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Executive Summary

This paper introduces a control-oriented modeling framework for thermal energy management (TEM) in bat-

tery electric vehicles (BEVs), specifically designed to support real-time predictive and optimization-based control

strategies. Developed from a detailed open source MathWorks reference model, the proposed approach strategi-

cally simplifies complex thermal interaction between coolant loops, heat pump-based heating, ventilation and air

conditioning (HVAC) dynamics, and cabin air thermal behavior. Key features include simplified thermal dynam-

ics and a modular structure that supports different operating modes, making the model suitable with real-time

predictive control strategies such as Model Predictive Control (MPC). Validation against the high-fidelity model

demonstrates that the control-oriented model achieves a mean absolute temperature prediction error below 1.45 ◦C,

while reducing simulation time by approximately 85 %. Provided as an open-source solution, the proposed model

serves as a robust and accessible tool for collaborative research and development, facilitating the advancement of

energy-efficient TEM control strategies to effectively mitigate BEV range anxiety under extreme weather condi-

tions.

Keywords: Electric Vehicles, Thermal management, Energy Management, Advanced controls of EV and Modeling

and Simulation

1 Introduction
Battery Electric Vehicles (BEVs) are central to the global shift toward sustainable transportation, driven by stricter
emission regulations, and the growing adoption of renewable energy sources [1]. However, despite their environ-
mental and efficiency advantages, BEVs still face significant challenges most notably range anxiety, i.e., limited
driving range under real-world conditions, which continues to hinder widespread adoption [2–4].

EVS38 International Electric Vehicle Symposium and Exhibition 1



Studies have shown that extreme weather conditions can reduce BEV range by 30 % to 35 % [5]. In controlled
testing at Argonne National Laboratory, a Ford Focus EV experienced range reductions of 53.7 % in hot weather
and 59.3 % in cold weather during Urban Dynamometer Driving Schedule (UDDS) cycles [6]. These reductions
are primarily due to increased energy consumption by the Thermal Energy Management (TEM) system, which
draws significant power to ensure passenger comfort and maintain safe operating temperatures for components
such as battery, motor, and power electronics [5,6]. While larger battery packs can help mitigate range limitations,
they introduce penalties in terms of cost and vehicle weight, potentially undermining the efficiency and appeal of
BEVs. Therefore, improving overall energy efficiency particularly through optimized thermal management offers
a more practical and cost-effective approach to extending driving range and enhancing user satisfaction.
Advanced TEM systems with heat pump-based heating, ventilation and air conditioning (HVAC) and reconfig-
urable coolant loops are key to improving BEV energy efficiency [7, 8]. These systems enable dynamic reconfigu-
ration and waste heat recovery, offering significant energy savings [9]. However, current studies typically focus on
isolated subsystems such as HVAC [10–15] or Battery Thermal Energy Management System [16–19], lacking in-
tegration of refrigerant, coolant, and cabin dynamics. This limits the development of holistic control strategies that
are both accurate and computationally efficient. Although system-level models increase control complexity, this
can be mitigated by developing Control-Oriented Models (COMs) that balance fidelity with real-time feasibility.
While some integrated models exist [20], their proprietary nature restricts broader research use.
High-fidelity simulation tools, such as those provided by MathWorks [21], are indispensable for detailed system
design and understanding nonlinear dynamics. However, their computational intensity and nonsmooth behavior
make them unsuitable for real-time embedded controllers. This creates a critical gap: advanced control methodolo-
gies like Model Predictive Control (MPC) effective for optimal control in automotive applications [22, 23] require
models that balance accuracy with computational tractability. Additionally, the scarcity of publicly available, open-
source TEM models hinders collaborative research, as existing high-fidelity models are typically proprietary [21].
This lack of open benchmarks complicates efforts to validate novel control strategies or explore comprehensive
integrated TEM solutions.
To address these gaps, this paper introduces a systematic methodology for developing a COM tailored for BEV
TEM systems equipped with reconfigurable parallel-serial coolant loops and heat pump-based HVAC systems.
Derived from a high-fidelity reference model, the proposed COM simplifies noncritical dynamics while preserving
thermal behaviors of the system, enabling real-time control applications. Key advancements include:

• Integration of coolant loops, refrigerant transitions (heat pump/cold modes), and cabin air dynamics into a
unified framework;

• Physics-based simplifications (e.g., lumped thermal masses, precomputed refrigerant properties) that retain
system-level fidelity while reducing computational time;

• An open-source implementation that promotes accessibility, enabling researchers to validate control strate-
gies (e.g., MPC) and accelerate innovation in energy-optimal TEM.

The remainder of the paper is organized as follows: Section 2 describes the BEV TEM architecture and reference
model. Section 3 details the COM development methodology. Section 4 outlines the parameter tuning. Section 5
presents results evaluating model accuracy and computational efficiency. Finally, Section 6 concludes with future
research directions.

2 System Architecture
The TEM system of the BEVs under consideration, shown in Fig. 1, integrates multiple fluid loops (coolant,
refrigerant, and cabin air) configured to handle varying operating conditions. By switching between serial and
parallel modes for the coolant loops, as well as transitioning the refrigerant loop between cold loop and heat pump
modes, the system ensures the battery and powertrain components are within desired temperature limits while also
delivering thermal comfort to the vehicles occupants.
The two liquid coolant loops can be configured either in series or parallel mode via directional valves. At low
ambient temperatures, the loops are arranged in series to allow waste heat from the electric motor, inverter, DCDC
converter to warm the battery pack. If necessary, an auxiliary heater supplements the thermal energy. Under mod-
erate ambient conditions, the radiator cools both the batteries and power electronics efficiently. When ambient
temperatures exceed 35 ◦C, the system switches to parallel loop operation. In this configuration, one loop cools
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Fig. 1. Schematic of the BEVs Thermal Energy Management (TEM) system, showing dual-mode coolant loops, the refrigerant
loop, and cabin HVAC integration.

the powertrain via the radiator, while the second loop utilizes a chiller connected to the refrigerant loop to cool the
battery pack independently.
The refrigerant loop operates in two distinct modes: cold loop mode and heat pump mode. In cold loop mode,
the cabin air bypasses the inner condenser, and the heat pump expansion valve remains fully open. The con-
denser/evaporator rejects heat to the environment, while the chiller expansion valve cools the coolant, and the
evaporator expansion valve cools the cabin air. In cold ambient conditions, the system transitions to heat pump
mode, wherein the inner condenser is used to heat the cabin air. In this mode, the condenser/evaporator acts as an
evaporator to absorb heat from the ambient environment. The heat pump expansion valve meters the refrigerant,
and a bypass around the evaporator and chiller directs refrigerant to a heat exchanger that extracts additional waste
heat from the powertrain coolant circuit, thereby improving overall system efficiency.

3 Dynamic Modeling of the BEV Thermal Management System
A COM for the BEV thermal management system is developed under cold climate conditions, with the ambient
temperature set to −10 ◦C. The simulation assumes a cold-start scenario, where all thermal components begin at
ambient temperature. The model state vector captures compressor inlet pressure p1, compressor outlet pressure
p2, battery state of charge SOC, battery temperature Tb, inverter temperature Tinv, motor temperature Tmot, DC/DC
converter temperature Tdcdc, cabin air temperature Tcair, and cabin interior temperature Tint. The state vector x is
defined as

x(t) =
[
SOC(t) p1(t) p2(t) Tb(t) Tinv(t) Tmot(t) Tdcdc(t) Tcair(t) Tint(t)

]>
. (1)

The control input vector consists of actuator commands for the battery coolant pump speed ωbat,pump, motor coolant
pump speed ωmot,pump, compressor speed ωcomp, HVAC blower speed ωbl, and thermal power input Qht. The control
vector u is defined as

u(t) =
[
ωbat,pump(t) ωmot,pump(t) ωcomp(t) ωbl(t) Qht(t)

]>
. (2)

3.1 Traction Power and Component Losses
The open-source high-fidelity MathWorks reference model estimates component losses (e.g., motor, inverter, bat-
tery) via lookup tables mapped to vehicle speed. While this enables rapid simulation, it limits adaptability to
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Table 1. Vehicle Specifications Used in the Simulation

Parameter Symbol Value
Vehicle Mass m 1200 kg
Wheel Radius rwheel 0.3 m
Frontal Area Af 2 m2

Drag Coefficient Cd 0.30
Rolling Resistance Coefficient Crr 0.015
Gear Ratio Ngr 8
Gear Efficiency ηgear 0.98
Air Density ρair 1.225 kgm−3

Gravitational Acceleration g 9.81 ms−2

Low Side Voltage Vdc 12 V

diverse vehicle platforms. To enhance generalization, authors have recalibrated traction power demand using first-
principles vehicle dynamics based on vehicle parameters summarized in Table 1. The total tractive force Ftraction is
derived from mechanical equilibrium [24] as

Ftraction(t) = Frolling(t)+Faero(t)+Fgravity(t)+Finertia(t)

=Crrmgcos(θ(t))+
1
2

ρairCdAfv(t)2 +mgsin(θ(t))+ma(t),
(3)

where v is vehicle speed, a is longitudinal acceleration, m is the vehicle mass, g is gravitational acceleration, ρair
is the air density, θ is the road grade angle, and Crr, Cd, Af denote the rolling resistance coefficient, aerodynamic
drag coefficient, and frontal area, respectively.
The electrical power demand at the motor is expressed as

Pmotor,elec(t) =
Ftraction(t)v(t)

η
sign(Ftraction(t))
gear

+Pmotor,loss(τmotor(t),ωmotor(t)) (4)

where ηgear is the gear efficiency, ωmotor is the motor angular velocity, and τmotor is the motor torque demand. The
motor loss Pmotor,loss is interpolated from experimental loss maps as a function of motor torque and speed.
The total electrical power demand from the battery is expressed as

Pb(t) = Pmotor,elec(t)+Pinverter,loss(τmotor(t),ωmotor(t))+Ploss,dc(t)+PTEM(t) (5)
PTEM(t) = Pcomp(t)+Pbat,pump(t)+Pmot,pump(t)+Pblower(t)+Prad,fan(t) (6)

Here, Pinverter,loss represents inverter losses (from lookup tables based on motor torque and speed), Ploss,dc is the
power loss in the DC-DC converter, and PTEM is the aggregate power consumption of thermal energy management
components, including the compressor, pumps, blower, and radiator fan.
The DC-DC converter losses are calculated by accounting for conduction and switching losses in both Insulated-
Gate Bipolar Transistor (IGBT) and diode devices [25–27] and is expressed as

Ploss,dc(t) =
(
Vce0Il(t)+ rceI2

l (t)
)

D+
(
Vd0Il(t)+ rdI2

l (t)
)
(1−D)+Esw fsw

(
Il(t)
Iref

)Kit
(

Vdc

Uref

)Kvt

+Erec fsw

(
Il(t)
Iref

)Kid
(

Vdc

Uref

)Kvd
(7)

where, Vce0 and rce denote the IGBT’s forward voltage drop and on-state resistance, while Vd0 and rd represent
the diode’s forward voltage drop and on-state resistance. D is the converter duty ratio, Il is the low voltage side
current drawn from the battery, and Vdc is the DC-link voltage. The switching frequency is denoted by fsw, and Esw
is the total energy lost per switching event in the IGBT (including both turn-on and turn-off losses), while Erec is
the reverse recovery energy loss in the diode. The parameters Iref and Uref are normalization constants (reference
current and voltage) used to linearize the switching loss behavior. The empirical coefficients Kit, Kvt, Kid, and Kvd
scale the influence of current and voltage on the switching losses for the IGBT and diode, respectively. The low-
voltage side current Il(t) is estimated by dividing the low-voltage side power demand

(
PTEM(t)−Pcomp(t)

)
by the
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low-voltage bus voltage.

3.2 Battery Electrical-Thermal Model
The battery is modeled as a voltage source Oocv connected in series with an internal resistance Rb. The battery
current Ib is expressed as

Ib(t) =
1

2Rb(SOC(t),Tb(t))

(
Oocv(SOC(t),Tb(t))−

√
O2

ocv(SOC(t),Tb(t))−4Pb(t)Rb(SOC(t),Tb(t))

)
(8)

where SOC is the battery state of charge and Tb is the battery temperature.
The open-circuit voltage Oocv is modeled as a second-order polynomial in both SOC and temperature

Oocv(SOC(t),Tb(t)) =
2

∑
i=0

2

∑
j=0

µi j SOCi(t)T j
b (t), Rb(SOC(t),Tb(t)) =

2

∑
i=0

2

∑
j=0

ψi j SOCi(t)T j
b (t) (9)

where µi j and ψi jare polynomial coefficients identified from the MathWorks model data specifications.The state
of charge of the battery is expressed as

dSOC(t)
dt

=− Ib(t)
Qnom

(10)

where Qnom is the nominal battery capacity.
BEVs generate significant heat during operation due to electrical losses (e.g., Joule heating, switching losses) in
components such as the inverter, DC/DC converter, and motor, as well as mechanical friction in the drivetrain.
Accurate thermal modeling requires precise estimation of these heat generation rates, which are directly approxi-
mated from their respective power losses in this work. This approach leverages the first-law equivalence between
electrical/mechanical power losses and thermal energy dissipation. Specifically, the heat generation rates for the
inverter Qinv, motor Qmotor, and DC/DC converter Qdcdc are expressed as

Qinv(t) = Pinverter,loss(τmotor(t),ωmotor(t)), Qmotor(t) = Pmotor,loss(τmotor(t),ωmotor(t)), Qdcdc(t) = Pdcdc,loss(t).
(11)

The battery’s heat generation rate Qgen is estimated using a lumped thermal mass model [16] and is expressed as

Qgen(t) = I2
b (t)Rb(SOC(t),Tb(t))− Ib(t)Tb(t)Θ+ I2

b (t)Rbr (12)

where Θ is the entropic heating coefficient and Rbr is the bus bar resistance used to connect different cell modules
within the battery pack.

3.3 Coolant Loop Simplifications
In cold climates, coolant loops operate in series mode to prioritize waste heat recovery. The coolant mass flow rate
at the battery coolant pump and motor coolant pump ṁc,clnt c ∈ {battery,motor} is expressed as

ṁc,clnt(t) = ωc,pump(t) ·Vdisp,c ·ρclnt ·ηc,pump (13)

where ωc,pump is the pump speed, Vdisp,c is the pump displacement, ρclnt is the coolant density, and ηc,pump is the
pump volumetric efficiency.
The coolant pump power consumption Pc,pump is expressed as

Pc,pump(t) =
ṁc,clnt(t)∆p(t)/ρclnt

ηpump,elec
(14)

where ∆p is the total pressure drop across the cooling circuit and ηc,pump is the electrical efficiency of the pump.
The pressure drop ∆p is estimated as the summation of the pressure drops across all individual components (e.g.,
motor, inverter) within the coolant loop. Another simplification adopted in the coolant loop is the modeling of the
heater. The heater is modeled by assuming that the input electrical power is converted into thermal power added
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to the coolant, scaled by a heating efficiency ηht. The outlet temperature of the coolant after the heater is then
expressed as

Tclnt,ht,out(t) = Tclnt,ht,in(t)+
ηhtQht(t)

ṁbat,clnt(t)cp,clnt
(15)

where cp,clnt is the specific heat capacity of the coolant.

3.4 Component Thermal Models
The heat generated by battery, inverter, DC/DC converter, and motor during the operation is thermally managed
via liquid coolant loops. These components are modeled as lumped thermal masses [20]. This approach sim-
plifies distributed thermal gradients into single-node representations. The thermal dynamics of each component
i ∈ {battery, inverter,dcdc,motor} are expressed as

micp,i
dTi(t)

dt
= αi

(
Q̇gen,i(t)− Q̇cool,i(t)

)
(16)

where mi is the thermal mass, cp,i is the specific heat, Q̇gen,i is the heat generation given by (11)–(12), αi is a tuning
coefficient and Q̇cool,i is the heat extracted by the coolant. The heat transfer from component i to the coolant, Q̇cool,i,
consists of convection Q̇conv,i and conduction Q̇cond,i contributions and is estimated as

Q̇conv,i(t) = ṁc,clnt(t)cp,clnt (Ti(t)−Tclnt,in,i(t))

(
1− e

−
βiKconv,i

ṁclnt,i(t)cp,clnt

)
(17)

Q̇cond,i(t) = ϑiKc,i (Ti(t)−Tclnt,in,i(t)) (18)

where ṁc,clnt is the coolant mass flow rate through component i, Ti(t) is the component temperature, and Tclnt,in,i(t)
is the inlet coolant temperature. Kconv,i and Kcond,i are the effective convective and conductive heat transfer coeffi-
cients, respectively. The coolant inlet temperature Tclnt,in,i for each component is assumed to be the coolant outlet
temperature from the preceding upstream component in the coolant loop. For example, the battery coolant inlet
temperature is assumed to match the heater coolant outlet temperature.

3.5 Refrigerant Loop
The refrigerant mass flow rate and compressor power consumption are described through a quasi-static model [28–
30]. The refrigerant mass flow rate ṁref is expressed as

ṁref(t) = ηvf(t)ωcomp(t)Vdisp,compρref, ηvf(t) =
2

∑
i=0

2

∑
j=0

κi j

(
p2(t)
p1(t)

)i

ωcomp(t) j (19)

where ηvf is the volumetric efficiency, ωcomp is the compressor speed, Vdisp,comp is the compressor displacement
volume, ρref is the refrigerant density at the compressor inlet, and κi j are the polynomial fitting coefficients.
The compressor outlet enthalpy h2 is estimated using the inlet enthalpy h1, isentropic outlet enthalpy h2s, and
isentropic efficiency ηisen as

h2(t) = h1(t)+
h2s(t)−h1(t)

ηisen
. (20)

The isentropic outlet enthalpy h2s is obtained by assuming an isentropic compression from the inlet pressure p1
to the outlet pressure p2, using refrigerant properties computed via CoolProp. The inlet enthalpy h1 is evaluated
based on the compressor inlet pressure p1 and the superheat condition of the refrigerant at the compressor inlet.
The power consumption of the compressor Pcomp is expressed as

Pcomp(t) =
ṁref(t)(h2(t)−h1(t))

ηcomp
(21)

where ηcomp is the overall efficiency of the compressor.
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To capture dynamic refrigerant behavior, the compressor inlet and outlet pressures are estimated from the evapo-
rator and inner condenser dynamics [30], estimated using

σeVe

[
(1− γ̄e)

∂ (ρlhl)

∂ p1
+ γ̄e

∂ (ρghg)

∂ p1
+(ρghg −ρlhl)

∂ γ̄e

∂ p1
+

MweCe

Ve

∂Te

∂ p1

]
d p1

dt
= Q̇e(t)+ ṁref(t)(h4(t)−h1(t))

(22)

σicVic

[
(1− γ̄ic)

∂ (ρlhl)

∂ p2
+ γ̄ic

∂ (ρghg)

∂ p2
+(ρghg −ρlhl)

∂ γ̄ic

∂ p2
+

MwcCic

Vic

∂Tic

∂ p2

]
d p2

dt
=−Q̇ic(t)+ ṁref(t)(h2(t)−h3(t))

(23)

Here, Ve and Vic are the internal volumes of the evaporator and inner condenser, respectively; γ̄e and γ̄ic are the
mean void fractions; ρl and ρg are the liquid and vapor densities; and hl, hg are the respective specific enthalpies.
Mwe, Mwc represent the thermal mass of the evaporator and condenser walls, while Ce, Cic are their specific heat
capacities. The wall temperatures Te and Tic are approximated by the refrigerant saturation temperatures.
The heat transfer rates between refrigerant and air in the evaporator and inner condenser are denoted by Q̇e and
Q̇ic, respectively. The refrigerant enthalpy h3 is calculated from the outlet pressure p2 and the refrigerant outlet
temperature at the inner condenser. Due to isenthalpic expansion at the valve, h4 = h3 is assumed. The bracketed
terms[·] in (22) and (23) can be precomputed using analytical expressions or lookup tables derived from refrigerant
thermodynamic properties.
To model thermal interactions within the refrigerant circuit, heat exchangers are described using the effectiveness
- NTU (Number of Transfer Units) method [31]. The heat transfer rate at the inner condenser is estimated using

Q̇(t) = ε(t)Cmin(t) (Tref,in(t)−Tair,in(t)) (24)
ε(t) = 1− exp(−NTU(t)) (25)

NTU(t) =
U(t)A
Cmin(t)

, Cmin(t) = min
(
ṁref(t)cp,ref, ṁair(t)cp,air

)
(26)

where, U(t) = 1/Rth(t) is the overall heat transfer coefficient, and A is the effective heat transfer area. A special
case is considered for phase change processes in the condenser and evaporator, where the refrigerant-side capacity
rate becomes large (ṁrefcp,ref → ∞), making Cmin = ṁaircp,air and allowing effectiveness to be calculated using
(25). The total thermal resistance is estimated using

Rth(t) =
1

href(t)Aref
+Rwall +

1
hair(t)Aair

(27)

where href and hair are the convective heat transfer coefficients, and Aref, Aair are the heat transfer surface areas
on the refrigerant and air sides, respectively. Rwall accounts for thermal resistance through the exchanger wall.
The convective coefficients are estimated from Nusselt number correlations based on local flow conditions. This
approach is consistently applied to all heat exchangers in the refrigerant loop.

3.6 Cabin Thermal Modeling
Passenger thermal comfort in vehicle cabins depends on factors such as clothing, journey duration, cabin air tem-
perature, and ambient climate. Among these, cabin air temperature is a critical and controllable parameter, as it
directly governs heat exchange between occupants and their environment [32]. In this study, thermal comfort is
assumed to be achieved when the cabin air temperature Tcair tracks a reference setpoint. Cabin air temperature dy-
namics are influenced by three primary heat transfer mechanisms: heat exchange between passengers and cabin air
(Q̇human), convective/conductive heat transfer from interior surfaces (glass, doors, roof), and HVAC airflow (ṁair)
supplying conditioned air at temperature Tvent.
A two-node lumped parameter model is used to represent the thermal dynamics of the cabin, consisting of the
cabin interior temperature Tint and the cabin air temperature Tcair [20, 33]. The thermal resistances Rglass, Rdoors,
and Rroof are estimated based on geometry, material properties, and convective coefficients.
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These resistances are computed as

Rk = αk

(
1

hkAk
+

Tk

kkAk

)
, k ∈ {glass,doors, roof} (28)

where hk is the convective heat transfer coefficient, Ak is the surface area, Tk is the material thickness, and kk is
the thermal conductivity of the respective components. The total thermal resistance of the cabin envelope, Rtotal, is
calculated as the sum of individual resistances.
The cabin interior temperature dynamics is expressed as

Mintcp,int
dTint(t)

dt
=

(
α1

Tamb(t)−Tint(t)
Rtotal

+α2
Tair(t)−Tint(t)

Rtotal

)
(29)

where, cp,int is the specific heat capacity of the interior, estimated as a mass-weighted average of interior materials
and Mint is the total mass of all the interior components.
The cabin air temperature dynamics and air mass flow rate are expressed as

Cair
dTcair(t)

dt
= α3

(
ṁair(t)cp,air(Tvent(t)−Tcair(t))+ Q̇h +α4

Tint(t)−Tcair(t)
Rtotal

)
, ṁair(t) = α5V̇refρair

ωbl(t)
ωbl,ref

(30)

where Cair =Vcabρaircp,air is the thermal capacitance of the cabin air, Tvent is the HVAC supply air temperature, and
V̇ref, ωbl,ref are reference values for volumetric flow rate and blower speed, respectively. The parameters α1 to α5
are tuning coefficients calibrated to match the cabin thermal behavior.

4 Model Parameter Identification
The goal of the COM is to capture the key dynamics of the high-fidelity reference model while remaining com-
putationally efficient for real-time control. To achieve this, the model incorporates several simplifications and
assumptions, as outlined in Section 3. To address these simplifications and ensure the model output remains rep-
resentative of the reference system, a systematic parameter tuning process is employed. The tuning parameters
are identified using an optimization-based approach that minimizes the weighted squared error between the pre-
dicted state trajectories of the COM and those of the high-fidelity MathWorks benchmark over the entire simulation
horizon.
The nonlinear system dynamics of the MathWorks TEM model are described as

xM(t+) = fM (xM(t),uM(t),d(t)) (31)

where xM is the state vector, uM the control input vector, and d the disturbance vector containing exogenous inputs
such as vehicle speed and ambient temperature.
The COM dynamics are defined as

ẋ(t) = f (x(t),u(t),d(t),ϒ) (32a)

where d(t) represents the disturbance vector and ϒ denotes the parameter vector. The simplified dynamics f (·)
combine first-principles modeling with empirical component performance data. To achieve model accuracy, the
parameter vector ϒ must be calibrated such that the output of the COM matches closely with the corresponding
outputs of the MathWorks reference model, denoted by yM (xM(t),uM(t),d(t)).
The parameter identification problem is formulated as a nonlinear least-squares optimization

min
ϒ

∫ T

0
e(t,ϒ)>Q(t)e(t,ϒ)dt (33a)

subject to xM(t+) = fM (xM(t),uM(t),d(t)) , xM(0) = xM,0 (33b)
ẋ(t) = f (x(t),u(t),d(t),ϒ) , x(0) = x0 (33c)

The modeling error e(t,ϒ) is defined as

e(t,ϒ) = yM (xM(t),uM(t),d(t))−
[
x>(t) u>(t)

]>
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where, ϒ=
[
β> ϑ> σ> α> κ> µ> ψ>]∈ represents the parameter vector, Q is a time-varying positive

definite weighting matrix and xM,0 and x0 are initial states of the reference and control models. The parameter vector
ϒ includes subvector contains model-specific parameters related to scaling factors, thermal resistances, battery
electrical behavior, refrigerant-compressor characteristics, and heat transfer coefficients. The weighting matrix Q
enables emphasis on specific operational regimes: transient conditions for slow dynamics (e.g., state-of-charge)
and steady-states for fast dynamics (e.g., cabin air temperature). Reference model states xM are obtained through
offline simulation. Control model states x depend implicitly on ϒ through numerical integration. By selecting
suitable choices for the disturbance and control inputs, the parameters’ fitting in problem (33) can be solved either
for simple cases, such as step inputs, or over standard driving cycles, such as the Worldwide Harmonized Light
Vehicles Test Cycle (WLTC).

5 Model Validation
The proposed COM is validated against the high-fidelity MathWorks reference model using the extended WLTC
driving cycle under cold ambient conditions (−10 ◦C). The primary goal is to accurately capture key thermal states–
namely, battery, motor, and cabin air temperatures–such that the control model closely replicates the behavior of the
high-fidelity reference. Although refrigerant pressure states are not the main focus, their accuracy is also assessed
to ensure overall model integrity.
Component temperature trajectories demonstrate strong agreement between the two models. As illustrated in Fig. 2,
the COM effectively captures the warm-up dynamics and steady-state values, maintaining a mean absolute error
(MAE) below 1.45 ◦C across all major components.
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Fig. 2. Validation of component thermal states using the control-oriented model compared to the high-fidelity reference. The
figure shows that the control model captures the thermal dynamics of the motor, inverter, DC-DC converter, and battery with
high fidelity over the complete drive cycle.

Cabin air temperature results also exhibit high fidelity. As seen in Fig. 3, the control model tracks both transient and
steady-state phases with an MAE of only 0.95 ◦C, supporting its suitability for use in passenger comfort control
applications.
Validation metrics for all key states are summarized in Table 2. While the refrigerant pressure states exhibit slightly
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higher deviations, this can be attributed to the simplified modeling of pressure dynamics–particularly the rate
of change of pressure in the evaporator and condenser volumes. Nonetheless, the absolute errors remain within
acceptable bounds for supervisory-level thermal control applications.
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Fig. 3. Comparison of cabin air temperature profiles between the control-oriented and high-fidelity models under cold ambient
conditions. The control model accurately tracks both transient warm-up and steady-state phase, achieving a MAE under 1 ◦C,
which supports its use in cabin comfort control strategies.

Table 2. Validation metrics for control-oriented model against high-fidelity reference

State RMSE MAE
Motor Temperature 1.69 1.40

Inverter Temperature 0.93 0.73
DCDC Temperature 1.46 0.86

Battery SOC 0.00 0.00
Battery Temperature 0.71 0.55

Compressor Inlet Pressure 0.21 0.19
Compressor Outlet Pressure 3.79 2.85
Cabin Interior Temperature 3.20 3.03

Cabin Air Temperature 1.32 0.95

All simulations were performed in MATLAB R2024b on a Windows 11 64-bit system equipped with an Intel®

Core™ i7-11850H CPU (8 cores, @ 2.5 GHz) and 32 GB RAM. Compared to the reference model, the proposed
COM achieves an approximate 85% reduction in simulation time. This demonstrates its practical suitability for
embedded deployment and predictive thermal management control applications.

6 Conclusion
This paper presents a control-oriented modeling framework for thermal energy management in battery electric
vehicles (BEVs), focusing on architectures with reconfigurable coolant loops and heat pump-based HVAC systems.
The proposed model, derived from a high-fidelity MathWorks reference, captures key thermal dynamics with
high accuracy while significantly reducing computational complexity. Validation against the benchmark model
demonstrates mean absolute errors below 1.5 ◦C for key thermal states and refrigerant pressures, alongside an
85% reduction in simulation time. These results confirm the models suitability for real-time implementation and
advanced control applications.
The models modular structure and physical transparency make it well-suited for integration with predictive control
strategies like MPC. Its open-source implementation further promotes transparency, reproducibility, and collabo-
ration within the research community.
Future work will focus on extending the model to account for dynamic ambient conditions and deploying it within
a real-time RTI-based MPC framework for predictive thermal energy management.
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