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Executive Summary

The transition to environmentally responsible land freight transportation is critical to reducing global
emissions. This study investigates energy management strategies (EMSs) for a Fuel Cell Plug-in Hybrid
Electric Vehicle (FC-PHEV) designed for heavy-duty applications. A backward-facing vehicle model is
developed to test several EMSs, including both optimization and rule-based strategies. The EMSs are
evaluated in terms of energy consumption, battery degradation, and fuel cell degradation. The Equivalent
Consumption Minimization Strategy (ECMS) emerged as a promising option, motivating further testing
with a forward-facing model and additional drive cycles. The results show that ECMS can be effective
for a heavy-duty FC-PHEYV, with the average energy consumption from ECMS across five drive cycles
about 1% higher than the consumption from the global optimal solution and 7.5% lower than the con-
sumption from a simple rule-based strategy.

Keywords: Energy Management, Fuel Cell Electric Vehicles, Heavy Duty Electric Vehicles & Buses,
Modeling & Simulation, Plug-in Hybrid Vehicles.

1 Introduction

Current road freight infrastructure relies on burning fossil fuels in internal combustion engines which
produce carbon dioxide (CO;) and other emissions. Road freight contributes to about 7% of global CO,
emissions [1]. These emissions must be reduced or eliminated to mitigate the devastating effects of cli-
mate change and to meet climate targets. Fuel Cell Electric Vehicles (FCEVs), which use a fuel cell
to convert hydrogen into electricity without producing harmful emissions, are a promising alternative.
This paper considers a Fuel Cell Plug-in Hybrid Electric Vehicle (FC-PHEV), which is an FCEVs with
a battery that can be charged directly from the fuel cell, through plug-in charging, and from regenerative
braking. This configuration can also be referred to as a Battery Electric Truck with Fuel Cell Range
Extender (BET-FCRE). Typical Hybrid Electric Vehicles (HEVs) operate in a charge-sustaining mode,
meaning the initial and final battery state of charge (SOC) are similar. PHEVs can operate in either a
charge-sustaining mode, or a charge-depleting mode where the final battery SOC is lower than the initial
battery SOC. The vehicle discussed in this paper operates in a charge-depleting mode and uses a series
hybrid powertrain, meaning the fuel cell and battery each provide power to an electric motor that drives
the vehicle [2].
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Hybrid vehicles use an energy management strategy (EMS) to determine how power sources work to-
gether to provide the required power. In an FC-PHEYV, the EMS controls the battery and fuel cell behav-
ior. Several EMSs are designed, tested, and evaluated for this paper. Further simulations are done with a
subset of the EMSs to quantify effectiveness in additional driving scenarios and to understand the effect
of parameter tuning on energy management.

2 Methods

Drive cycle data from five truck routes is used with two simulation models to test different EMSs. A
backward-facing model is used to compare EMSs while a forward-facing model is used to further eval-
uate the strategy that performed the best with the first model. Both models are FC-PHEVs with proton
exchange membrane fuel cells and large battery capacity.

2.1 Drive cycles

Data for five driving routes pertaining to the foreseen real-life pilot vehicles of the European Union’s
ESCALATE project is used to run simulations and evaluate EMSs [3] (Figure 1). The data includes
vehicle velocity as well as road slope and elevation. This data was processed utilizing VIT’s Smart
eFleet simulation toolbox, adapted for trucks for the ESCALATE project [4][5][6].
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Figure 1: Drive cycle data [3][5].
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2.2 Backward-facing model

First, a backward-facing model is built, rather than a forward-facing model, because it allows for fair
comparison between EMSs [7]. In a forward-facing model, a control loop attempts to provide the re-
quired power. However, the model may sometimes be unable to provide the exact power required, de-
pending on the EMS. For example, if a drive cycle requires sharp acceleration but the EMS does not
provide enough power for the vehicle to produce the necessary torque, the vehicle will accelerate slower.
As aresult, the vehicle performance may differ for the same drive cycle depending on the EMS. Alterna-
tively, a backward-facing model assumes the required power will be provided for all cycles. This ensures
the vehicle dynamics are the same for all EMSs.

MATLAB® Simulink is used to build a backward-facing model of a heavy-duty vehicle with a fuel
cell battery hybrid powertrain, as shown in Figure 2 [8]. The model is designed to represent a pilot
vehicle which is being built for the European Union’s ESCALATE project [3]. The vehicle model uses
velocity and slope data generated using the SeF toolbox (see Figure 1) to calculate the total power demand
[4][5][6]. Key vehicle parameters are shown in Table 1. The energy management system determines
the power request from the fuel cell. The fuel cell power output is as close as possible to the power
request, within physical limits. The battery provides the remaining power. The vehicle, fuel cell, and
energy management models are designed and built for this research, while the battery model is a coupled
electrical equivalent and thermal equivalent circuit model that was developed by Hentunen et al. [9][10].
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Figure 2: Backward-facing model overview [8].

Table 1: Backward-facing model parameters.

Parameter Value

Gross vehicle weight 40 000 kg

Fuel cell maximum power output | 240 kW

Hydrogen tank capacity 58 kg
Battery capacity 497 kWh
Battery nominal voltage 670 V

2.3 Forward-facing model

A forward-facing model is used to further evaluate the best EMS found from the backward-facing sim-
ulations. The forward-facing model is more realistic because it does not assume the vehicle is able to
perfectly follow the drive cycle. This model is similar to the backward-facing model shown in Figure 2,
except that a feedback loop is used to calculate the actual vehicle velocity and input it into the vehicle
model along with the drive cycle velocity. The model used is part of VTT’s Python-based Smart eFleet
simulation toolbox [5]. It is based on the same vehicle as the backward-facing model, but some parame-
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ters are changed because of adjustments to the ESCALATE pilot vehicle design. Notably, the maximum
fuel cell power output is now smaller and the battery capacity is larger (see Table 2).

Table 2: Forward-facing model parameters.

Parameter Value

Gross vehicle weight 40 000 kg

Fuel cell maximum power output | 120 kW

Hydrogen tank capacity 58 kg
Battery capacity 644 kWh
Battery nominal voltage 663 V

2.4 Evaluation metrics

Several EMSs are designed and tested, and their performance is evaluated using three metrics: energy
consumption, fuel cell degradation, and battery degradation. The primary goal of the energy manage-
ment is to minimize the total energy consumed to complete each drive cycle. Total energy consumption
is calculated as the sum of the consumed battery energy and the energy of the consumed hydrogen fuel.

In both models, the tank-to-wheel efficiencies of the two prime mover options are quite different. The
fuel cell efficiency is approximately 40%-60%, which is much lower than the battery efficiency of ap-
proximately 98%. For this reason, the total energy consumption will be lower when more of the required
energy comes from the battery and less comes from the fuel cell. To fairly compare EMSs, the initial and
final battery SOC should be similar for all simulations on a given cycle. Otherwise, a strategy may appear
better if it uses more battery energy, even if its energy management is poor. To address this, an initial
SOC and final SOC target are defined for each cycle. For the cycles A, B, and C, the vehicle simulations
start with the battery SOC at 80% and aim to discharge it to 20%. The final two cycles are longer, so the
SOC starts at 100% and discharges to 15%. However, though the final SOC target is constant between
strategies, that target will not be exactly reached. An adjusted energy consumption is calculated for each
simulation, using the average fuel cell efficiency and battery efficiency to estimate what the total energy
consumption would be if the final SOC target was reached exactly. This adjusted value is used for all
energy consumption results, as it allows for fairer comparison between EMSs.

After energy consumption, the next goals are to minimize the fuel cell and battery degradation. The
primary factor contributing to fuel cell wear is the ramping up and down of the power generation, known
as dynamic loading or load cycling [11]. For this paper, fuel cell degradation is quantified by calculating
the average absolute value of the rate of change of fuel cell power, referred to as fuel cell ramp rate.
Lower average fuel cell ramp rate corresponds to longer fuel cell lifetime. Battery degradation is largely
correlated with the battery charging and discharging rate, with lower rate corresponding to less degrada-
tion and longer battery lifetime. The average magnitude of the battery C-rate is calculated to quantify
this effect on battery lifetime. Lower C-rate correlates with longer battery lifetime. Additional battery
and fuel cell stress factors are out of the scope of this paper.

2.5 Energy management strategies

The basic purpose of the energy management is to decide the power split between the fuel cell and
battery, as shown in (1)

Pdemand = PFC,out + Pbat,outv (1)

where Pjemand 18 the total power demand from the vehicle model and Prc oy and Ppgy_or,: are the power
outputs from the fuel cell and battery, respectively. Since this vehicle is a plug-in hybrid with significant
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battery capacity, the energy management is charge-depleting, meaning the battery SOC drops over the
cycle. Six EMSs are considered, including two offline strategies and four online strategies (see Table 3).
Offline strategies must be tuned in advance, with complete knowledge of the driving cycle. They cannot
be used in real driving scenarios. Online strategies have some parameters that are selected in advance,
but make real-time decisions to manage energy consumption as the route is driven. The online strategies
described in this paper use an SOC error value, which is calculated as the difference between the current
SOC and the target SOC, where the target SOC is calculated as if the battery SOC drops linearly from
the initial to final value throughout the drive cycle, as shown in (2) and (3)

SOCev'ror = SOCcur'rent - SOCtargeta (2)

SOCtarget = SOCinitial - (SOCim'tial - SOCfinal) * & ) (3)

Ltotal

where x is the current distance traveled and x;.;; is the estimate of the total route distance, which all the
online EMSs in this paper require as an input before the drive cycle is started.

Table 3: Energy management strategies.

Constant Fuel Cell Power (CFCP)

Offline strategies
Pontryagin’s Minimum Principle (PMP)

On/Off

Equivalent Consumption Minimization Strategy (ECMS)

Online strategies
PI control (PI)

Nonlinear optimization (NLO)

The offline strategies act as baselines to compare the other strategies against. A basic option is the
Constant Fuel Cell Power (CFCP) strategy. To tune this strategy, simulations are run iteratively with
different constant fuel cell power values until a value is found that results in the battery dropping exactly
to the desired final SOC at the end of the cycle. This EMS is a good baseline for comparison because
it uses the fuel cell in a stable manner. Pontryagin’s Minimum Principle (PMP) is a common offline
optimization-based strategy used to minimize energy consumption in hybrid systems. It uses a cost
function to decide the optimal power split at each step in time, as shown in (4)

HPMP = EH2,consumed + A x Ebat,consumeda (4)

where the cost Hppsp is calculated by summing the hydrogen energy Erro_consumed and battery energy
Ebat consumed While using a coefficient lambda () to define the cost ratio. At each moment in time, there
are multiple ways to provide the vehicle with the power required (1). By minimizing the cost function at
each step in time, PMP not only finds the minimum cost at that moment but also minimizes the cost over
the whole driving cycle. Therefore, this strategy provides the global optimal solution in terms of energy
consumption. The value of lambda is tuned in advance for each drive cycle so that the battery reaches
the final SOC target exactly as the vehicle completes the drive cycle.

The remaining four methods are online strategies, meaning they operate in real-time without advanced
knowledge of the route, except for an estimate of the total route distance. Two of the online strategies
are rule-based. In the On/Off strategy, the fuel cell turns on whenever the SOC error drops too low, and
then turns off when the battery has been sufficiently charged and the SOC error is high. In the PI control
strategy, the fuel cell power output is adjusted based on the SOC error. The final two strategies are
optimization-based. The Equivalent Consumption Minimization Strategy (ECMS) is a common online
EMS based on PMP. ECMS finds the combination of fuel cell and battery use that has the lowest cost,
using the same equation as PMP (4). A PI controller is used in real-time to adjust the cost ratio (\) based
on the SOC error, as shown in (5)
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A = Ninitial — kp * SOCerror — ki * Z SOCerror A, 5
where Aipitiqr 1 a pre-determined initial lambda value and £, and k; are the proportional and integral
gains, respectively. This cost function encourages use of the fuel cell and battery near their highest
efficiency zones. The final strategy is nonlinear optimization (NLO), which takes inspiration from the
nonlinear programming strategy presented by Ferrara et al. [7]. It uses a nonlinear cost function to
simultaneously minimize energy consumption, maximize fuel cell lifetime, maximize battery lifetime,
and keep the SOC near its target, as shown in (3)

PFC - PFC,prev

2
> + w3 (Pbat)2 +wy (SOC - SOCtarget)2 >
(6)

which contains four terms corresponding to the goals of the strategy, each with its own weight coefficient
(w1, wa, ws, and wy) which can be tuned depending on control priorities. The fuel cell efficiency (nrc),
fuel cell power (Pr¢), battery power (P;), and battery SOC (SOC) are inputs to the equation which are
estimated in real-time using equations modeling the system. The maximum possible fuel cell efficiency
(MFC_maz) and sample time (¢4 pie) are known constants and the previous fuel cell power (Prc prev) 18
known from the last time step.

Hxro = w1 (Npc — NFComaz)” + w2 (

tsample

3 Results

The backward-facing model is used to test all six EMSs on drive cycles A and B. Cycle A represents a
one-way journey from Jyviskyld to Vuosaari in Finland, while B represents a round-trip journey from
Jyviskyld to Vuosaari and back to Jyviskyld. For the backward-facing model, all three evaluation metrics
are considered. Results from the online EMSs are show in Figure 3.
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Figure 3: Backward-facing simulation results for online EMSs. On all plots, lower values
are desirable. The scale on the first four plots is truncated to improve readability.
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In terms of energy consumption, the On/Off strategy and ECMS perform best for cycle A, and for cycle
B ECMS and NLO have the lowest consumption. For cycle A, the PI and NLO strategies have the lowest
C-rate, with ECMS close behind. For cycle B, ECMS has the lowest C-rate result. Finally, regarding
the fuel cell ramp rate, the On/Off strategy is best for cycle A and the NLO strategy is best for cycle
B. A spider plot is used to visually compare all three metrics together (Figure 4). In this format, the
best strategy should be represented with a small triangle at the center of each plot. For cycle A, NLO
has the largest triangle and generally appears to be the worst. The other three cycles each have their
own strengths and weaknesses. For cycle B, the On/Off strategy is the worst, while again the other
three strategies each have their own tradeoffs, with NLO being the best with the smallest triangle. If
we eliminate NLO and On/Off since they each performed poorly on one cycle, we are left with PI and
ECMS as candidates for the best strategy. ECMS has lower energy consumption on both cycles. Though
it does have high fuel cell ramp rates, it has low battery C-rates. Minimizing energy consumption is the
primary evaluation goal, so ECMS is deemed the best all-around strategy based on these results.
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Figure 4: Spider plots with backward-facing simulation results for online EMSs. Lower
values on each axis represent desirable results.

Further tests are done to evaluate ECMS using the forward-facing model with all five drive cycles, since
the backward-facing model results point towards ECMS as the best strategy. Fuel cell and battery lifetime
factors are not evaluated for the forward-facing simulations. As designed, the ECMS method requires an
initial lambda value, a proportional gain, and an integral gain. However, testing with the forward-facing
model showed that the integral gain was ineffective and so it is set to zero. An important quality of
an effective EMS is its ability to perform in different scenarios, even without advanced tuning, so the
impact of lambda and the proportional gain on ECMS is investigated. Simulations are run with all five
drive cycles with ten initial lambda values and ten gain values, and the energy consumptions and final
SOC errors are reported. Figure 5 shows these results for drive cycle A. The subplot on the left shows
a strong correlation between the proportional gain and energy consumption, as lower gain values result
in lower energy consumption. However, the subplot on the right shows that final SOC error can become
large if the gain is too small.

These tests are also completed for the other drive cycles, as shown in Figure 6. All energy consump-
tion heat map plots show a correlation between low gain and low energy consumption. There is also a
correlation between higher lambda and higher energy consumption. By definition, higher lambda values
mean the cost of using the battery is higher than the cost of using the fuel cell. Since the fuel cell is
less efficient than the battery, it makes sense that penalizing battery usage increases energy consump-
tion. All SOC error heat map plots show mostly low error, except for with the lowest gain values. To
select parameters for ECMS, the lambda and gain combination that results in the average lowest energy
consumption, while never having an SOC error magnitude of greater than 1%, is selected. The selected
lambda value is 1.8 and the selected gain value is 0.3.
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Figure 5: Heat map of energy consumption and final SOC error based on ECMS parameters, for cycle A.
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Figure 6: ECMS parameter heat maps for cycles B, C, D, and E.
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In addition to ECMS, the PMP, CFCP, and On/Off strategies are evaluated so that ECMS can be compared
with them. Recall that PMP and CFCP are offline strategies that cannot be used in real time since they
must perfectly know the whole route in advance, which is only possible in a simulation. The On/Off
strategy is one of the simplest possible EMSs, so it gives perspective to the ECMS results. Energy
consumption is recorded for each simulation and the results are shown in Figure 7. On average, ECMS
consumed a similar amount of energy as PMP, only 1.1% more energy. Compared to the simple On/Off
rule-based strategy, EMS consumed on average 7.5% less energy. The CFCP strategy performed very
similarly to PMP, consuming only 0.15% more energy on average.
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Figure 7: Forward-facing simulation energy consumption.

4 Discussion

The backward-facing model results indicate that all EMSs have strengths and weaknesses, with each
cycle having the best value for at least one evaluation metric on one cycle. The On/Off strategy has low
average fuel cell ramp rate for both cycles because it operates the fuel cell at a constant rate, except for
when it is turning on and off. However, the C-rate is high because it forces the battery to take care of
transient power demand. The energy consumption depends largely on the pre-defined point that the fuel
cell operates at when it is turned on. While it is not the best overall, this strategy could be a good option
if long fuel cell lifetime is a priority or if a simple rule-based strategy is desired, especially if the fuel
cell set-point can be close to the fuel cell’s maximum efficiency point. The PI strategy results show it
is a good middle-of-the-road strategy. It is either second or third best for all three evaluation metrics on
the two drive cycles, except for the C-rate on cycle A where it ties for the best result. It is a consistent
rule-based strategy, though it performs poorly in terms of energy consumption, which is the primary
evaluation metric.

Cycle B requires more power from the fuel cell because the same amount of battery energy is available
for both cycles, but cycle B requires about twice as much total energy as cycle A. The optimization strate-
gies perform well in these conditions, particularly in terms of energy consumption. ECMS has the lowest
average energy consumption across the cycles and has good C-rate results, but uses the fuel cell aggres-
sively. The NLO strategy performed well for cycle B regarding all evaluation metrics but poorly for
cycle A in terms of energy consumption and fuel cell ramp rate, indicating that strategy selection should
consider route characteristics. The results from all EMSs, especially NLO, depend on how the strategies
are tuned, so perfect comparison is difficult. In particular, the weights used in the NLO equation can
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be adjusted to change the NLO results based on energy management priorities. Furthermore, the evalu-
ation metrics do not consider the higher computational requirements of the optimization-based strategies.

Further testing with the forward-facing model showed that ECMS can be an effective strategy for a va-
riety of driving routes, even when the same lambda and gain parameters are used. The ECMS method
produced results very close to the global optimal solutions found by PMP. If minimizing final SOC error
is not a priority, the ECMS gain parameter could be decreased to further reduce energy consumption.
Also, the results are not very sensitive to the initial lambda value. For example, using a gain of 0.3 with
an initial lambda value of 1.6 or 2.0 (instead of 1.8) results in only a 0.2% change in energy consump-
tion, on average across the five cycles. While significant testing has been done with ECMS in Fuel Cell
Hybrid Electric Vehicles (FC-HEVs) [7][12], the results in this paper show that it can be an effective
strategy for an FC-PHEV.

Additional work could be done to test the PI and NLO strategies using the forward-facing model, includ-
ing parameter tuning analysis. Also, the forward-facing model results (see Figure 7) show that the CFCP
strategy performed very similarly to PMP, so a new online EMS that runs the fuel cell at a more-constant
rate could be developed. This strategy could provide a contrasting alternative to ECMS, which requires
high ramp rates from the fuel cell. The battery and fuel cell lifetime evaluation metrics could also be
improved and included in the forward-facing model evaluation. The C-rate results varied only slightly
between strategies with the largest difference between C rates being only 1.6%. A better model, such as
the battery degradation model developed by Rehan, could be used to quantify degradation [13]. Thermal
management could also be included, such as by incorporating work by Singh et al. [14].

In further work, additional SOC target estimation methods could be developed. The linear estimation
used in this paper worked well for the five drive cycles that were tested but may be less effective when
the driving route is less homogeneous, for example if the truck is driving over a large mountain pass and
requires significantly more energy for a part of the route. In this case, a non-linear SOC target estimation
method could be developed.

Furthermore, all strategies could be tested alongside a digital twin and in various operating conditions,
for example, under cold weather where auxiliaries such as cabin or freight compartment heating require
additional energy. Operational data from the ESCALATE pilot demonstrations could support this analy-
sis. Digital twins could be used to run simulations and suggest EMS parameter updates in real time.

5 Conclusion

This study explored various EMSs for an FC-PHEV operating in a charge-depleting mode. Results
using a backward-facing model were collected to understand which traits make a good EMS and which
strategies are best for different scenarios. Among the strategies tested, ECMS emerged as the most
effective, achieving the lowest average energy consumption. In subsequent studies with the forward-
facing model, ECMS consumed on average only 1.1% more energy than the global optimal solution
found by PMP and 7.5% less energy than a simple rule-based strategy. Previous research has shown that
ECMS can be a good energy management strategy for fuel cell hybrid electric vehicles (FC-HEVs). The
results in this paper show that it can also be an effective and adaptable strategy for a heavy-duty fuel cell
plug-in hybrid electric vehicle (FC-PHEV) operating in a charge depleting mode.
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