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Executive Summary 

The imperative to electrify the transportation sector underscores the need for understanding the energy 

management across propulsion technologies. Using in-house tools and AVL Cruise M, vehicle models 

were constructed to gather insights on different powertrain systems for sustainable transportation 

across different usage profiles. Megajoule per km values for representative routes in Lisbon were 

determined for human-driven and autonomous vehicles during and outside rush hour. For passenger 

transport, battery electric vehicles (BEVs) and fuel cell electric range extenders (FCEVRx) in charge-

depleting mode showed the lowest consumption. For cargo transport, insights were gained on the effect 

of regenerative braking in fully loaded FCEVs, with frequent stops helping to offset reduced route 

fluidity, while BEVs exhibited similar behavior to passenger vehicles. Conclusions on automation 

potential indicated that heavier and more powerful car segments benefit most in energy reduction. 

 

Keywords: Electric Vehicles, Fuel Cell Electric Vehicles, Modelling & Simulation, Energy 

Management, Consumer behavior 
 

 

 

1 Introduction 

Climate change, largely driven by human-generated greenhouse gas (GHG) emissions, is a critical 

global challenge with severe environmental, economic, and humanitarian impacts [1]. The Paris 

Agreement, signed by 196 nations at COP21, aims to limit global warming to below 2°C, ideally 

targeting 1.5°C above preindustrial levels. Every five years, nations submit Nationally Determined 

Contributions (NDCs) outlining their emissions reduction plans, with the next round due in 2025 for 

targets extending to 2035 [2]. While current policies have reduced the projected 2030 GHG emissions 

increase from 16% to 3%, this falls short of the IPCC’s 1.5°C and 2°C targets. The IPCC notes that 

even with full implementation of current NDCs, substantial cuts — 28% for 2°C and 42% for 1.5°C 

— are required by 2030. Projections for 2035 show that current policies would result in GHG 

emissions exceeding 2°C and 1.5°C pathways by 36% and 55%, respectively, emphasizing the need 

for more ambitious policies to close the emissions gap [3]. Globally, the transportation sector was the 
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second largest contributor to GHG emissions in 2019, accounting for 15.05% of total emissions in CO2 

equivalent (CO2eq) terms [4]. In 2021, in the EU, while recovering from the pandemic, the transport 

sector represented almost one-quarter of total GHG emissions, with road transport making up more 

than three-quarters of that. Cars were the largest contributor at 58.9%, followed by Heavy-Duty Trucks 

and Buses at 28%, Light-Duty Trucks at 11.8%, and motorcycles and other road transport at 1.3%. 

Notably, transportation is the only sector in the EU with consistently rising emissions relative to 1990 

levels [5]. 

 

2 Adaptation of Technology to Mobility Patterns 

Mobility patterns depict either individual movement phenomena or spatial functions influenced by 

human activity [6]. Understanding how this mobility patterns can be leveraged to adapt to new low-

carbon technologies and maximize their benefits and best applications is a crucial step in the transition, 

providing insights in the deployment of infrastructure and optimization of grid management and EV 

charging scheduling [7, 8]. Vehicle typology is also something to consider its mobility usage. Each 
vehicle type should be correlated with distinct trip making behaviors, encompassing quantitative 

aspects like trip frequency, distance traveled and driving speed, as well as qualitative characteristics 

reflected in spatial-temporal trip patterns [9]. Studies on driving patterns have identified major vehicle 

activity contexts using Floating Car Data (FCD) and clustering algorithms, classifying vehicle types 

by usage behaviors [9]. These studies reveal significant differences in roadway usage, while other 

research has used machine learning models to analyze driving patterns in EVs, addressing power 

consumption challenges by enabling real time power estimation through classification models [10]. 

Further analysis links EV charging needs to driving patterns, revealing how mobility behaviors can 

inform charging infrastructure planning and optimize grid load by shifting demand to off-peak hours 

[11, 12]. Despite these insights, there is a gap in comprehensive studies assessing energy management 

systems across varied usage scenarios, such as private vehicles, taxis, long-distance commuters, freight 

transportation, and autonomous vehicles. The objective of this work aims to evaluate the energy and 

environmental impact per kilometer of real-world trips, focusing on traffic conditions (rush hour vs. 

non-rush hour) for passenger and cargo transportation. 

 

3 Methodology 

The method consists of two steps: (1) Data collection and driving cycle construction to gather and 

prepare information for creating a representative driving cycle; (2) Vehicle model development.  

 

3.1 Data Collection and Driving Cycle Construction 

The methodology begins by selecting representative routes, followed by data collection using a 

MATLAB function that formats origin and destination coordinates for API requests. The route data is 

processed into a matrix detailing time, speed, distance, and coordinates. API data enhance the route 
matrix with road types, speed limits, and elevation data. Refinements ensure smooth coordinate 

transitions and remove redundant traffic sign information. The driving cycle construction is drawn 

from [13], which begins by identifying stops (e.g., at traffic lights, crosswalks) and creating a vector 

to represent vehicle movement with randomness for variability in stop patterns. A matrix includes stop 

durations, target speeds (factoring in legal limits and conditions), and random” hard braking” events 

for obstacles. Using target speed and maneuver data, a second-by-second speed profile is built, 

adjusting for accelerations, decelerations, and stops. Distance covered is calculated each second, 

ensuring alignment with expected stopping and maneuver distances and speeds. For the creation of 

cycles for autonomous vehicles, it was assumed that the vehicle was a connected and autonomous 

vehicle (CAV), connected to the grid of traffic lights, thereby reducing significantly the need to stop. 
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3.1.1 Usage Profiles 

This study considers two main vehicle usage scenarios: passenger transportation and cargo 

distribution. Passenger routes (A1, A2, B1 and B2) include autonomous or human-driven options 

while cargo routes (C1, C2 and C3) solely considers the human-driven scenario. Route characteristics 

are summarized in Table 1. 

Table 1: Summary of Route Characteristics 

Route Case  Distance (km) Trip Time (s) Stop Time (s) Nº Stops ∆hmáx (m) hinitial/hfimal (m) 

A1 

HRH 

 

Mean 7.5 1257.3 519.5 19.0 81.0 102/27 

std.  76.5 59.2 1.3 - - 

HORH 

 

Mean 6.3 1021.5 388.6 21.9 81.0 102/27 

std.  56.1 44.8 1.4 - - 

ARH 

 

Mean 7.5 639.6 16.8 5.0 81.0 102/27 

std.  12.9 6.4 0.9 - - 

AORH 

 

Mean 7.6 629.2 3.7 3.3 81.0 102/27 

std.  8.4 0.7 0.5 - - 

A2 

HRH 

 

Mean 7.3 3508.3 2471.1 72.6 81.0 27/102 

std.  140.8 145.7 3.6 - - 

HORH 

 

Mean 7.6 1265.6 516.3 18.5 81.0 27/102 

std.  65.9 56.5 2.6 - - 

ARH 

 

Mean 7.3 644.5 13.4 4.5 81.0 27/102 

std.  7.6 4.3 0.7 - - 

AORH 

 

Mean 7.8 649.0 3.3 2.8 81.0 27/102 

std.  10.7 1.1 0.6 - - 

B1 

HRH 

 

Mean 16.0 2681.9 1449.4 47.8 113.0 20/7 

std.  96.1 91.1 2.2 - - 

HORH 

 

Mean 16.5 1453.3 350.5 15.2 113.0 20/7 

std.  69.7 60.2 2.2 - - 

ARH 

 

Mean 17.1 1111.6 45.2 12.6 113.0 20/7 

std.  18.3 12.5 1.7 - - 

AORH 

 

Mean 17.4 1064.5 7.2 6.1 113.0 20/7 

std.  10.3 2.4 1.6 - - 

B2 

HRH 

 

Mean 18.9 2615.8 1285.6 40.4 112.0 7/20 

std.  134.4 128.4 1.9 - - 

HORH 

 

Mean 19.3 1535.5 315.3 13.4 112.0 7/20 

std.  64.7 57.6 1.2 - - 

ARH 

 

Mean 16.2 1564.6 13.6 4.5 112.0 7/20 

std.  13.9 6.7 1.5 - - 

AORH 

 

Mean 16.5 1534.5 2.6 2.4 112.0 7/20 

std.  19.7 1.1 0.9 - - 

C1 

HRH 

 

Mean 7.0 3065.8 2149.6 66.3 72.0 72/43 

std.  94.1 86.6 3.0 - - 

HORH 

 

Mean 7.6 1165.8 438.7 17.3 72.0 72/43 

std.  74.1 63.3 1.9 - - 

C2 

HRH 

 

Route  5219.0 3608.0 137.0   

Mean 10.2 208.8 144.3 5.5 97.0 43/98 

std.  2.5 30.1 1.2 - - 

HORH 

 

Route  2153.0 699.0 62.0   

Mean 11.1 86.1 28.0 2.5 97.0 43/98 

std.  4.4 16.6 0.5 - - 

C3 

HRH 

 

Route  1150.0 125.5 44.0   

Mean 7.1 76.7 26.7 2.9 75.0 13/14 

std.  6.6 23.8 1.4 - - 

HORH Route  905.0 164.5 35.0   

Mean 7.6 60.3 8.4 2.3 75.0 13/14 

std.  4.9 10.3 0.4 - - 
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As described in table 1, seven base cases are considered: three for cargo and four for passengers. For 

simplicity, each case is coded with ’H’ or ’A’ to indicate whether the vehicle is human-driven or 

autonomous, followed by ’RH’ for rush hour or ’ORH’ for off-peak hours, depending on the specific 

usage profile being analyzed. Passenger routes simulate touristic and commute trips in Lisbon, 

following [14]. Cargo routes are based on urban and sub-urban logistics from [15]. 

 

3.2 Vehicle Model Development 

Four vehicle models, an L6e, C-Segment, Light duty van and E-segment were developed based on real 

life counterparts of the same segment emphasizing the availability of technical data and the vehicles’ 

prevalence in the Portuguese market. Vehicle models were built in AVL Cruise M, leveraging default 

models and generators for parameterizing components, as well as approximations when publicly data 

was unavailable. The aerodynamic characteristics of the vehicles were approximated by the model 

with the input of the frontal area and the drag coefficient. According to [16] the frontal area of a vehicle 

can be estimated according to equation 1. 

𝐴𝑓 = −1.23069 + 0.00011𝑚𝑣 ×𝑊 ×𝐻 − 0.05398(𝑊 × 𝐻)2 (1) 

Where Af is the estimated frontal area (m²), mv is the vehicle mass (kg), W is the vehicle width (m), 

and H is the vehicle height (m). Motor torque-rpm curves were produced through the maximum torque 

and using the sustaining constant torque and constant power areas of the curve from available data. 

The Light duty-van and C- segment efficiency maps were based on [17]. The E-segment motor curve 

and efficiency map were drawn from [18]. For the L6e, an efficiency map produced by the AVL Cruise 

M generator was adapted. To evaluate the mass impact of the technology used, specific assumptions 

about power-to-mass ratios were applied regarding the fuel cells. This approach similar to the one used 

in [19] allowed for a more detailed analysis of how technology affects mass increases in the models. 

The data for the fuel cell models mass and power were sourced from [20]. The data showed a clear 

nonlinear behavior, and therefore a power trendline on the form y = axb for a better fit on the values. 

For the hydrogen tanks, a linear approximation between the hydrogen mass and the tank mass was 

performed using data from [21]. Those relations are present in Equations 2 and 3. A general equation 

for the BEV battery weight as a function of power, shown in Equation 4, was also adapted from [19]. 

Equation 5 provides a relation based on [22] for the low capacity, high power density battery of the 

FCEV vehicles. 

𝑀𝑓𝑐𝑚 = 23.544𝑃𝑓𝑐
0.508 (2) 

𝑀𝐻2 = 0.0784𝑀𝑡𝑎𝑛𝑘 − 0.7721 (3) 

𝐶𝑏𝑎𝑡𝑡𝑒𝑟𝑦
𝐵𝐸𝑉 = 0.220𝑀𝑏𝑎𝑡𝑡𝑒𝑟𝑦

𝐵𝐸𝑉  (4) 

𝐶𝑏𝑎𝑡𝑡𝑒𝑟𝑦
𝐹𝐶𝐸𝑉 = 0.269𝑀𝑏𝑎𝑡𝑡𝑒𝑟𝑦

𝐹𝐶𝐸𝑉  (5) 

Where Pfc represents the power of the new system in kW, and Mfcm the mass of the fuel cell system 
module in kg. MH2 and Mtank correspond to the mass of hydrogen and the tank mass, respectively, both 

in kg. Additionally, Cbattery represents the battery capacity in kWh, and Mbattery the mass of the battery. 

Tables 2 and 3 present the estimated parameters for the FCEV, BEV and Range Extender. 
 

Table 2: Estimated parameters for the FCEV and BEV conversion of the standard models 

Vehicle L6e C - Segment LD Van E-Segment 

Fuel Cell Power (kW) 6 80 90 - 

Number of Cells 37 262 294 - 

Active Cell Area (cm2) 200 375 375 - 

Fuel Tank Capacity (kg) 1.0 4.3 4.5 - 

Fuel Cell System Weight (kg) 71.8 218.1 226.5 - 

Hydrogen Tank Weight (kg) 22.6 64.7 67.8 - 

Battery Technology Lithium-ion Lithium-ion Lithium-ion Lithium-ion 

Battery Capacity (kWh) 0.3 1.3 1.3 100 
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Battery Weight (kg) 11.2 48.3 48.3 454 

Curb Weight (kg) 516 1583 1719 1904 

Table 3: Estimated Parameters for the Range Extender Conversion of the standard models 

Vehicle L6e C - Segment LD Van E-Segment 

Fuel Cell Power (kW) - 25 25 25 

Number of Cells - 82 82 82 

Active Cell Area (cm2) - 375 375 375 

Fuel Tank Capacity (kg) - 1.8 1.8 1.8 

Fuel Cell System Weight (kg) - 120.8 120.8 120.8 

Hydrogen Tank Weight (kg) - 32.8 32.8 32.8 

Battery Technology - Lithium-ion Lithium-ion Lithium-ion 

Battery Capacity (kWh) - 11 14 13.5 

Battery Weight (kg) - 125.1 77.8 61.4 

Curb Weight (kg) - 1529 1605 1666 

For battery electric vehicles, no Eco, Boost, or Sport modes affecting SOC control were considered. 

The battery operates as the sole power source for the electric motor’s demand, following a charge-

depleting logic. For the control strategy of the fuel cell vehicles, was drawn from [18] for the E-

Segment vehicle and linearly converted according to power to weight ratio of each vehicle in relation 

to the one in used in the study. For the Range Extender powertrain technology, the vehicle’s propulsion 

primarily relies on the battery, with the fuel cell providing supplementary power to maintain the 

battery’s state of charge and extend its range. This control will consist on CD- CS strategy. In charge-

depleting mode, the vehicle operates as a BEV, relying solely on battery power. Once the battery’s 

SOC drops below a certain threshold, the system switches to charge-sustaining mode. In this mode, 

the fuel cell provides power to maintain the battery’s SOC within a narrow range. For this study, a 

minimum SOC threshold of 0.3 was chosen. The control of fuel cell power in charge-sustaining mode 

was implemented using a PID controller. 

Energy consumption was estimated at the battery level using AVL CRUISE M software, which 

facilitates this by calculating the energy balance within the battery, accounting for both incoming and 

outgoing energy. Similar to the analysis at the battery level, hydrogen consumption will be examined 

at the fuel cell level, allowing for an assessment of the quantity of hydrogen that has reacted. Then to 

allow comparison between the two values, the hydrogen mass will be multiplied by the lower heating 

value (LHV) of hydrogen. 

Both BEV and FCEV technologies are evaluated in HRH and HORH scenarios, while FCEVRx is not 

used. For passenger usage profile the L6e, C-Segment and E-segment are tested. Each model and 

technology is evaluated across all four scenarios (HRH, HORH, ARH, and AORH), with exception of 

the L6e model that is only tested with BEV and FCEV technologies. Only the LD Van model is tested 

for cargo usage 

 

4 Results & discussion 
 

4.1 Model Validation 

To validate the developed vehicle models, a comparison of consumption values was conducted by 

testing the models under standard driving cycles specific to each vehicle type. For the BEV base 

standard driving cycle tests were conducted and compared accordingly with the manufacturer’s 

published consumption values. The LD Van was tested under the WLTP Class 3b procedure, the L6e 

vehicle under the WMTC Class 1 procedure, and the C-segment vehicle using the NEDC cycle, as at 

the time the WLTP was not implement. Although numerous assumptions were incorporated in 

constructing the models with a large number of component parameters generated from the software 

tool, allied to hypothesis regarding adjustment of motor curves and efficiency maps, the results for the 

test cycles remained fairly consistent, aligning well with the published data and demonstrating 
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reasonable accuracy, as shown in Table 4. For the validation of the developed FCEV base model, 

consumption results and SOC evolution, as well as fuel cell, battery and electric motor parameters 

were compared against the reference control model used in this work, present in Table 5 as well as 

experimental results from the Argonne National Laboratory [18]. 

 

Table 4: Comparison of Energy Consumption of BEV vehicles: AVL Simulation Results vs. Published Data 

AVL Cruise Model Test Cycle Declared Value Simulation Value Deviation (%) 

L6e WMTC Class 1 8 kWh/100km 8 kWh/100km < 1 

C-Segment NEDC 15.0 kWh/100km 14.8 kWh/100km 1.33 

LD Van WLTP Class 3b 19.2 kWh/100km 19.4 kWh/100km 1.03 

 

Table 5: E-Segment FCEV WLTP driving cycle results and comparison against experimental data 

 AVL Model Usmanov Model Argonne Experimental 

Hydrogen Consumption (g) 197.9 197.7 196.8 

Relative Error to Experimental (%) 0.56 0.46 - 

SOC (%) 63.2 63.3 62.5 

Relative Error to Experimental (%) 1.12 1.28 - 

 

4.2 Usage and Vehicle Technology scenarios 

 

4.2.1 Passenger Vehicles 

One of the first insights denotes that between all technologies within the same vehicle segment, 

considering the 4 routes, both for in RH or ORH, the ones that make use of a fuel cell, both FCEV and 

the FCEVRx in charging sustaining mode, show a considerably higher MJ/km values concerning the 

BEV and FCEVRx in charge depleting mode. Figure 1 shows the energy consumption for the Human-

Driven Vehicles in route A1, A2,B1 and B2. 

 
Figure 1: Energy Consumption for the Human-Driven Vehicles in Route A1,A2, B1 and B2. 

From Figure 1 it is possible to observe that within Route A1, there is a slight difference between RH 

and ORH trips in each vehicle segment, even though the trip characteristics are fairly similar, with 

only a slightly higher number of stops for ORH (an average of two additional stops). During rush hour, 

however, stoppage time is significantly higher, leading to increased consumption for auxiliary systems. 

Additionally, the total percentage of time spent in acceleration and deceleration is slightly lower in the 

RH trip, suggesting that trip fluidity has a substantial influence on final consumption results. In 

contrast, Route A2 shows a more pronounced difference between ORH and RH, with RH having 

almost four times the number of stops, five times the stoppage time, and an acceleration and 

deceleration time percentage around half that of ORH. Notably, the influence of ∆h in an ascending 

route further contributes to a significant consumption value increase relative to its counterpart. A 
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distinct pattern of increasing disparity between ORH and HR in consumption, as the vehicle model’s 

power and weight increase is noticeable, contrasting with Route A1, where the gap only shows a 

slightly increasing tendency. When comparing the results of Routes B1 and B2, it is evident that the 

behavior and range of consumption values are fairly similar. This similarity relates to the routes’ 

comparable nature regarding acceleration and stoppage patterns, although B1 shows less fluidity. 

Between B1 and B2, there is no pronounced ∆h, and although Route B1 has a slight negative gradient, 

it shows higher consumption values than the respective B2 counterparts. This difference can be 

attributed to B1’s reduced trip fluidity, while having an average of 7 more stops in HR compared to 

B2, where the difference in consumption values is also more evident. In ORH, however, the difference 

is less than 2 stops, and despite the acceleration and deceleration percentage difference between B1 

and B2 being in line with HR values, the results are not that far apart, suggesting significant relevance 

regarding total movement stops, with ∆h possibly also contributing to consumption increase and im- 

prove similarity. In this case, the observable increasing tendency as the vehicle segment rises, as seen 

in Route A2, is also noteworthy and is mirrored between the two routes. Concerning the FCEVRx in 

charge-depleting mode compared to the BEV, the results show that mass is the principal variable in 

action, as expected. The C-Segment FCEVRx is marginally heavier (8 kg) and consequently shows a 

minimal increase in comparison. For the E-Segment, the mass difference favors the FCEVRx as the 

lighter vehicle. 

Regarding FCEV vehicle models the same trends in consumption are verified. The evolution of 

standard deviation is also similar, with special emphasis on the increase in deviation as the segment 

progresses. When comparing the consumption values of FCEVs and FCEVRx configurations, the 

FCEVRx generally shows higher energy consumption in all cases except one. This is despite the FCEV 

being considerably heavier — by approximately 50 kg in one case and 200 kg in another, the reason 

lies in the operational efficiency of the fuel cells: in the FCEVRx, the smaller fuel cell often operates 

closer to its maximum power output, where efficiency tends to decrease, while the full-size fuel cell 

in the FCEV typically operates within a more efficient region of the fuel cell efficiency curve, resulting 

in lower overall consumption. The only situation where this relationship did not prevail was for the E-

Segment FCEV, which revealed worse performance for route A2 during RH, which, as discussed 

earlier, is especially prone to high consumption. This seemingly suggests that for this case the 

substantial vehicle mass, compared to the FCEVRx, offsets the efficiency advantage. 

 

4.2.2 Cargo Vehicles 

Results concerning the simulation of the cargo usage profiles are present in Figure 2.  

 
Figure 2: BEV and FCEV Energy Consumption for the LD Van in the Cargo Usage Profile 

Starting with the two cargo routes (C2 and C3), where the fully loaded vehicle mode has its cargo 

gradually reduced, the results aligned with the previously discussed implications related to route 

characteristics. For C3 in RH, despite a 10% reduction in acceleration and deceleration times, less time 
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was spent stopped, thereby minimizing auxiliary consumption compared to the ORH case. Regarding 

stops, HR shows 9 more stops than ORH (44 versus 35), supporting the previously observed 

correlation in passenger scenarios between reduced movement fluidity and increased consumption 

values. However, since RH and ORH do not exhibit very pronounced differences in their 

characteristics, the consumption values remain fairly close. Examining the results for route C2 reveals 

a divergence in behavior compared to the previous route. This divergence is evident not only in the 

nature of the RH and ORH trips but also in the marked difference in trip fluidity. Specifically, the total 

number of stops more than doubled (137 versus 62), with over five times the stoppage time. 

Consequently, there is a reduction in acceleration and deceleration time percentage by 20% and 15%, 

respectively. Regarding the ∆hmax the difference is more pronounced in C2 with 97 m when compared 

with C3 with 75 m, while both having a positive route gradient. 

In the BEV case, results follow formerly discussed relations, however results in FCEV not only show 

results closely together, but looking at ORH results for C2 and C3 in the BEV technology, whose 

rounded value is by occasion the same, does not follow the tendency of showing much greater 

consumption values for C2 in relation to the ORH, and on the contrary values are closer than in the C3 

scenario, which had a much more similar route nature. This divergent trend may be attributed to the 

regenerative braking system.  The FCEV control strategy modulates the use of the battery and the fuel 

cell according to the State of Charge (SOC). When the SOC remains above 57%, the battery takes on 

a higher load, reducing the fuel cell’s demand. The increased number of stops on route C2 also leads 

to more regenerative braking events, which may charge the battery above this threshold, thereby 

reducing the fuel cell power demand and hydrogen consumption. This may explain the similarity of 

RH and ORH values for the FCEV scenario in case 2 due to energy recuperation compensation as 

although C3 has slightly higher trip fluidity, the doubled number of stops in C2 may offset this 

difference through regenerative braking events. This suggests that regenerative braking in a loaded 

vehicle may be overly advantageous, contributing to a reduction in fuel cell demand. Finally, route C1 

represents an unladen return for route C2. Both RH and ORH exhibit the lowest fluidity compared to 

their counterparts on the other routes and show the lowest ∆hmax, though only slightly lower than C3 

(with 73 m). The BEV technology results are fairly consistent with expectations based on previous 

BEV cases. Additionally, it benefits from carrying no load, which, combined with these conditions, 

contributes to lower consumption values, resulting in the best performance of all the aforementioned 

cases. Regarding the FCEV technology, the ORH case aligns with was verified for the BEV. Despite 

this, RH corresponds to biggest consumption quantity of all routes. An analysis of the consumption 

impact according to load nature for C2 and C3 was also performed. The BEV consumption shows an 

expected relationship between gradual load reduction and a constant maximum load, with the 

maximum load scenario having higher consumption values in all scenarios. It also provides insight 

that the average load underestimates all cases of gradual load, suggesting that the higher consumption 

impact during the initial moments of the route, when the load is greater than the average, offsets the 

effect of having a consistently lower cargo weight from the beginning of the trip. Meanwhile, the 

FCEV shows distinct behavior, with Max Load and Medium Load almost equal in C2 and Gradual 

Load and Medium Load partially aligned in C3. Referring back to previously discussed relationships, 

one can attribute in C3 that, with a higher vehicle mass, the more frequent complete stops in RH 

contribute to energy recuperation compared to the ORH case, offsets partially the superior cargo load 
as the route nature in RH and ORH is not far apart. While for C3 RH and ORH show a more marked 

distinction, and despite the higher number of stops, the increase cargo mass seems to stand prominent 

over regenerative braking compensation. 

 

4.2.3 Autonomous Passenger Vehicle 

A noticeable similarity between RH and ORH consumption values stands out, resulting from the highly 

similar nature of these two cases across all characteristics. The difference in the number of stops is 

minimal, remaining under 2 for A1, A2, and B2, with B1 being the exception, showing an increase of 
6 stops compared to the ORH case. Additionally, the percentage of time spent in acceleration and 
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deceleration varies by no more than 2%. A decreasing trend in the gap between the highest and lowest 

technology consumption within the same vehicle also appears to emerge, particularly favoring the 

FCEV and FCEVRx in CS. This can be attributed to the nature of the driving cycle, which involves 

fewer stops and more cruising time at a near-constant velocity. As a result, fuel cell performance 

remains, for most of the time, in a higher efficiency region with minimal variation. As could be 

expected FCEVRx in charge depleting keeps the same trend when compared to BEVs as for the 

human-driven vehicle models, with mass being the only variable acting upon results. Figure 3 shows 

the energy consumption for the Autonomous Vehicles in route A1, A2, B1 and B2. 

 
Figure 3: Energy Consumption for the Autonomous Vehicles in Route A1,A2, B1 and B2. 

For route A1, the L6e shows BEV consumption in ARH and AORH levels comparable to the HRH. 

This suggests that despite a considerable improvement in fluidity, the increase in mass and much 

higher auxiliary power consumption ( 350% more) offset that advantage. Regarding FCEV energy 

use, results are significantly lower than in the HRH and HORH scenarios, which may, as discussed 

above, derive from increased fluidity of movement and operation in higher efficiency regions. Notably, 

in the FCEV, the AORH shows a very thinly higher value, which could be related to a phenomenon 

addressed in the previous section: with two very similar trips, having two additional stops enhances 

regenerative braking events and reduces fuel cell power demand. For the C-Segment, BEV 

consumption sits slightly above the average between HRH and HORH, suggesting that  as the vehicle 

segment increases, the automation scenario starts to be more favorable in energy usage when relative 

to the human-driven scenario, with the E-segment having both cases being lower than the HORH. This 

same pattern is also verified for the FCEVs, sitting on a medium value of HRH and ORH for the C-

Segment, and a considerably lower value than HORH for the E-Segment. Contrary to the last route, 

A2 consumption values in ARH and AORH tend to be in line with or below the respective HORH 

cases. A2 represented the highest energy expense for the passenger profile, showcasing very low 

movement fluidity in HRH. Examining ARH and AORH route characteristics, which show a 

significant fluidity increase over HORH with an almost 20% increase in time spent accelerating and 

decelerating, negligible stoppage time, and half the total trip time, the increase in auxiliary power and 
mass increment related to sensors achieves equilibrium for BEV technology in L6e (although with 

slightly higher consumption than HRH). The energy use values fall below the HRH level as the vehicle 

segment progresses, again suggesting that automation is more advantageous for heavier and more 

powerful vehicles. 

Results suggest that, in general, the fluidity increase did not make the automation scenario more 

favorable. Examining the L6e data shows that although the advantage still holds for the FCEV, for the 

BEV technology’s energy consumption values are above those of the HRH scenario. This indicates 

for the latter technology that the mass increment and auxiliary power demand relative to the L6e’s 

base properties, five-folding the auxiliary power and adding a 6% total mass increase, outweigh any 

fluidity advantages for this segment in these routes. For the C-Segment, BEV technology aligns closely 

with HRH values, while the E-Segment sustains the premise of automation advantage, showing values 
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in line with HORH for these routes. Regarding FCEV technology the same pattern is verified with C-

Segment values nearing HRH, while E-segment figures stay closer to the HORH cases. 

5 Conclusions 

This work provides insight into energy consumption values for passenger and cargo usage profiles in 

a real-world scenario, applied to the city of Lisbon, offering a comparative baseline across different 

technologies. In this work, MJ/km values for representative routes were determined for human- driven 

and autonomous vehicles during and outside of rush hour, presenting a qualitative comparison of 

energy consumption for various technologies, considering factors associated with representative routes 

and their specific characteristics. Traffic fluidity—with a particular emphasis on parameters such as 

the number of stops, stoppage time, and altitude act as a key factor influencing energy consumption. 

BEVs and FCEVRx demonstrated the lowest consumption values in MJ/km within each segment, with 

vehicle mass being the main differentiator between them. FCEVs and FCEV-Rx models displayed 

discrepancies due to variations in fuel cell efficiency, as the FCEVRx often operates in less efficient 

regions of the fuel cell efficiency curve. For cargo transport, insights were gained on the effect of 

regenerative braking in fully loaded FCEV vehicles, with frequent stops helping to offset the reduced 

route fluidity when comparing RH and ORH scenarios. Meanwhile, BEVs exhibited similar behavioral 

patterns to passenger vehicles. Further analysis also revealed the effects of different load scenarios, 

with BEVs again following consistent behavior and FCEVs showing divergent patterns. Conclusions 

were also drawn regarding automation potential and the comparison to conventional human-driven 

RH and OHR scenarios, indicating that higher car segments—those that are heavier and more 

powerful—benefit the most in terms of energy consumption reduction under automation.  

This study faces some limitations. Firstly, it relies on a significant number of software-generated 

parameters to characterize vehicle behavior due to a lack of publicly available data. The feasibility of 

an FCEV L6e remains uncertain, as no geometrical or mechanical analysis was performed to ensure 

powertrain fit. Thus, the study offers only a conceptual view of potential consumption for this vehicle 

type. Assumptions in adapting technologies across vehicles may limit optimization. Control strategies 

for FCEV and FCEV-Rx models were derived from the E-Segment vehicle, possibly leading to 

suboptimal control. The FCEV-Rx uses a PID controller with a fixed SOC target, which could benefit 

from more advanced strategies to enhance fuel cell efficiency. Finally, software limitations affected 

the L6e’s adherence to driving cycle speeds more than other vehicle segments. Regarding the driving 

cycle generation some deviations in total distance were noticed, although of no compromise as this 

study aim is to determine MJ/km values for the routes.  
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