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Executive Summary

This paper presents a hybrid framework for real-time parameter prediction in Heavy-Duty Electric Vehicles (HDEVs),
combining physics-based simulations & field test data, Machine Learning (ML), and lookup tables. The framework
covers gear status classification, linear regression-based estimation in a Bayesian setting and a Physics-Informed
Neural Network (PINN) for rolling resistance (C,,), drag coefficient (C;), and energy consumption prediction. By
combining the accuracy of physical models, the speed of ML, and the efficiency of lookup tables, the framework
addresses the computational limitations of traditional simulation approaches. Trained on both simulated and real-
world data, it achieves over 90% gear classification accuracy and delivers low Root Mean Square Error (RMSE)
in energy prediction. Results confirm the hybrid framework’s superior performance over conventional methods,
supporting its application in real-time backend services and onboard vehicle control systems. Future work will

target enhancing generalization across diverse vehicle variants and operating conditions.

Keywords: Heavy Duty electric Vehicles & Buses, Al - Artificial intelligence for EVs, Drive & Propulsion Systems,

Modeling & Simulation, Energy management

1 Introduction

The transportation industry is undergoing a significant transformation toward electrification, with heavy-duty elec-
tric vehicles (HDEVs) playing a central role in achieving decarbonization and sustainability goals. In this context,
accurate and computationally efficient modeling frameworks for key vehicle parameters are essential for vehicle
development, energy optimization, and the deployment of intelligent digital services.

Traditionally, vehicle dynamics are modeled using physics-based methods grounded in Newtonian mechanics.
These models provide high-fidelity insights into energy consumption, gear selection, driveline efficiency, and key
physical parameters such as rolling resistance (C,) and aerodynamic drag coefficient (Cy) [1, 2, 3]. However, the
high computational cost of these simulations limits their applicability in real-time scenarios, such as fleet energy
monitoring, backend services, digital twins, or onboard vehicle control systems.

Machine learning techniques offer a complementary approach by enabling fast predictions after training. However,
despite their speed, these models often lack physical interpretability and require extensive datasets for reliable
performance. Lookup tables, widely used in embedded systems, provide instant outputs but are restricted to
predefined operating conditions, limiting their adaptability to new or unseen scenarios.

Recent research highlights the potential of hybrid modeling approaches that combine physics-based simulations
with data-driven learning. Studies such as [4, 5, 6] have demonstrated the effectiveness of hybrid models in
improving computational efficiency and predictive accuracy. Furthermore, research in vehicle energy management
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[7, 8, 9] has illustrated the benefits of hybrid methods in capturing complex system behaviors. However, most
existing efforts rely on data collected under controlled environments with limited vehicle variants and simplified
road conditions, which constrains their generalization in real-world applications.

To overcome these limitations, this paper proposes a novel hybrid framework that integrates physics-based sim-
ulations, real-world field test data, machine learning methods, and lookup tables. The framework is designed
to handle multiple HDEVs configurations and a variety of environmental conditions, such as road surface and
weather variability. It has applications on three main parameter estimations: (1) gear status prediction formulated
as a classification task, (2) Bayesian linear regression for estimating C,, and Cy, and (3) a Physics-Informed Neural
Network (PINN) for nonlinear energy consumption prediction and dynamic parameter estimation.

The proposed framework addresses the challenge of real-time computation and physical interpretability. It offers
a promising solution for deployment in backend systems, vehicle control strategies, and digital service platforms.

2 Research Questions

2.1 Gear Selection Prediction

Gear selection is traditionally governed by rule-based logic or physics-driven models, which are limited in their
ability to handle large-scale real-time applications. To improve prediction speed while maintaining accuracy, this
study considers gear status estimation as a classification problem. In this context, the primary research question
becomes:

* Can supervised machine learning models, trained on simulation-generated data, accurately predict gear status
across different vehicle configurations, environment conditions, and driving scenarios, while maintaining the
interpretability and reliability of traditional approaches?

2.2 Bayesian Linear Regression

As tabular reference values of C, and Cy, experimentally determined at test sites under various settings, are in-
dicative of the true coefficient values for similar driving conditions, they provide useful information for making
predictions about energy consumption. At the same time, various uncertainties that are impossible to account for
at test sites may have a significant affect. Therefore, under the assumption that energy consumption is linear in
these two coefficients, we set out to test the following:

» Can Bayesian linear regression, with tabular reference values for C,. and C; as priors, provide an effective
hybrid tabular/data-driven approach for identifying the true coefficient values, in order to accurately predict
future energy consumption?

2.3 Non-Linear PINN Regression

The vehicle’s energy consumption is inherently nonlinear due to dynamic interactions between the driveline, road,
weather conditions, and control systems. Classical models struggle to capture these complexities in real-time,
prompting a shift toward neural-network-based modeling. This study investigates the use of PINNs to bridge
data-driven learning with physical laws. Our core research question is:

* Can a PINN, trained on real-world field test measured data, improve the accuracy and generalization of
energy consumption predictions in HDEVs over traditional physics-based models, while enabling faster
inference suitable for backend services?

3 Methodology

The proposed hybrid framework for predicting vehicle parameters in HDEVs integrates three modeling approaches:
physics-based simulations & empirical field test data, machine learning (ML), and lookup tables. This multi-
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layered architecture is designed to optimize both accuracy and computational efficiency across diverse driving
conditions and vehicle configurations.

Figure 1 provides an overview of the framework. It illustrates how field test data and simulations are used to
train three levels of ML models: a classification model for predicting gear status and driveline efficiency; a linear
regression model for estimating C,, Cy4, and energy consumption; and a nonlinear PINN for high-fidelity energy
prediction and dynamic coefficient estimation. Lookup tables complement the ML models by enabling rapid access
to calibrated efficiency values in known conditions and tabular reference coefficients.

Physics- | Machine
based | Learning Lookup tables
simulation & | (ML)
Field testdata | techniques
Classification Gear,
prediction efficiency

Linear Regression >E”ergy Consumption,

Crr, Cd
Non-linear Energy Consumption,
Regression: PINN Crr,Cd

Figure 1: Overview of the hybrid framework.

The following subsections detail the application of this hybrid framework in our vehicle parameter prediction in
HDEVs work.

3.1 Gear Selection as a Classification Problem

To predict gear selection in HDEVs, a data-driven classification model was developed using a combination of
physics-based simulations and real-world field data. The simulations covered a wide spectrum of vehicle config-
urations, payloads, road slopes, and operating conditions to ensure comprehensive representation of the driving
scenarios. Real-world data was incorporated to capture variability due to weather, surface type, and transient
vehicle behaviors that are often underrepresented in simulations.

The key input features included vehicle speed, requested torque, and vehicle mass, selected based on domain
knowledge from powertrain control systems. To address class imbalances across gear levels, weighted balancing
techniques were applied during model training, ensuring fair representation of all operating modes.

Several classification algorithms were evaluated to identify the best trade-off between accuracy, interpretability,
and computational efficiency. Decision trees offered simplicity and transparency through recursive feature parti-
tioning. K-nearest neighbors (KNN) classified samples based on proximity in the feature space without imposing
parametric assumptions. Random forests, by aggregating multiple decision trees, enhanced generalization and
reduced variance. Gradient boosting machines (GBM) sequentially refined weak learners to minimize prediction
errors and ultimately delivered the highest overall performance.

Through systematic hyperparameter optimization and cross-validation, GBM was selected as the final classifier,
offering a strong balance between prediction accuracy and computational efficiency.

The performance of the gear prediction module was evaluated using two metrics. First, prediction accuracy was
measured by comparing predicted gear classes against ground truth values derived from the simulation model.
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Accuracy was defined as:
YO TR
C (TP +TN;+FP+FN,)

(D

Accuracy =

where C is the total number of gear classes, and TP, TN;, FP;, and F N; represent the true positives, true negatives,
false positives, and false negatives for each class i, respectively.

Second, computational efficiency was assessed using wall clock time, representing the total time taken to complete
predictions. This metric is particularly important for backend and embedded applications where rapid inference is
required.

Once the gear prediction is completed, the estimated gear status is used to reference a detailed lookup table (cali-
bration map) that links speed, torque, and gear to driveline efficiency.

This driveline efficiency estimation is critical for accurate downstream energy consumption prediction, this ensures
the hybrid framework is adaptable to both simulated environments and real-world operations, while remaining
extensible as new data becomes available.

3.2 Bayesian Linear Regression for Energy Prediction

3.2.1 Vehicle Energy Dynamics Formulation

Accurate and interpretable energy prediction in HDEVs begins with a reliable representation of longitudinal vehicle
dynamics. As illustrated in Figure 2, the longitudinal motion of the vehicle is influenced by multiple forces.

According to Newton’s second law [1], the net force acting on the vehicle is equal to the product of its mass and
acceleration, and can be expressed as:

F,=F,—(F,+F+F) 2)

Faq )

Figure 2: Free-body diagram of a vehicle on an incline showing longitudinal forces.

In this equation, F,, = ma denotes the net acceleration force, where m is the vehicle mass and a is its acceleration.
The term F,, represents the traction force generated at the wheels. The gravitational force due to road inclination,
F,, is given by mgsin 6, where g the gravitational acceleration and 6 is the road slope angle. Rolling resistance
force F; is modeled as mgC,,cos 0, with C,, being the rolling resistance coefficient. Finally, the aerodynamic drag
force Fy is expressed as % pC,Av?, where p is the air density, C, is the drag coefficient, A is the frontal area, and v
is the vehicle velocity.

Substituting these expressions into the original equation yields the total wheel traction force required to maintain
or change vehicle speed:

1
F, = ma+mgsin 0 + mgC,,cos 0 + ECdApv2 3)

This force-based formulation provides the physical foundation for modeling energy consumption. To estimate
energy usage over a route, the wheel force is multiplied by the vehicle speed and integrated over time, which
corresponds to the distance traveled. For practical implementation, the route is divided into small segments of
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length d, during which force is assumed constant. The energy required at the wheels over a segment is then
calculated as:

2,2
. 1 vi+ vy
ey, = mad +mgd sin 0 + mgC,,d cos 0 + ECdApd ( > ) 4)
where v; and v are the initial and final speeds over the segment, and a is the average acceleration.

The net energy consumption or regeneration e is calculated by incorporating the driveline efficiency 77, which
accounts for all energy losses from the electric motor through to the wheels. This is expressed as:

p .

v ife, >0

e = q %00m . (5)
2600 otherwise

Here, 1 is obtained from gear- and torque-specific calibration maps. The factor of 3600 converts energy from
Joules to Watt-hours (Wh), the standard unit for vehicle energy consumption modeling.

3.2.2 Bayesian Linear Regression

Considering the model for vehicle energy dynamics described in 3.2.1, we observe that the energy consumption
depend linearly on the coefficients of rolling resistance C, and air drag C,; respectively. With these values known,
we could calculate the energy consumption over a road segment driven retrospectively, given that all other param-
eters in the model are directly measurable from the vehicle or road. Therefore, these values are important to know
in order to make future predictions of energy consumption with the model.

Tabular values for the coefficients, obtained through thorough experiments at test sites, provide a rough estimate of
what the values should be. However, the coefficients may also depend on vehicle- and road specific circumstances
that such experiments are not able to account for.

As a way of incorporating the knowledge attained through controlled experiments, while also accounting for the
uncertainties related to the current vehicle and road conditions, we apply Bayesian linear regression [10] to the
problem of determining C,, and Cj.

Compared with ordinary least squares linear regression [11], Bayesian linear regression considers the regression
coefficients as random variables. Following the Bayesian framework, these coefficients are reported in terms of
posterior probabilities, as a combination of a prior distribution and data samples. This is neat in our case, as it lets
us use experimentally determined values for C,- and C, reported in reference tables to specify the prior means and
variances of the coefficients. As we collect data while driving, the coefficient distributions are then updated through
calculations of the posterior. Using informative priors as is this case, Bayesian linear regression is generally more
robust to noise and outliers in the data, and learns quicker with less data.

To test and evaluate the Bayesian linear regression approach to energy prediction, we consider four different truck
models, each with their own experimentally determined C,, and C; values. Hence, we must learn four different
Bayesian linear regression models, one for each truck. We let all of the trucks drive multiple laps around the same
test track, providing data for our four models. For each trip, we consider the first half of it as calibration, and use
the data collected as training data to fit the corresponding Bayesian linear regression model. Then, for the second
half of the trips, we assume that we know what all of the measurable parameters in the energy model in 3.2.1 will
be, using their true logged values. Now, we apply the energy model with the (1) values found with Bayesian linear
regression and (2) tabular values, to predict what the energy consumption for the second half of the trip will be.

To compare the performance of the two variations, we calculate the Root Mean Square Error (RMSE) on the
predictions at a road segment level, and the Percent Error (PE) on the full trip.

RMSE is calculated as
Yi (ei— &)

RMSE = ,
N

(6)

where ¢; is the true and é; the predicted energy consumption, while N is the total number of data points.
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3.3 Non-Linear PINN for Energy Prediction

To accurately estimate energy consumption under complex, real-world conditions, this study employs a PINN.
For instance, rolling resistance is unlikely to be constant over a whole route, which is assumed in the previously
described Bayesian linear regression framework. Unlike purely data-driven models, PINNs incorporate governing
physical laws into the training process, allowing for robust predictions that remain consistent with underlying
vehicle dynamics. This hybrid learning approach enhances model generalization and mitigates overfitting when
data is sparse or noisy.

3.3.1 Physics-Informed Neural Networks

Artificial neural networks are powerful tools capable of approximating complex nonlinear functions, as demon-
strated by the Universal Approximation Theorem [12]. This foundational theory states that a sufficiently wide
neural network with nonlinear activation functions can approximate any continuous function on a compact domain
to arbitrary accuracy [13]. A typical example is shown in Figure 3, where the network receives a vector of in-
put features, processes them through hidden layers using nonlinear activation functions, and updates weights via
backpropagation to produce an output.

hidden layers
Activation propagation

input layer / \output layer

Y

Error backpropagation

Figure 3: Illustration of a feedforward neural network.

While conventional neural networks serve as flexible function approximators, they often operate as black-box
models, lacking transparency and interpretability—especially when applied to systems governed by physical laws.
PINNs address this limitation by embedding known physical relationships into the training process. This approach
transforms the neural network from a purely data-driven tool into one that respects and reflects the structure of
physical systems.

PINNS, introduced by Raissi et al. (2017-2019) [14, 15, 16], bridge data-driven learning and physics-based mod-
eling. Rather than learning solely from data, PINNs are trained using a composite loss function that includes both
a data fidelity term and a physics consistency term. This ensures that predictions not only fit observed data but also
conform to governing physical laws, such as ordinary or partial differential equations.

By penalizing deviations from these laws during training, PINNs provide a more robust and interpretable learning
framework. This integration enhances model generalization, particularly in scenarios with limited or noisy data,
and ensures physical plausibility of the outputs. For applications such as vehicle energy prediction, where sys-
tem dynamics are governed by well-established principles like Newtonian mechanics, PINNs enable accurate and
physically consistent modeling that outperforms purely data-driven approaches.
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3.3.2 PINN Architecture and Training

The PINN architecture was developed to learn both energy consumptions and physically meaningful coefficients
from extensive real-world field test data. To ensure generalization, the model was trained on a diverse dataset
that included over 20 truck variants and more than 5,000 routes, representing a wide range of real-world driving
conditions and environmental scenarios. Data was at road segment level and collected with constant field data
frequency, yielding over 550,000 samples, which were split into 70% training, 15% validation, and 15% test sets.

Key input features were selected through domain-informed feature engineering and include vehicle speed, mass,
and road inclination. The primary prediction target is measured energy consumption, while another prediction
branch outputs consist of C,- and C, coefficients.

The network consists of two fully connected hidden layers with 256 and 128 neurons, respectively. Each layer
uses ReLU activation, followed by batch normalization and a dropout layer with a dropout rate of 0.1 to prevent
overfitting. The model architecture includes two output branches: One for predicting energy residuals and another
for predicting physical coefficients.

An overview of the model architecture is shown in Figure 4, which outlines the input layer, hidden layers, dual
outputs, and the integrated loss formulation.

hidden layers
Activation propagation

Error backpropagation |

Loss = A1*MSE(E_data, E_pred) +A2 *MSE(E_data, E_physics)+
A3 -(Loss Crr ,reg +Loss CdA ,reg )
E_physics = mad+mgdsin@+mgdCr cos8+0,5Cd Apd((v_i*2+v_f"2)/2)

Figure 4: Illustration of the PINN architecture.

The model was optimized using the Adam optimizer with an initial learning rate of 0.005. A ReduceLROnPlateau
scheduler was used to dynamically adjust the learning rate based on validation loss. The total loss function incor-
porates data fidelity, physical consistency, and coefficient regularization:

foss = ;Ll 'MSE(EdatavEpred) + l2 : MSE(EdataaEphysics) + l3 : (LOSSC” + LOSSCdA) (7

Here, Eqat, is the measured energy consumption, Epeq is the energy residual predicted by the network, and Eppysics
is the energy calculated using the physics-based equation (4) using the predicted coefficients C,, and C;A that
incorporates acceleration, gravity , rolling resistance, and aerodynamic drag. The coefficients C,, and CzA are
constrained within physically meaningful bounds: C,, using a scaled sigmoid function within (0, 0.02], and C;A
using dynamic clamping around reference values.

Loss weights were empirically set to A; = 1.0, 4; = 0.1, and A3 = 0.01 to maintain a balance between fitting
observed data and adhering to physical laws.

This architecture enables simultaneous data-driven learning and physics enforcement, offering reliable, real-time
energy estimation capabilities for HDEV applications.
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To evaluate model performance, two key metrics the same as 3.2.2 were used. RMSE was computed over individual
road segments to assess local prediction accuracy, while PE was calculated over complete all trips to measure
cumulative deviation from actual energy consumption. These metrics provide a balanced view of both short-term
precision and long-term energy estimation performance.

4 Results and Discussion

4.1 Gear Selection Prediction

As discussed in Section 3.1, the GBM algorithm outperformed other classification methods and was selected
for deployment due to its strong trade-off between prediction accuracy and computational efficiency. Using the
processed dataset, the GBM model achieved over 90% accuracy in predicting gear status, as benchmarked against
the physics-based simulation model, which served as the baseline.

Figure 5 compares gear predictions between the physics-based model and the hybrid ML framework, showing high
correlation across diverse driving conditions. It is worth noting that predictions were made independently at each
time step, rather than as a continuous time-series. Despite this, the model demonstrated robust performance and
the system’s execution time remained within milliseconds, making it suitable for real-time backend or onboard
applications.

129 Truth
11 Prediction
10
o 9
=
g s
6
5

0 2000 4000 6000 8000 100001200014000
Index

Figure 5: Comparison of gear status between physics-based model and hybrid framework prediction

4.2 Bayesian Linear Regression

The results of the energy consumption prediction using the model described in 3.2.1, using tabular reference values
determined through controlled experiments, and Bayesian linear regression respectively, as described in 3.2.2, are
shown in table 1.

Table 1: RMSE on road segments, and PE on the full trips, in the prediction of energy consumption using model
with C, and C; obtained through Bayesian Linear Regression and with tables across four different truck models
on a test route.

Truck Model A Truck Model B Truck Model C Truck Model D
Metric Bayesian Tabular Bayesian Tabular Bayesian Tabular Bayesian Tabular
RMSE (Wh) 8.69 9.63 543 5.19 8.80 9.39 8.98 14.3
PE (%) 0.0540 -15.5 0.173 -5.18 -5.56 -7.25 -5.06 34.1

From the results, we can observe that on a road segment level, the Bayesian linear regression method performs
similar to or better than the tabular reference method for 3 of the trucks, as measured by the RMSE . For the 4th
truck model, it performs significantly better.

The most striking difference, however, is seen on a full route level, where Bayesian linear regression is shown to
result in a much more accurate energy prediction. A reason for the relatively large error for both models on a road
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segment level is that the rolling resistance coefficient may not be the same for all segments, as the model assumes. It
is interesting to note that the Bayesian linear regression method still tend to find good average values, for which the
over- and under-predictions cancel out to a large extent for the full trip energy consumption predictions. The same
does not appear to be the case for the tabular method with coefficients determined through controlled experiments.

4.3 Non-Linear PINN Regression

The performance of the PINN was evaluated across all HDEV variants introduced in Section 3.3.2. Table 2 presents
a comparative summary of energy prediction accuracy between the PINN and two physics-based baselines: one

using dynamically predicted coefficients (C,, Cz), and another using predefined tabular values (C;ﬁf , C;ef ) derived
from controlled tests.

Table 2: Comparison of energy prediction performance across models

Metric PINN Physics-Based (Predicted C,,,C;) Physics-Based (Tabular C1¢/, C:ff )
RMSE (Wh) 5.78 7.54 11.57
PE (%) -11.7 -10.0 -40.4

As shown in Table 2, the PINN achieved the lowest RMSE and PE, indicating superior accuracy and generalization
across diverse driving scenarios. Notably, both the PINN and the physics-based model using predicted coefficients
outperformed the tabular reference model, highlighting the benefit of using dynamic, route-specific parameter
estimation.

Beyond energy prediction, the PINN framework also provides interpretable physical parameters. It estimates both
the C,, and the aerodynamic drag term (C,A), offering additional insight into vehicle behavior under varying
conditions.

Figure 6 presents the distribution of predicted C,, values for four representative truck models. For Models A and B,
many predictions cluster at the upper boundary, suggesting either limitations in model expressiveness or coefficient
saturation during training. In contrast, Models C and D show broader distributions and lower medians, indicating
better discrimination by the PINN. Compared to fixed reference values (shown in red), the predicted C,, reflects
realistic variability due to environmental and operational factors.

Predicted Rolling Resistance Coefficient (Crr) by Truck Model
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Figure 6: Boxplot of predicted rolling resistance coefficient C,, across four truck models.

Similarly, Figure 7 illustrates the predicted C;A values across the same truck models. Models A and B tend to
produce more conservative estimates compared to the reference. Model C demonstrates higher variance and better
alignment with tabular values, while Model D shows a compact distribution with several high outliers. These
variations suggest that the PINN effectively captures the influence of factors such as vehicle speed, frontal area,
and wind resistance under real-world conditions.
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Predicted Drag Coefficient x Frontal Area (CdA) by Truck Model
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Figure 7: Boxplot of predicted aerodynamic coefficient CyA across four truck models.

These results demonstrate that the PINN not only provides accurate energy predictions but also yields interpretable
physical insights, reinforcing its suitability for real-time, data-driven energy prediction in energy monitoring and
vehicle calibration tasks.

5 Conclusion

This paper presented a novel hybrid framework for the classification and estimation of both linear and non-linear
vehicle parameters in HDEVs. The framework integrates physics-based modeling, field test data, machine learning,
and lookup tables to enable fast and interpretable predictions suitable for real-time applications.

We demonstrated the application of this framework in three key areas: gear selection via classification models,
coefficient estimation of C,, and C; through linear regression, and direct energy prediction using a PINN. Each
method was supported by simulation and real-world data, ensuring robustness and physical consistency. In particu-
lar, the PINN model effectively bridged physical modeling and data-driven learning, enabling flexible and accurate
energy predictions while preserving interpretability.

The results confirmed the strength of the hybrid approach in delivering high prediction accuracy and computational
efficiency across various tasks. Future work will explore extending this framework to additional vehicle param-
eters, such as vehicle mass, and enhancing its generalization across diverse vehicle configurations and operating
environments.
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