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Executive Summary

The rise of bi-directional Electric Vehicles (EVs) offers new opportunities for optimizing energy usage
in workplace environments. However, existing studies often overlook the psychological impact of bi-
directional charging anxiety (BDCA) on user satisfaction, which can hinder employee participation in
bi-directional charging programs. To address this gap, we conducted a comprehensive survey among
industry, government, and research institute partners in Germany to model BDCA and classify users into
four distinct anxiety patterns: Low, Linear, Exponential, and High anxiety. We formulated the problem
as a Mixed-Integer Quadratically Constrained Programming (MIQCP) optimization model aimed at min-
imizing costs while addressing user concerns. Our model shows a significant increase in user satisfaction
without compromising costs. By integrating user preferences through surveys into optimization models,
we facilitate the adoption of bi-directional charging and ensure a smoother transition to this technology.

Keywords Electric Vehicle, Smart Charging, Charging Anxiety, Bi-Directional, MIQCP.

1 Introduction
Electric vehicles (EVs) have emerged as a pivotal solution in the fight against climate change, signifi-
cantly contributing to the reduction of greenhouse gas emissions and the promotion of sustainable energy
use [1, 2]. As global EV adoption accelerates, understanding the psychological barriers that affect user
behavior, such as range anxiety and time anxiety, becomes increasingly important [3]. Range anxiety
refers to the fear of depleting battery power before reaching a charging station [4], while time anxiety
encompasses concerns about not having sufficient charge to meet immediate needs, especially during un-
expected circumstances [5]. These anxieties can significantly influence charging behaviors, often leading
users to adopt overly conservative charging strategies that may not align with optimal energy manage-
ment practices.
The introduction of bi-directional charging—such as Vehicle-to-Home (V2H) and Vehicle-to-Grid (V2G)
[6]—adds further complexity for users, introducing uncertainties that heighten user anxieties around
optimal charging times and discharging decisions [7].
This research introduces bi-directional charging anxiety (BDCA), the uncertainty and stress users face
when managing EV charging and discharging. Addressing BDCA is essential for EV adoption, especially
in workplaces where employees may hesitate to join bi-directional charging programs due to this anxiety.
While current studies focus on technical and economic aspects of charging optimization, psychological
factors remain largely overlooked.
To better understand the challenges of bi-directional charging, particularly its technical and psychological
dimensions, we review key literature exploring these themes.
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Bi-directional charging technology offers significant potential for cost reduction, peak shaving, and re-
newable energy integration. While several studies have explored bi-directional charging in various con-
texts focusing on optimization that covers its technical feasibility and potential economic benefits [8, 3],
less attention has been given to its integration in workplace environments with centralized control sys-
tems. This represents a key limitation, as EV fleets can generate substantial energy flows during specific
periods. With proper optimization and management, these flows present significant opportunities for im-
proving energy use and enhancing grid stability. For instance, [9] highlights the importance of real-time
optimization, integrating V2G and bi-directional capabilities to manage charging demands and uncer-
tainties while maximizing renewable energy utilization. Moreover, [10] presents a flexible methodology
for sizing photovoltaic-powered Electric Vehicle Charging Stations (PVCS), optimizing PV plant size
and charging strategies. This approach is ideal for workplace EV fleets.
In addition to the technical challenges, psychological factors influencing EV users’ behavior have also
been investigated. As a case in point, [11] introduces an energy scheduling method that integrates range
anxiety as a cost factor in smart grids, promoting wider participation in V2G systems while optimizing
energy usage and reducing expenses. In contrast, [12] focuses on developing a charging station model
that balances psychological and practical factors, aiming to reduce both investment and user costs. To
further address range anxiety, [13] applies deep reinforcement learning to manage charging behaviors,
factoring in user preferences around State Of Charge (SoC) gaps to enhance user experience. Further-
more, time anxiety has emerged as a critical factor. [5] categorizes EV users into four behavioral types
and introduces an advance EV charging station management framework, formulating the charging prob-
lem as a non-cooperative game that minimizes costs while accounting for different levels of time anxiety.

Research Objective and contributions: This research aims to develop a cost-effective, user-centered
bi-directional charging strategy that addresses BCDA while handling power peaks and optimizing re-
newable energy use. The contributions of this research are as follows:

1. Models and classifies EV users into four distinct BDCA patterns based on their charging behavior
and preferences.

2. Develops a bi-directional charging strategy that reduces BDCA, optimizes energy flow, supports
peak shaving, and enhances PV utilization.

3. Evaluates the system’s scalability and adaptability to different EV numbers, energy loads, and
renewable energy capacities in workplace settings.

4. Supports sustainable energy transitions by aligning energy management with user behavior and
preferences.

Research approach: This research follows these key steps:

• Survey: A survey was conducted to gather real-world data on EV users’ charging behaviors and
preferences. This data was analyzed and modeled to classify users into distinct BDCA patterns
using multinomial logistic regression.

• Optimization: Mixed Integer Quadratically Constrained Programming (MIQCP) optimization is
applied to balance costs and user preferences, reducing BDCA and improving satisfaction through
efficient energy flow management.

2 Scenario
Our study focuses on a corporate workplace. Key elements include:

• Charging Stations: The workplace is equipped with bi-directional charging stations ranging from
4 to 22 kW, enabling EVs to both charge and discharge power back to the building.

• EVs: EV arrival and departure times follow a normal distribution, with a mean of 08:00 for arrivals
and 17:00 for departures, allowing for up to one hour of variation. All EVs have bi-directional
charging capabilities.

• PV System: The on-site PV system generates renewable energy, reducing grid reliance. Genera-
tion data is based on weather conditions in Dresden, Germany, during a typical summer day and
scaled to match the corporate workplace’s load.

• Load: Load data is drawn from real consumption patterns at a corporate workplace in Dresden,
Germany, aligned with the PV generation data to create a realistic demand scenario.

• Energy Costs: Electricity prices are based on historical intraday market data, with a constant price
applied in each 15-minute timeslot. Energy costs are calculated based on total energy consumption
or export.
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• Power Network Hierarchy: The corporate workplace’s power network is modeled as a hierarchi-
cal fuse tree, with each node representing a fuse that connects to other nodes, charging stations, or
the PV system.

• Planning and Optimization: EV user behavior data, including initial SoC, estimated departure
time, and user preferences (categorized into anxiety patterns from the survey data), is used to
optimize charging schedules, minimize costs, enable peak shaving, and ensure user satisfaction.

This scenario enables the modeling of realistic energy consumption profiles and charging behaviors,
offering a solid framework for analyzing and optimizing energy distribution in corporate workplace
settings.

3 Method

3.1 Survey Design and Data Collection
The study aimed to explore concerns around managing EV charging and discharging schedules during
office hours at corporate locations. The survey was developed after a detailed review of relevant liter-
ature [5], [7], [14] and the authors’ field observations to ensure the questions aligned with the study’s
objectives.
The survey was distributed to employees across industry, government, and research institute partners in
Germany, known for their interest in EVs and smart charging. It garnered 149 valid responses, with
around 34% of respondents having more than a year of experience with EVs, and approximately 75%
familiar with V2G programs. This familiarity likely influenced their responses, particularly in terms of
charging preferences and comfort with advanced charging strategies, which played a key role in analyz-
ing BDCA patterns.
Structured into five key sections, the survey’s first section collected demographic information, includ-
ing gender, age, and education levels, while the second section focused on participants’ EV experience
and usage, specifically covering daily commute distances, EV experience duration, and the frequency
of workplace charging. The third section explored charging preferences and awareness by evaluating
respondents’ charging goals and preferred charging times. The fourth section assessed participants’ fa-
miliarity with V2G technology and their comfort with participating in bi-directional charging programs.
Lastly, the fifth section captured timing concerns related to EV charging and discharging about the bat-
tery status throughout the workday.
Based on the responses in the fifth key section, participants were classified into four BDCA patterns, as
shown in Fig. 1. These patterns were defined as described below:

• Linear Anxiety 38.9%: Anxiety increases steadily throughout the workday, with a preference for
a gradual rise in charging capacity as the day progresses.

• Exponential Anxiety 28.2%: Anxiety rises slowly at first but spikes sharply closer to departure
time, prompting a preference for faster charging in the late afternoon to alleviate concerns.

• High Anxiety 23.5%: Persistent concern about SoC requires consistent access to charging to
ensure they won’t run out of power.

• Low Anxiety 9.40%: Low, consistent anxiety throughout the day, with confidence that the SoC
will meet their needs by the end of the day.

Figure 1: BDCA Patterns Progression Based on Survey.
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The data were analyzed using a multinomial logistic regression model (MNL) [15], with maximum
likelihood estimation (MLE) employed to estimate the model parameters. This approach allowed us
to treat each anxiety pattern as distinct categories. The model coefficients quantify the influence of
demographic factors, EV experience and usage, as well as charging preferences and familiarity with
V2G technology on the likelihood of being classified into one of the anxiety patterns. For each category,
the model calculates the log-odds of belonging to that category relative to the reference category, as
shown in (1):

Logit(P (Y = Ci)) = log

(
P (Y = Ci)

P (Y = Cref)

)
= αi + β1x1 + · · ·+ βmxm (1)

Where P (Y = Ci) indicates the probability of being in category Ci (Low Anxiety, Linear Anxiety, or
Exponential Anxiety), P (Y = Cref) is the probability of being in the reference category (High Anxiety),
αi presents the intercept for category Ci, and β1, β2, . . . βm are the coefficients for the independent
variables x1, x2, . . . xm.
The log-odds for each category, such as Low Anxiety (ALow), Linear Anxiety (ALin), and Exponential
Anxiety (AExp), are computed using similar equations.
To enhance model interpretability, we initially fitted the model using all available features. Variables with
a Variance Inflation Factor (VIF) above 10 and non-significant p-values, such as gender, age groups, and
education levels, were excluded to mitigate multicollinearity. The model was then refitted using only
significant predictors. To ensure the validity of the model, we performed the Independence of Irrelevant
Alternatives (IIA) test, confirming that irrelevant options did not affect the choice probabilities.
Table 1 shows the coefficients for each independent variable across the four BDCA patterns from the
MNL. These coefficients indicate the log-odds of belonging to a specific pattern relative to High Anxiety,
as noted here:

• Positive Coefficients: A positive coefficient indicates that an increase in the variable raises the
likelihood of being classified into that BDCA pattern relative to High Anxiety. For example, a
coefficient of 1.92 for Low Anxiety suggests that more EV experience increases the likelihood of
belonging to the Low Anxiety pattern.

• Negative Coefficients: A negative coefficient suggests that as the variable increases, the likelihood
of being classified into that BDCA pattern decreases relative to High Anxiety. For instance, a
coefficient of -2.54 for Low Anxiety with respect to Charging Importance in the Late Afternoon
indicates that as late afternoon charging becomes more important, individuals are less likely to
belong to the Low Anxiety pattern.

The intercepts (α1, α2, α3) are -1.75, 1.35, and 0.28 for Low Anxiety, Linear Anxiety, and Exponential
Anxiety, respectively. These values represent the baseline log-odds for each category compared to the
reference category when all other variables are held constant.
According to Table 1, the log-odds of belonging to each category are calculated as in (2) - (4):
For Low Anxiety:

Logit(P (ALow)) = −1.75− 0.3x1 + 1.92x2 + · · · − 1.18x9 (2)

For Linear Anxiety:

Logit(P (ALin)) = 1.35− 0.28x1 − 1.75x2 + · · · − 0.82x9 (3)

For Exponential Anxiety:

Logit(P (AExp)) = 0.28− 0.53x1 − 0.66x2 + · · ·+ 0.72x9 (4)

The softmax function is applied to convert the log-odds of each category into probabilities [16]. This
ensures that the probabilities for all categories sum to 1, making them interpretable as likelihoods or
percentages. The softmax formula for the probability of belonging to a particular category Ci is shown
in (5):

P (Y = Ci) =
eLogit(P (Y=Ci))

eLogit(P (ALow)) + eLogit(P (ALin)) + eLogit(P (AExp)) + 1
(5)
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Table 1: Coefficients and Numerical Labels of Independent Variables for BDCA patterns in the MNL Model

Independent Variable Numerical Label Description Low
Anxiety

Linear
Anxiety Exponential

Anxiety

High
Anxiety

Daily commute (x1) 1 = ≤ 5 km, 2 = 5-11 km, 3 = 11-24
km, 4 = 24-40 km, 5 = ≥ 40 km

-0.30 -0.28 -0.53 1.18

EV experience (x2) 1 = No experience, 2 = ≤ 1 Year, 3
= 1-3 years, 4 = 3-5 years, 5 = > 5
years

1.92 -1.75 -0.66 -0.4

Frequently charging at
workplace (x3)

1 = Never, 2 = Rarely , 3 = Occa-
sionally, 4 = Often, 5 = Daily

-1.44 0.28 1.4 -0.25

Charging importance to full
capacity (x4)

1 = Not important, 2 = Slightly im-
portant, 3 = Moderately important,
4 = Very important, 5 = Extremely
important

-0.256 -0.45 0.67 3.35

Charging importance in
morning (x5)

1 = Not important, 2 = Slightly im-
portant, 3 = Moderately important,
4 = Very important, 5 = Extremely
important

-1.45 0.24 -1.33 1.23

Charging importance in
midday (x6)

1 = Not important, 2 = Slightly im-
portant, 3 = Moderately important,
4 = Very important, 5 = Extremely
important

-1.45 0.96 0.23 1.12

Charging importance in late
afternoon (x7)

1 = Not important, 2 = Slightly im-
portant, 3 = Moderately important,
4 = Very important, 5 = Extremely
important

-2.54 -0.47 1.68 2.65

Awareness of V2G pro-
grams (x8)

1 = Not aware, 2 = Slightly aware,
3 = Moderately aware, 4 = Very
aware, 5 = Extremely aware

1.21 0.27 0.15 -0.78

Comfort with system
scheduling charging ses-
sions (x9)

1 = Very comfortable, 2 = Some-
what comfortable, 3 = Neutral, 4 =
Somewhat uncomfortable, 5 = Very
uncomfortable

-1.18 -0.82 0.72 1.37

Here, eLogit(P (Y=Ci)) represents the exponentiated log-odds for category Ci, and the denominator sums
the exponentiated log-odds for all categories, normalizing the result into a valid probability distribution.
The softmax function enables us to predict the probability of a participant falling into each category
based on their independent variables, providing a clear and interpretable model for classifying BDCA
patterns. The anxiety experienced by EV users tends to increase as they approach their departure time.
To model this time-based progression, we use a normalized time variable Tn(t) as defined in (6), which
tracks the relative position of the current time t within the workday.

Tn(t) = min

(
max

(
t− ta
td − ta

, 0

)
, 1

)
(6)

Where ta represents the EV’s arrival time and td its departure time. The BDCA at any given time t,
denoted as An,t in (7), is modeled for different anxiety patterns.
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An,t =


Amin for Low Anxiety
Amax × Tn(t) for Linear Anxiety

Amax ×
(
eTn(t)−1

e−1

)
for Exponential Anxiety

Amax for High Anxiety

(7)

Here, Amin and Amax represent the minimum and maximum BDCA thresholds, respectively.
The normalized BDCA for each EV at time t is given in (8):

Anorm
n,t = Amin + (Amax −Amin)×

An,t −Amin

Amax −Amin
(8)

To reflect realistic psychological states, these BDCA thresholds are normalized to a range of 0.2 to 0.8.

3.2 MIQCP Optimization Model
In this work, we formulate a MIQCP problem aimed at minimizing both the cost and BDCA related
to time constraints, while ensuring that peak power remains within a specified range and meeting the
charging needs of EVs. Table 2 outlines the parameters and decision variables used in the MIQCP
formulation, with a total of N EVs and a time slot duration, τ , set to 15 minutes.
The model optimizes two main objectives, as outlined in the objective function (9). The first objective,
C1, with weight factor w1 [1/C] represents the total cost of energy from the grid calculated as shown in
(10), where Cg

t is the unit cost of grid energy at time t, and Dt illustrates the demand from the grid at
time t, as defined in (11). The term

∑N
n=1 Pn,t denotes the total charging or discharging power for all

EVs at time t.

Minimize: w1 · C1 + w2 · C2 (9)

C1 =
T∑
t=0

Cg
t · τ ·Dt (10)

where: Dt = max

(
N∑

n=1

Pn,t − PPV
t + P load

t , 0

)
(11)

The second objective, C2, is unitless, with weight factor w2 representing the total BDCA across all EV
patterns, as defined in (12). The term δn,t is calculated using (13), which captures the difference between
the normalized BDCA (8) and the SoC of each EV n at any given time t.

C2 =

N∑
n=1

tdepn∑
t=tarrn

δn,t (12)

where: δn,t = max(Anorm
n,t − SoCn,t, 0) (13)

The SoC of each EV at time t is updated based on (14). Here, Emax
n is the maximum battery capacity of

each EV, while ηC and ηD denote the charging and discharging efficiencies, respectively. The updated
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Table 2: Parameters and variables used in the MIQCP formulations

Variable Description
tarrn Arrival time of EV n
tdepn Departure time of EV n
P peak Peak shaving fuse limit
PEV Maximum allowable total charging or dis-

charging power for all EVs
P ch
ub Upper bound charging power

P ch
lb Lower bound charging power

P dch
ub Upper bound discharging power

P dch
lb Lower bound discharging power

Emax
n Maximum battery capacity of EV n

SoC targ Target state of charge for all EVs
SoCmin Minimum allowable state of charge
SoCmax Maximum allowable state of charge
SoCarr

n Initial state of charge of EV n upon arrival
SoCdep

n Final state of charge of EV n upon departure
C1 Total cost of energy from the grid
C2 Total BDCA cost for all EVs across all pat-

terns
Cg

t Unit cost of grid energy at time t
Dt Demand from the grid at time t
PPV
t Available PV power at time t

P load
t Load demand at time t

An,t BDCA for EV n at time t
SoCn,t State of charge of EV n at time t
Pn,t Charging or discharging power for EV n at

time t
δn,t Difference between BDCA and SoC for EV

n at time t
Sdemand
t Binary variable controlling bounds on de-

mand from the grid at time t

S
ch/dch
n,t Binary variable indicating whether EV n is

charging or discharging at time t
Szero
n,t Binary variable indicating whether power

Pn,t is zero at time t
SBDCA
n,t Binary variable used to handle constraints

related to BDCA and It,n for EV n at time t

SoC remains a quadratic constraint to avoid the increased computational complexity that would result
from linearization.

SoCn,t = SoCn,t−1 +
τ · Pn,t−1 · (1− S

ch/dsc
n,t−1 ) · ηC

Emax
n

+
τ · Pn,t−1 · Sch/dsc

n,t−1

Emax
n · ηD

(14)

The constraints related to the switches S
ch/dch
n,t and Szero

n,t define an EV’s charging and discharging be-

havior. The equations (15) and (16) ensure that when S
ch/dch
n,t = 0, the power Pn,t is constrained to EV

charging, while if Sch/dch
n,t = 1, the EV is discharging. Additionally, (17) and (18) manage the idle con-

dition, such that when Szero
n,t = 1, no charging or discharging event occurs, resulting in Pn,t = 0. Logical

consistency is maintained by (19) and (20), enforcing that Sch/dch
n,t is zero when Szero

n,t = 1; preventing
charging and discharging simultaneously. The big-M approach is used to handle these binary switches
by applying large constraints on Pn,t, ensuring proper behavior based on the switch states.
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Pn,t ≤ M · (1− S
ch/dch
n,t ) (15)

Pn,t ≥ −M · Sch/dch
n,t (16)

Pn,t ≤ M · (1− Szero
n,t ) (17)

Pn,t ≥ −M · (1− Szero
n,t ) (18)

S
ch/dch
n,t ≤ 1− Szero

n,t (19)

S
ch/dch
n,t ≥ −1 · (1− Szero

n,t ) (20)

To define power limits based on the EV’s charging or discharging state, the charging power limits are
set between P

pos
lb = 4 kW and P

pos
ub = 22 kW, while discharging limits range from P

neg
ub = −4 kW to

P
neg
lb = −22 kW, as shown in equations (21) and (22).

Pn,t ≤ Ppos
ub + (Pneg

ub − P
pos
ub ) · Sch/dch

n,t +M · Szero
n,t (21)

Pn,t ≥ Ppos
lb + (Pneg

lb − P
pos
lb ) · Sch/dch

n,t −M · Szero
n,t (22)

The total power drawn from the grid is constrained by the peak power P peak as defined in (23). Addi-
tionally, the total charging or discharging power of all the EVs must not exceed the maximum allowable
power for EVs i.e. PEV constraint in (24)

N∑
n=1

Pn,t + PLoad
t − PPV

t ≤ P peak (23)

N∑
n=1

Pn,t ≤ PEV (24)

In (25) the model ensures that the EV departs with the target SoC, while (26) maintains the SoC of EV
n at time t within the defined minimum and maximum SoC limits.

SoCdep
n ≥ SoCtarg (25)

SoCmin ≤ SoCn,t ≤ SoCmax (26)

The MIQCP constraints ensure operational feasibility across BDCA patterns, providing a robust frame-
work for managing EV charging infrastructure under time-sensitive conditions.

4 Results
The optimization results presented here applied the MIQCP model to determine the optimal charging
and discharging schedules for EVs throughout a typical workday. The model’s objectives are threefold:
minimizing charging costs, and reducing BCDA for the employees while achieving peak shaving. Table
3 outlines the key configurations that form the basis of this analysis.
The MIQCP model was solved using the Gurobi Optimizer (version 11.0.3) on a system with 16 logical
processors. The model, consisting of 36,510 constraints, 29,044 variables, and 3,796 quadratic con-
straints, achieved an optimal solution in 7.83 seconds. Scalability was assessed by increasing the energy
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Table 3: Key Configurations for the MIQCP Model

Assumption Description
EV Fleet Size 50 EVs
Initial SOC All vehicles arrive with an

initial SOC of 30%
Anxiety Patterns EVs are categorized into

anxiety patterns (Low, Lin-
ear, Exponential, High)

Arrival and Depar-
ture Times

EVs arrive around 08:00 and
depart around 17:00, with a
variance of one hour

Optimization Objec-
tive

Minimize cost and minimize
BDCA

load and expanding the EV fleet to 200 vehicles, achieving an optimal solution in 16.65 seconds. The
system continued to perform efficiently, demonstrating its adaptability to larger workplace environments
and higher energy demands.
Based on survey data, EVs were categorized into four BDCA patterns: Low, Linear, Exponential, and
High Anxiety. The MIQCP model was used to optimize the charging schedules for these categories.
Fig. 2 illustrates the SoC over time for one randomly selected EV from each pattern. All EVs arrive
with 30% SoC, but their charging behaviors vary significantly. Low anxiety EV show high discharge
flexibility, with a gradual increase in SoC, reaching around 50% by late afternoon and rising to nearly
80% by the end of the day. Linear anxiety EV steadily charge from 30% to 80% throughout the day,
initially allowing more room for discharge. Exponential anxiety EV exhibit slow charging early in the
day with a sharp increase toward departure, reflecting heightened anxiety, while also allowing significant
discharge flexibility in the morning. High anxiety EV rapidly charge to around 80% shortly after arrival,
maintaining a high SoC with small fluctuations throughout the day for peace of mind.
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Figure 2: SoC Progression for EVs Based on BDCA Patterns.

Figure 3: Comparison of Aggregated Power Demand.

Figure 3 represents a comparison of the aggregated power demand between the MIQCP method and un-
coordinated charging. In uncoordinated charging, EVs begin charging immediately upon being plugged
in, causing power spikes during peak hours as multiple vehicles charge simultaneously. This unsched-
uled approach leads to inefficient power distribution, significantly increasing grid demand and resulting
in a peak power demand of nearly 700 kW.
In contrast, the MIQCP method optimizes charging schedules, distributing the load more evenly across
off-peak hours, and reducing grid strain. It also lowers overall charging costs, by reducing daily costs
from C287.84 in uncoordinated charging to C221.78 with the MIQCP method, representing a 23% cost
savings.
Table 4 compares costs under three distinct BDCA scenarios: (1) All EVs Low Anxiety, where all EVs
exhibit the Low Anxiety pattern; (2) Mixed Anxiety Patterns, reflecting the survey results with a mix
of Low, High, Linear, and Exponential anxiety patterns; and (3) All EVs High Anxiety, where all EVs
exhibit the High Anxiety pattern.
These comparisons are made under two different weighting setups:

i. Equal priority for grid and BDCA cost ( w1 = 0.5, w2 = 0.5 ).

ii. Grid cost prioritized over BDCA cost ( w1 = 0.9, w2 = 0.1 ).

As mintioned in Section 3.2, C1 represents the grid cost, while C2 corresponds to the BDCA cost. The
weight factors w1 and w2 reflect the priorities given to minimizing grid cost and BDCA cost, respectively.
The results indicate that higher anxiety patterns generally lead to increased user dissatisfaction. However,
when we apply a mixed behavior scenario based on survey data as highlighted in the table, our algorithm
significantly improves overall user satisfaction without substantial increases in cost, effectively balancing
grid efficiency and user needs. This emphasizes the importance of addressing individual user concerns
when handling BDCA, rather than assuming all users have high anxiety, to achieve a better balance
between satisfaction and cost efficiency.
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Table 4: Comparison of grid cost C1 and BDCA cost C2 under different anxiety patterns and different weight
setups

Objectives weights Behaviour C1 (C) C2
w1 = 0.5, w2 = 0.5 All EVs Low Anxiety 221.75 0
w1 = 0.5, w2 = 0.5 All EVs High Anxiety 225.64 341.3
w1 = 0.5, w2 = 0.5 Mixed Anxiety Patterns 221.78 24.03
w1 = 0.9, w2 = 0.1 All EVs Low Anxiety 221.75 0
w1 = 0.9, w2 = 0.1 All EVs High Anxiety 221.76 487.4
w1 = 0.9, w2 = 0.1 Mixed Anxiety Patterns 221.75 91.2

5 Discussion
Our method utilizes user survey data and the MIQCP model to generate optimized charging plans, bal-
ancing grid cost minimization with user satisfaction, improving cost efficiency, and reducing grid strain.
While this study offers valuable insights, several limitations remain that future research should address
to enhance the model’s generalizability and accuracy:

• The survey primarily involved participants familiar with V2G technology, limiting the generaliz-
ability of the results. Additionally, the model considers only four anxiety patterns, whereas EV
users likely exhibit more diverse behaviors. Future research should aim for a broader, more diverse
sample of EV users to capture a wider range of behavioral patterns and preferences.

• The actual charging preferences may shift dynamically throughout the day due to factors such as
travel needs or real-time grid pricing. Future models should incorporate these dynamic changes to
better reflect practical scenarios.

• The model focuses on workplace environments that may not reflect the behavior in residential
or public charging settings. Future research should explore stricter charging environments where
users have less flexibility.

• Collaborating with experts in psychology and statistics could refine how anxiety and charging
behavior are modeled for more accurate predictions.

• Future iterations of the model could benefit from incorporating additional objectives, such as en-
vironmental impact (e.g., CO2 emissions) and EV health, which would make the model more
reflective of authentic concerns beyond cost and anxiety.

6 Conclusion
This study underscores the importance of understanding user behavior in the adoption of bi-directional
EV charging in workplace environments. Using real survey data, we classified EV users into four distinct
BDCA patterns and applied a multinomial logistic regression model to predict these behaviors. These
insights were integrated into our MIQCP optimization framework, which balances grid cost minimization
with user satisfaction while reducing peak demand. The findings show that incorporating a mix of BDCA
patterns enhances user satisfaction without sacrificing cost efficiency or peak shaving. The model’s
scalability and adaptability across different workplace settings further highlight its practical value.
By aligning real-world behavior with technical models, this work supports the broader adoption of bi-
directional charging, addressing both technical and psychological barriers to unlock its full potential for a
sustainable energy future. Future research should expand the model to encompass more diverse user be-
haviors and explore applications in residential or public charging contexts. Incorporating environmental
impacts and grid stability will further enhance its real-world relevance.
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