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Executive Summary

Thermal management of electric vehicles (EVs) impacts battery range, especially in cold temperatures.
EV manufacturers, such as Tesla, have started transitioning from using resistive heating to heat pumps
for thermal management; these are generally considered to be more energy efficient than resistive heat-
ing systems, and are reported to increase winter range in EVs. However, there is a temperature below
which the heat pump will not operate more efficiently than resistive heating. Crowdsourced data from
eight Teslas operated in extreme cold temperatures in Alaska show mixed results. This indicates that
the performance benefit of heat pumps may be muted and obscured by other factors that affect vehicle
efficiency in extremely cold climates.

1 Introduction
Cold weather introduces a number of difficulties for EVs. It reduces the efficiency of lithium-ion bat-
teries, which in turn can reduce the efficiency and range of EVs directly through the use of energy to
thermally condition the batteries to optimize performance [1]. In addition, vehicles must heat the cabin
in cold weather. While gas vehicles have access to waste heat from the engine to heat the cabin, EVs do
not and must expend energy to heat the cabin. EVs can achieve this through a number of methods, two
popular options being resistive heating and heat pumps. Despite a history of resistive heating being the
standard, some EV manufacturers, such as Tesla, have begun implementing heat pumps in their vehicles.
Heat pumps have increased energy efficiency compared to resistive heating across a temperature range
determined by the specific heat pump design [2].

Starting in October 2020, Tesla began integrating heat pumps into their vehicle models [3]. According to
Tesla’s heat pump patent [4], the heat pump can extract heat from multiple sources in the vehicle and can
combine or isolate sources depending on the circumstances. Anecdotal evidence and discussions indicate
that these heat pumps can efficiently operate down to -10 °C [5, 6]. These claims are supported in Tesla’s
certificate of conformity application to the U.S. Environmental Protection Agency’s (EPA), which states
that the 2021 Model 3’s heat pump can operate like a resistive heater when it is unable to satisfy the
heating load [7]. Efficiency benefits have been reported due to the use of heat pumps in EVs with a
reduction in energy consumption and an increase in driving range by 20% to 31% at -20 °C depending
on the refrigerant used [8]. Some regions, such as Alaska, experience temperatures colder than -10 °C
for a large percentage of the year, potentially affecting the overall benefit of installing the heat pump
[9]. Initial data analysis of crowdsourced data for EVs in Alaska seemed to show little difference in the
energy use vs. temperature for vehicles known to have heat pumps and those without [10]. In this study,
crowdsourced energy use data from eight Tesla EVs driven in Alaska in temperatures ranging between
-40 °C to 20 °C were analyzed to investigate the effectiveness of heat pumps in reducing vehicle energy
use in cold regions.
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2 Methodology

2.1 Crowdsourced Data
To analyze the effectiveness of heat pumps, data was crowdsourced from eight Teslas from the Anchorage
and Fairbanks areas of Alaska, three with heat pumps and five with positive-temperature-coefficient
(PTC) heaters, with model years ranging from 2016 to 2021. PTCs are a self-regulating form of resistance
heating. At least one year of driving data was collected from each vehicle, two of which had more than
two years of data available. Information on each Tesla vehicle is presented in Table 1. Some owners, as
indicated from the de-identified names, own multiple vehicles used in the study. These may be regularly
driven by the same family members, although this is unknown, and they may also have different regular
drivers from the household. If they were operated by the same person, it would remove a potential
variable in this analysis, as driver behavior (including comfort set points) has a large effect on energy
consumption, including the temperature-dependent coefficient of energy consumption [11, 12].

Table 1: Information about Tesla vehicles used in this study

Trip level data for eight of the cars was gathered through the third party app, TezLab, a software that
collects and compiles driving data from vehicles via Tesla’s application programming interface (API)
[13], containing trip start and end times, trip duration and distance, start and end odometer, estimated
energy consumption, and average ambient temperature. With this app, trip level data was gathered from
eight Teslas. Owner5 car1’s data was collected from a different app, TeslaFi. Similar to TezLab, this app
collects data from Tesla’s API, providing raw telemetry data, summarized trip data, as well as charging
summaries [14]. TeslaFi provides telemetry data at a 60 second resolution. This data, which was col-
lected in raw telemetry format, was synthesized to create summarized trip data with the same data fields
mentioned above.

Driving speed and temperature are two of the biggest factors affecting EV efficiency [15]. To reduce the
effect of different speeds on trip efficiency, data was pruned to use a range of 20 to 60 miles per hour
(mph) average trip speed, this speed range is based on the EPA city and highway road test simulations,
each test having an average speed of 20 mph and 48 mph[16]. Although compounding the sparseness
of available data, a further analysis was also carried out breaking the data into sub-ranges of 20-45 and
45-60 mph. As this analysis focuses on the heating regime, only trips below 20 °C were used. Lastly,
data was pruned to trips longer than 6 minutes. Figure 1 illustrates the distribution of trips across the
temperature range.
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Figure 1: The distribution of each Tesla’s total trips across three temperature regimes.

As seen in Figure 1, a majority of the trips for each car fall between 0 °C and 20 °C, owner5 car1 being
the only exception. Owner5 car1, a non-PTC Tesla, and owner4 car1, a PTC Tesla, have the most trip
data points compared to the rest of the cars.

2.2 Estimating the Factors Affecting Heat Load of the Passenger Cabin
It is assumed that the heat load of the passenger cabin is the largest component of temperature depen-
dency in the trip energy use. This heat load will be highly dependent on outside air exchange as well
as conduction through the cabin shell and solar gain through windows. Conduction through the shell is
dependent on inside and outside temperatures, thermal resistance (or insulation value) of the shell, and
shell surface area. Air exchange, solar gain, inside air temperature, and thermal resistance of the shell
are unknown with the data available. Some information related to passenger cabin volume, which can
be used to roughly estimate shell surface area, is available from owner’s manuals [17, 18, 19, 20]. Every
model of Tesla is represented in this study, each with a different passenger volume. As the heat transfer
rate is proportional to the surface area of the heated passenger cabin, which in turn is proportional to
the volume, each model’s passenger volume was calculated. The total passenger volume was estimated
by using the reported passenger measurements of the front and the cargo volumes of the back row, front
trunk and trunk in Equation 1.

PV =
fhr × flr × fsr

1728
+ (CV − FT ) (1)

Where PV is the estimated passenger volume (cf), fhr, flr and fsr are front head, leg, and shoulder room
measurements (cubic inches) respectively, CV and FT are cargo volume and front trunk measurements
(cf) respectively.

Equation 1 is only applicable for the Models X, Y and S. A different equation is required for the Model
3, as its owner’s manual lacks the needed cargo volume measurement. The passenger volume can be
found using the front and second row passenger measurements in Equation 2.

PV =
(fhr × flr × fsr) + (bhr × blr × bsr)

1728
(2)

Where PV is the estimated passenger volume (cf), fhr, flr and fsr are front head, leg, and shoulder room
measurements (cubic inches) respectively, bhr, blr and bsr are back head, leg, and shoulder room mea-
surements (cubic inches) respectively.

This calculated volume is an estimation used for a comparison of estimated surface area of the dif-
ferent models. The estimated passenger volumes of each model of Tesla calculated using Equation 1 and
2 are presented in Table 2, along with an estimated surface area assuming a cube, and the ratio of these
surface areas to that calculated for the Model 3.
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Table 2: Estimated size parameters of Tesla models.

Using the values from Table 1, the Model X, Y and S have approximately a 10, 20 and 30% higher
estimated surface area for heat loss than the Model 3 respectively. An increase in surface area should
lead to higher temperature dependence of energy use, all else equal, while the use of a heat pump in its
effective regime should lead to lower temperature dependence.

3 Anlaysis
In this analysis each car’s estimated energy consumption data is split into three heating regimes and
an independent linear fit is performed in each regime (Figure 2, Table 3). The boundaries of the three
heating regimes were chosen to capture one in which a heat pump should be functioning with much
greater efficiency than resistive heating (10 °C to 20 °C), a colder regime where the heat pump is still
expected to operate more efficiently than resistive heating (-10 °C to 10 °C), and an extreme cold regime
where the heat pump is not expected to be effective (-40 °C to -10 °C). These regimes are different
from the temperature distribution ranges used in Figure 1 in order to better reflect temperature ranges of
interest to the operation of the heat pump, rather than an even division of the overall range.

Figure 2: Energy consumption per mile as a function of temperature broken down by three heating regimes (10 °C
to 20 °C, -10 °C to 10 °C, and -40 °C to -10 °C). Cool colors (violet, blue and cyan) indicate cars with heat pumps,
while warm colors (red, orange, yellow, brown and magenta) indicate cars without heat pumps.

To help separate the effect of driving speed on the energy efficiency, the data was split into two speed
categories, low speed (20 - 45 mph) and high speed (45 - 60 mph), the analysis of which can be seen in
Figure 3 and Figure 4, respectively. Because this split further reduces the amount of data in each regime,
negatively affecting the statistical significance of the fit to the data, linear fits are no longer performed
for each vehicle, but instead for all vehicles with heat pumps and, separately, all vehicles without heat
pumps.
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Figure 3: Low speed (20-45 mph) energy consumption per mile as a function of temperature broken down by three
heating regimes (10 °C to 20 °C, -10 °C to 10 °C, and -40 °C to -10 °C). Trip-level data points shown are trips with
an average speed between 20 and 45 mph. Blue fit line is fit to all data from Heat pump Teslas, red fit line is fit to
all data from non-heat pump Teslas.

Figure 4: High speed (45-60 mph) energy consumption per mile as a function of temperature broken down by three
heating regimes (10 °C to 20 °C, -10 °C to 10 °C, and -40 °C to -10 °C). Trip-level data points represented have an
average speed of 45 - 60 mph. Blue fit line is fit to all data from heat pump Teslas, red fit line is fit to all data from
non-heat pump Teslas.
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4 Results and Discussion
The slopes of each Tesla’s fit lines from Figure 2 are presented in Table 3. These slopes, with units of
kilowatt hour per mile per degree Celsius (kWh/mi/°C), are the coefficients of temperature dependence
and are expected to be greater in absolute magnitude the greater the effect of temperature on the energy
use of the vehicle. There are various factors that could lead to a larger absolute magnitude of this slope
as discussed in the Methodology section, including larger surface area of the heated cabin, higher cabin
heater setting used by the occupant, lower insulation value in the cabin shell (perhaps due to sun roofs,
etc.), more air exchange with the outside, lower solar gain through windows, and lower efficiency of the
heater. Although all vehicles in our dataset are passenger car Teslas, unfortunately there are no models
represented in both of the heat pump and non-heat pump subsets. All HP Teslas are Model X and Y and
all PTC Teslas are Model 3 and S. The X and Y are larger cars, which are estimated to have heated space
surface areas 10-30% larger than the Model 3 and S. This would be expected to increase the magnitude
of the slope, while more efficient heating would be expected to decrease the magnitude of the slope.

Table 3: Coefficients of temperature dependence of each vehicle over various temperature ranges.

The slopes of owner3 car2 in the Cold and Extreme regimes were excluded from the table due to a lack
of data. In the Extreme heating regime (-40 °C to -10 °C) the heat pump is not expected to be operational
and able to provide any efficiency benefit over the vehicles only equipped with PTC heating, therefore
the larger vehicles with heat pumps are expected to have a higher coefficient of temperature dependence
in this temperature regime, all other factors equal. In this regime HP Teslas had slopes that averaged 1.5
times higher than the averaged slopes of the PTC Teslas, somewhat higher than the estimated ratio of
surface area in the two groups.

In Cold regime (-10 °C to 10 °C) the heat pump is expected to be operating with a coefficient of per-
formance (COP) greater than 1, however heat pump COPs decrease with decreasing temperature and at
the lower cutoff of -10 °C the COP likely approaches 1. Only two of the HP Teslas have enough data in
this regime to be included in this analysis, and the results are mixed with one HP Tesla’s slope higher
in magnitude than the PTC Tesla and one lower in magnitude than all but one of the PTC Teslas. On
average, the HP Tesla slopes are of higher magnitude, again by a ratio of approximately 1.5.

When comparing the Teslas in the Cool regime (10 °C to 20 °C), where the heat pump is expected
to have the highest COP values and the most efficiency benefits, the HP Teslas again had slopes that
were higher in magnitude than the PTC Teslas. On average, this ratio is still approximately 1.5.
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Owner5 car1 of the PTC Tesla group and owner4 car1 of the HP Tesla group had the most data col-
lected of the respective groups. When comparing the slopes of these two Teslas in the three temperature
regimes, it can be seen that the PTC Tesla has a lower magnitude temperature-dependent coefficient
(slope) than the HP Tesla in each regime, as is the general trend from the analysis. In the Cool and
Cold temperature regimes, the slopes of the HP Teslas are 2.3 and 4.5 times greater than that of the PTC
Tesla, respectively. The ratio in slopes between the two cars decreases in the extreme regime, below the
effective temperature of the heat pump where both vehicles would be expected to be heating with a COP
of 1, with the PTC Tesla’s slope only 1.3 times greater than that of the HP Tesla’s slope. The behavior,
which is opposite that expected due to the efficiency gains of the heat pump, implies that factors other
than the heat pump are dominating the temperature dependency of the energy use.

The coefficients of temperature dependence of the HP Teslas and PTC Teslas from the analysis by low
(20-45 mph) and high speed (45-60 mph) are presented in Table 4. In this case, due to the smaller, split
data sets of each speed range, a single linear fit was performed to each group (HP and PTC Teslas) in
each temperature regime, as shown in Figures 3 and 4. This is instead of the individual fits to each
vehicle’s trip data in Figure 2 and Table 3.

Table 4: Coefficients of temperature dependence from a fit to all heat pump Teslas and all PTC Teslas over various
temperature ranges split into low and high speed categories.

As can be seen in Table 4, in the low speed data, the relationship between the coefficients of temperature
dependence of the PTC Teslas and the HP Teslas is similar to that seen in the full dataset. This is not
surprising as this speed range contains the bulk of the data of the entire set and is dominated by the two
Teslas with significantly larger amounts of data available, owner5 car1 and owner4 car1. In the Cool and
Cold regimes, the HP Teslas’ slopes were 1.92 and 1.62 times greater than the PTC Teslas’, respectively.
The difference in slope between the two groups is smaller in the Extreme regime, with the HP Teslas
slope 1.28 times greater than the PTC Teslas slope.

The coefficient of temperature dependence in the high speed analysis shows the same behavior as previ-
ous analyses in the Extreme regime, where HP Teslas have a much higher magnitude slope than the PTC
Teslas. As discussed previously, the heat pump is not expected to provide benefits in this temperature
regime, so this result is expected for the larger vehicles with heat pumps. However, the slope of the fit
is of lower magnitude for the HP Teslas than their PTC counterparts in the Cool and Cold regimes. The
HP Teslas also saw larger increases in absolute magnitude between their slopes from Cool to Cold to
Extreme than the PTC Teslas. This is consistent with the efficiency gains expected from heat pumps,
which are expected to be highest in the Cool temperature regime.

There are many factors that can affect thermal management that cannot be determined from the data
available. Some of these factors, like the existence of sunroofs, may be specific to the vehicle, and some
are dependent on driver behavior. Settings such as the seat heaters, air flow, and defrost can affect thermal
demand, and in turn affect energy usage. One major factor is the variability of Tesla’s climate control
system, which allows for independent adjustment of thermal management of the front and back of the car
[17, 18, 19, 20]. Thermal management of the driver and passenger side of the front can be adjusted in-
dependently as well. These factors, among others, can lead to variability in the energy efficiency among
the vehicles used in this study. Data from TezLab did not contain any information about settings from the
climate system or other settings that could affect energy management. TeslaFi does record some of these
settings, but this software was used for only one Teslas and was therefore not used for this analysis for
consistency. Because of this, there are a number of factors that cannot be adequately accounted for in this
study and may play a large role in the relative temperature dependence of energy use of the individual
vehicles.

This is a very small data set, with even greater limitations in the amount of data from vehicles with
heat pumps. This limitation, as well the unobservable factors mentioned above, can lead to diminishing
statistical significance of the results and conclusions. Despite this, it can be seen that the apparent ef-
fectiveness of heat pumps in Teslas can become obfuscated by other factors in cold and extremely cold
climates. Ongoing data collection is expected to expand the dataset and allow better analysis, however,
it appears that in extremely cold climates, the performance benefit of heat pumps may not be enough to
provide clear energy efficiency gains.
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