research methodology and findings.

Recent research by [8] demonstrates the value of incorporating detailed route information—such as road topog-
raphy, traffic signals, and speed limits—from sources like OpenStreetMap (OSM) and Shuttle Radar Topography
Mission (SRTM) to improve the accuracy of BEV energy consumption predictions. Unlike conventional strategies
that assume static driving conditions, model introduced in [9] incorporates a dynamic speed trajectory reflecting
both acceleration and deceleration behavior, which is further used in a detailed powertrain model. This modeling
framework results in a marked improvement in prediction accuracy—achieving a mean absolute prediction error of
approximately 4.1% across diverse test cycles—highlighting the importance of factoring in driver behavior, route
topology, and real-time traffic conditions.

Section 2 provides a comprehensive overview of the data collection and preparation processes and how different
trips have been defines. In Section 3, we present the results and analysis, which are structured into three main
components: input features, model performance, and feature importance. Section 3.1 introduces and explains
the input features selected for the modeling process, highlighting their relevance and expected impact on predic-
tive performance. Section 3.2 discusses the development and evaluation of multiple machine learning models,
including training procedures, and performance metrics. In Section 3.3, we conduct a SHAP (SHapley Additive
exPlanations) analysis to interpret model outputs and rank feature importance, with a specific focus on comparing
rural and urban trip characteristics. Finally, Section 4 summarizes our findings, discusses key insights, and outlines
potential directions for future work.

2 Data Collection and Preparation

2.1 Truck Specification

The dataset is derived from 19 heavy-duty Volvo electric trucks monitored over a period of 11 months. We collect
data from the CAN bus in trucks to collect data. The model of the heavy-duty trucks features a 4x2 axle con-
figuration and a tractor type design, equipped with a total battery capacity of 540 kWh (6 battery packs) using
Lithium Nickel-Cobalt-Aluminum Oxide (NCA) technology. The truck’s body weight ranges between 10 to 13
tons, depending on the configuration. For propulsion, it is powered by three electric motors delivering a combined
total of 500 kW of power and 800 Nm of torque.

2.2 Trip Classification

The data was sampled at a rate of 1 Hz, capturing detailed and high-frequency measurements. The data is from
the periods when the truck was driving, and it covers 935 trips. To classify the trips as either urban or rural, a
speed-based categorization method was employed. A trip was designated as urban if at least 80% of the time the
truck was operating at speeds between 0 to 60 km/h. Conversely, trips were categorized as rural if at least 80% of
the trip was driven at speeds between 60 to 90 km/h.

To ensure a consistent and meaningful analysis, only trips with a minimum distance of 19 kilometers were in-
cluded. This filtering step helped maintain a balance between rural and urban trips while avoiding skewed results
from shorter trips, which might introduce bias due to incomplete or unrepresentative driving patterns.
Furthermore, trips that involved stops longer than 6 minutes were excluded from the analysis to minimize the im-
pact of extended non-driving events, which could distort the energy consumption data. However, trips with shorter
stop durations were retained, particularly because brief stops—such as those at traffic lights—are common in ur-
ban areas. These shorter stops are critical to accurately reflect urban driving conditions and energy consumption
patterns. After applying the filtering criteria, The dataset was refined to include 95 rural trips and 136 urban trips,
totaling 13,371 kilometers driven. Of this, 2,992 kilometers were driven in urban trips and 10,379 kilometers in
rural trips.

3 Result and Analysis

3.1 Input Features

For predicting energy consumption, it is important to consider both environmental and vehicular features. Ambient
air temperature, vehicle speed, acceleration, gross combination weight, and road inclination are features that we
took into account. Vehicle speed and acceleration are important since they reflect the dynamic behavior of the
vehicle and directly influence energy demand due to changes in kinetic energy. At the same time, road inclination
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and gross combination weight contribute more toward the potential energy component and and resistance forces
acting on the vehicle. The reason for considering temperature is that it influences both the efficiency of the vehicle’s
powertrain and the performance of auxiliary systems like heating or cooling. Although this study focuses solely
on propulsion energy, auxiliary energy consumption is not included as a target feature.

Figure 1 compares the distribution of different features between rural and urban trips. For speed (1a), rural trips
show consistently higher speeds with less variation (mostly between 75-85 km/h), while urban trips display much
greater variability (ranging from near 0 to 85 km/h) with a lower median around 40 km/h, reflecting the stop-and-
go nature of urban driving. For acceleration (1b), urban trips show more variability (ranging from about -0.5 to 0.5
degree) compared to rural trips which maintain more consistent acceleration values near zero, indicating steadier
driving conditions on rural routes. The ambient air temperature distributions (1c) are indeed similar between
both environments as expected, with rural areas showing slightly higher median temperatures and marginally
greater variability. The gross combination weight distribution (1d) demonstrates a clear distinction, with rural trips
associated with significantly heavier loads (median around 18,000 kg) compared to urban trips (median around
11,000 kg). This supports the observation that trucks typically carry heavier loads for between-city missions in
rural settings, while urban deliveries involve lighter cargo loads.

Alongside road inclination we also define four topography states per kilometer based on road inclination: flat,
predominantly flat, hilly, and very hilly. A kilometer is classified as flat if 98% of it has a road slope less than 3%.
It is classified as predominantly flat if 98% of the kilometer has a slope less than 6%. If 98% of the kilometer has
a slope less than 9%, it is considered hilly. If these conditions are not met, the kilometer is classified as very hilly.
For this particular feature, we did not separate trips into urban and rural categories due to insufficient data points
for certain topographies across different trip types.

The stacked bar chart (1f) presents a comparison of kilometers driven on rural trips versus urban trips across
different terrain types. Rural trips clearly dominate in terms of total distance covered. The terrain composition
shows that rural driving primarily occurs on flat terrain, which constitutes roughly 8,500 kilometers of the total
rural distance, with the remaining 1,500 kilometers taking place on “P-Flat” terrain. Urban trips display a more
balanced distribution between terrain types, with approximately equal portions driven on flat and P-Flat terrain.
Notably absent from both trip categories is any significant distance covered on ”P-Hilly” or ”Very Hilly” terrain
types, suggesting that most driving, whether rural or urban, occurs on relatively flat ground.

EVS38 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 3



100

of -

60

Speed[km/h]

40

0.5

0.0

-0.5

Acceleration[m/s2]

-1.0

Rural Trip Urban Trip Rural Trip Urban Trip
(a) Speed Distribution Comparison Between Rural and (b) Acceleration Distribution Comparison Between Rural
Urban Trips. and Urban Trips.
24000
30 = 1 22000 4
25
20000 -
9 20
e — 18000 -
2 g
& 15 s
g H
£ . 3 16000
L 10
H
.g 14000
< 5 R -
0 | 12000 A
-5 10000
Rura‘l Trip Urba;\ Trip Ru ra] Trip Urba;| Trip
(c) Ambient Air Temperature Distribution Comparison (d) GCW Distribution Comparison Between Rural and Urban
Between Rural and Urban Trips. Trips.
6
4
g, Yoy ity
£
2o
g é 6000
& H
=) £
= 4000
-4
-6
Rural Trip Urban Trip o uraip ban
(e) Road Inclination Distribution Comparison Between (f) Comparison of Kilometers Driven on Rural Trips vs.
Rural and Urban Trips. Urban Trips.

Figure 1: Distribution of Input Features across Rural and Urban Trip.

3.2 Model Performance and Evaluation

When implementing machine learning models for energy consumption prediction, we select 20% of the data for
testing while using the remaining 80% for training. This train-test split is a standard practice that allows us to
evaluate how well our models generalize to unseen data. By reserving a portion of the dataset that the model hasn’t
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encountered during training, we can assess its real-world performance and detect issues like overfitting, where a
model performs well on training data but poorly on new data.
Before applying our models, we standardize the data by transforming features to have zero mean and unit variance.
Standardization is crucial for several reasons: it ensures all features contribute equally to the model regardless of
their original scales, prevents features with larger magnitudes from dominating the learning process, improves the
convergence speed of gradient-based algorithms. This preprocessing step is particularly important when dealing
with energy consumption data where input features (such as speed, distance, vehicle characteristics) might have
widely different scales and units, which could otherwise bias the model training process and negatively impact
prediction accuracy.
Assessing the precision of machine learning models is essential for choosing the most suitable model. In this
research, we utilized two evaluation metrics, R2 and RM SE, to measure the effectiveness of the proposed machine
learning models in forecasting the energy consumption of BEV trucks. By leveraging these metrics, the most
suitable model can be pinpointed, supporting the examination of critical factors driving energy use. The formulas
for these metrics are provided below:
n ~ )2
dima (Y — i)

> i (yi — )2

Where y; is the actual observed value for the i-th observation. ¢; is the predicted value for the ¢-th observation.

y is the mean of all observed values.n is the total number of observations. Y., (y; — §;)? represents the sum of
squared residuals (SSR) and Z?:l (y; — )? represents the total sum of squares (TSS).

RP=1- 1

2

Where y; is the actual observed value for the i-th observation. g; is the predicted value for the i-th observation.
n is the total number of observations and > (y; — 9;)? is the sum of squared differences between predicted
and actual values. The square root of the mean square error gives us the RM S E, which has the same units as the
response variable.

Our goal is to predict the energy consumption per kilometer. Focusing on energy consumption per kilometer pro-
vides a clear and standardized metric for evaluating the efficiency of vehicles, particularly BEV trucks. This metric
allows for straightforward comparisons across different vehicles and driving conditions.

This study utilized four widely used and effective machine learning algorithms—Extreme Gradient Boosting
(XGB), Random Forest (RF), Multilayer Perceptron (MLP), and Support Vector Regression (SVR)—for mod-
eling. Based on the performance metrics shown in the table 1, there’s a clear difference between how machine
learning algorithms perform in rural versus urban route modes for energy consumption prediction. The rural route
models demonstrate substantially higher R? values (ranging from 0.410785 for SVR to 0.929184 for RF) com-
pared to their urban counterparts, indicating that the algorithms explain a much larger proportion of the variance
in energy consumption data for rural routes. This is further supported by the lower RM S E values for rural routes
across all algorithms, with RF performing the best with an RM SE of 142.691815. For urban routes, the mod-
els show moderate predictive power with XGB, RF, and MLP achieving R? values around 0.66-0.69, while SVR
performs notably poorly with an R? of only 0.174276 and the highest RM SE of 399.486913. This significant
disparity in performance between rural and urban environments suggests that energy consumption patterns are
more predictable and consistent in rural settings, while urban environments likely introduce more variables and
complexities that make accurate prediction more challenging. The Random Forest algorithm appears to be the
most effective overall, showing the highest R? and lowest RM SE values in both route modes.

EVS38 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 5



ML Algorithm Route Mode R? RMSE
XGB Urban 0.661465 255.792062
Rural 0.928756 143.122584
RF Urban 0.694978 242.800918
Rural 0.929184 142.691815
MLP Urban 0.698011 241.590943
Rural 0.922675 149.105346
SVR Urban 0.174276 399.486913
Rural 0.410785 411.595533

Table 1: Performance Metrics of the Considered ML Algorithms.

3.3 Feature Importance

Understanding feature importance is essential when analyzing factors influencing propulsion energy consumption
in electric trucks, as it helps identify which variables contribute most significantly to energy usage. This process
not only facilitates better insight into the underlying relationships within the data but also assists stakeholders and
engineers in prioritizing areas for improvement and optimization.

In our study, we employed a Random Forest model due to its robustness, interpretability, and capability to
capture complex, nonlinear relationships between input variables and propulsion energy consumption. To accu-
rately interpret the feature importance derived from our Random Forest model, we utilized SHAP [7]. SHAP is
a game-theoretic approach designed to explain individual predictions and provide a global interpretation of fea-
ture importance. By calculating Shapley values, SHAP assigns each feature an importance score based on its
contribution to the prediction, thereby offering a transparent and intuitive explanation of the model’s behavior.

For visualization purposes, we generated a beeswarm plot, which effectively illustrates the distribution and
impact of each feature on the model’s predictions. Additionally, we created scatter plots to explore the correlation
between individual feature values and their corresponding SHAP values, providing a clearer understanding of how
each feature influences propulsion energy consumption.
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Figure 2: SHAP Beeswarm Plot of Feature Importance for Energy Consumption in Rural Trip.

Figure 2 indicates that road inclination and acceleration have the most substantial impact on propulsion energy
consumption during rural driving. Higher road inclination and acceleration generally increase energy consump-
tion, as indicated by the high SHAP values associated with these features. Gross combination weight and speed
also show notable but comparatively smaller effects. Ambient temperature and road inclination profile categories
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(P-Flat and P-Hilly) exhibit lower overall influence, suggesting their impact on energy consumption is context-
dependent and less pronounced.

An explanation to this result is that in rural areas, characterized by highway driving conditions, features like
road inclination and acceleration have a more pronounced impact on propulsion energy consumption due to the
higher speeds and steadier driving conditions typically experienced. At higher speeds, the resistance from gravity
(related to road inclination) and inertial forces (related to acceleration) become more significant, thus greatly
influencing energy consumption. These conditions make it easier to clearly identify and measure the direct impacts
of road inclination and acceleration on energy usage.
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Figure 3: Impact of Four most Important Features on Energy Consumption for Rural Trips.

Figure 3 further clarify these relationships. Road inclination displays a strong positive correlation with propul-
sion energy consumption, clearly indicating increased energy usage on steeper inclines. Acceleration similarly
shows a positive nonlinear relationship, highlighting the considerable energy demand associated with higher accel-
eration levels. The scatter plot for speed reveals a more complex relationship, indicating peak energy consumption
at intermediate speeds, after which consumption stabilizes or even slightly decreases at higher speeds. Finally,
gross combination weight shows a moderate positive correlation when the trucks are load, though the impact is
less pronounced compared to road inclination and acceleration.
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Figure 4: SHAP Beeswarm Plot of Feature Importance for Energy Consumption in Urban Trips.

In contrast, the SHAP beeswarm plot for urban driving indicates that acceleration has the greatest impact on
propulsion energy consumption, surpassing road inclination. This shift in feature importance can be attributed
to frequent acceleration and deceleration events commonly experienced in urban driving scenarios, significantly
increasing energy consumption. Road inclination remains influential but is relatively less impactful compared to
rural driving. Gross combination weight and speed continue to show moderate but clear impacts, while ambi-
ent air temperature and road inclination profile categories (P-Flat, P-Hilly, and Very Hilly) display smaller, less
pronounced effects.

Impact of road inclination on energy consumption Impact of acceleration on energy consumption
g 12507 "] £ 1000 A .
5 B .
£ 10007 . = 750
5 - 5
2 70 B s00
5 2 :
@ 500 4 e, 2
3 ‘_ﬂ‘r‘" S 250
S 2501 paseaie : 2

.

& o B &
5 § -250 -
o o
53 51
2 2
5 g -500 . 4
E E . .

T T T T T
-3 -2 -1 0 1 2 3 4 5 -1.5 -1.0 -05 0.0 0.5 10 15

Road inclination [%] Acceleration [m/s?]
Impact of speed on energy consumption Impact of gross combination weight on energy consumption
.
E 2001 £ 600 A
= = . o*
2 100 = 500 s,
g § P
2 od B 400 - 7o
E E -‘b
2 -100 1 2
& £ 300 A u ¥
o] o . « &
% 2001 % 2004 Tt
£ 300 1 g . ‘
“=" “=" 100 + 3
o _. i o . .
2 400 - Mg, -
g —500 g -
= = -100 4 ]
—600 — T T T T T T T T T T T
[} 20 40 60 80 10000 12000 14000 16000 18000 20000 22000
Speed [km/h] Gross Combination Weight [kg]

Figure 5: Impact of Four most Important Features on Energy Consumption for Urban Trips.
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Figure 5 reinforces these findings. Acceleration demonstrates a pronounced positive correlation with energy
consumption, reflecting the frequent stop-and-go nature of urban driving. Road inclination remains positively cor-
related, although with slightly less variability and lower overall SHAP values compared to rural contexts. Speed
displays a complex relationship, highlighting increased energy consumption at lower speeds due to frequent ac-
celeration and deceleration, followed by stabilization or slight reduction in energy consumption at higher speeds.
Gross combination weight continues to show a moderate positive relationship, indicating consistently higher en-
ergy consumption for heavier loads, although less markedly than acceleration or road inclination.

4 Conclusion

Real-world driving tests were conducted to examine the energy consumption patterns of commercial BEV trucks
across both urban and rural driving conditions. The research employed machine learning techniques to process
and analyze the extensive dataset collected during these tests. This analytical approach facilitated accurate energy
consumption predictions and highlighted the critical variables that impact how BEV trucks utilize energy. The
following are the key findings from this research:

* Energy consumption behaviors are easier to forecast and more regular in rural areas. In contrast, urban
settings appear to contain more complexities that interfere the prediction process, resulting in less accurate
modeling outcomes.

* The Random Forest algorithm outperforms others, achieving the highest R2 and lowest RM S E values across
both route modes.

* The factors that have an impact on the energy consumption, in descending order for rural trips were found
to be road inclination, acceleration and gross combination weight and for urban trip were found to be accel-
eration and road inclination.

» The average energy consumption of BEVs was found to be 6% higher on rural trips compared to urban
trips. This is primarily due to higher speeds, which increase aerodynamic drag exponentially with velocity,
resulting in greater energy consumption.
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